NJM2243

NJM2243M

3-INPUT VIDEO SWITCH WITH 75Ω DRIVER

GENERAL DESCRIPTION

The NJM2243 is a three input integrated video switch which selects one video or audio signal from three input signals.

It contains driver circuit for 75Ω load and is able to connect to TV monitor.

Its operating supply voltage range is 9 to 12V and bandwidth is 10MHz. Crosstalk is 70dB (at 4.43MHz).

FEATURES

JRC

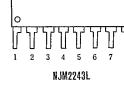
- Operating Voltage 9~13V
- 3 Input-1 Output
- Internal Driver Circuit for 75 Ω Impedance
- Muting Function available
- Low power Dissipation 15mA
- Cross-talk 70dB(at 4.43MHz)
- Wide Frequency Range 10MHz

PIN CONFIGURATION

- Package Outline DIP8, DMP8, SIP8
- Bipolar Technology

APPLICATION

- VCR Video Camera AV-TV Video Disc Player

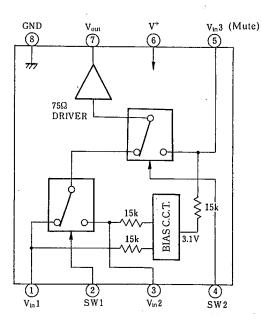


NJM2243D

FITTIT

NJM2243L

1 2 3 4	8 7 6 5	
NJM2243D NJM2243N		



New Japan Radio Co., Ltd.

PIN	FUNCTION
	1. V _{in} 1
	2.SW1
	3. V _{in} 2
	4.SW2
	5. V _{in} 3
	6.V'
	7. Vou
	8. GND

BLOCK DIAGRAM

Pin Connection

■ INPUT CONTROL SIGNAL-OUTPUT SIGNAL

SW 1	SW 2	OUTPUT SIGNAL
L	L	V1N 1
н	L	V _{IN} 2
L/H	Н	. V _{IN} 3

■ ABSOLUTE MAXIMUM RATINGS (T				
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*	15	v	
Power Dissipation	Pp	(DIP8) 500	mW	
		(DMP8) 300	mW	
		(SIP8) 800	m₩	
Operating Temperature Range	Topr	-20~+75	°C	
Storage Temperature Range	. Tstg	-40~+125	°C	

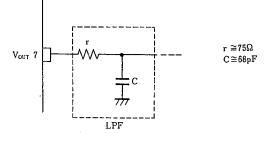
ELECTRICAL CHARACTERISTICS:

(V*=9V, Ta=25℃)

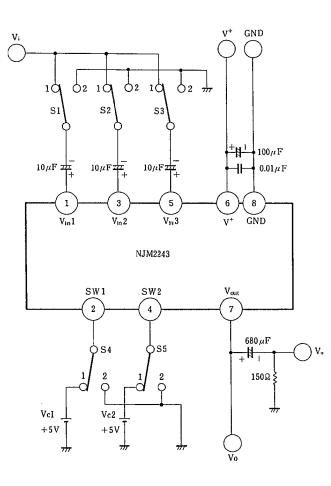
SYMBOL	TEST CONDITION	MIN.	ΤΥΡ.	MAX.	UNIT	
V*		8.5		13.0	v	
I _{CC}	S1=S2=S3=S4=S5=2	13.0	18.5	25.0	mA	
Gv	$V_{in}=2.0V_{P.P}$, 100kHz, Vo/Vi, $R_L = 150\Omega$	-0.8	-0.3	+0.2	dB	
Gr	$V_{in}=2.0V_{P.P}, V_0(10MHz)/V_0(100kHz), R_L=1k\Omega$	-1.0		+1.0	dB	
DG	Vin=2.0V _{P.P} , staircase, $R_L = 150\Omega$		0.3	-	%	
DP	Vin=2.0V _{P.P} , staircase, $R_L = 150\Omega$	-	0.3	_	deg.	
V _{off}	$S1=S2=S3=2$, $S5=1\rightarrow 2$ V _O :Voltage change		-	±30	mV	
СТ	Vin=2V _{P-P} , 4.43MHz, Vo/Vi	-	-70	_	dB	
V _{CII}	All inside Sw:ON	2.4	_		v	
V _{CL}	All inside Sw:OFF	_		0.8	v	
R _i		_	15	-	kΩ	
	SYMBOL V* Icc Gv Gr DG DP Voff CT Vch	SYMBOL TEST CONDITION V^+ I _{CC} S1=S2=S3=S4=S5=2 G_V Vin=2.0V _{P.P.} , 100kHz, Vo/Vi, R _L =150Ω G_r Vin=2.0V _{P.P.} , V ₀ (10MHz)/V ₀ (100kHz),R _L =1kΩ DG Vin=2.0V _{P.P.} , staircase, R _L =150Ω DP Vin=2.0V _{P.P.} , staircase, R _L =150Ω V _{off} S1=S2=S3=2, S5=1→2 V ₀ :Voltage change CT Vin=2V _{P.P.} , 4.43MHz, Vo/Vi V _{C11} All inside Sw:OFF	SYMBOL TEST CONDITION MIN. V ⁺ 8.5 I _{CC} S1=S2=S3=S4=S5=2 13.0 G _V Vin=2.0V _{P.P.} , 100kHz, Vo/Vi, R _L =150Ω -0.8 G _r Vin=2.0V _{P.P.} , 100kHz, Vo/Vi, R _L =150Ω -0.8 G _r Vin=2.0V _{P.P.} , 100kHz, Vo/Vi, R _L =150Ω -1.0 DG Vin=2.0V _{P.P.} , staircase, R _L =150Ω DP Vin=2.0V _{P.P.} , staircase, R _L =150Ω V _{off} S1=S2=S3=2, S5=1→2 V _O :Voltage changc V _{off} S1=S2=S3=2, S5=1→2 V _O :Voltage changc V _{c11} All inside Sw:ON 2.4 V _{CL} All inside Sw:OFF	SYMBOL TEST CONDITION MIN. TYP. V^+ 8.5 - I_{CC} S1=S2=S3=S4=S5=2 13.0 18.5 G_V Vin=2.0V _{P.P} , 100kHz, Vo/Vi, R _L =150Ω -0.8 -0.3 G_r Vin=2.0V _{P.P} , V ₀ (10MHz)/V ₀ (100kHz),R _L =1kΩ -1.0 - DG Vin=2.0V _{P.P} , staircase, R _L =150Ω - 0.3 DP Vin=2.0V _{P.P} , staircase, R _L =150Ω - 0.3 Vorff S1=S2=S3=2, S5=1→2 V_0:Voltage change - - CT Vin=2V _{P.P} , 4.43MHz, Vo/Vi - -70 V _{C11} All inside Sw:OFF - - V _{CL} All inside Sw:OFF - -	SYMBOL TEST CONDITION MIN. TYP. MAX. V ⁺ 8.5 13.0 I _{CC} $S1=S2=S3=S4=S5=2$ 13.0 18.5 25.0 G _V Vin= $2.0V_{P.P.}$, $100kHz$, Vo/Vi , $R_L = 150\Omega$ - 0.8 - 0.3 $+0.2$ G _r Vin= $2.0V_{P.P.}$, $V_0(10MHz)/V_0(100kHz), R_L = 1k\Omega$ - 1.0 - $+1.0$ DG Vin= $2.0V_{P.P.}$, staircase, $R_L = 150\Omega$ 0.3 - DF Vin= $2.0V_{P.P.}$, staircase, $R_L = 150\Omega$ 0.3 - DP Vin= $2.0V_{P.P.}$, staircase, $R_L = 150\Omega$ 0.3 - Vorff $S1=S2=S3=2$, $S5=1\rightarrow 2V_O$: Voltage change ± 30 CT Vin= $2V_{P.P.}$, $4.43MHz$, Vo/Vi -70 - V _{c11} All inside Sw:ON 2.4 V _{CL} All inside Sw:OFF 0.8	

(note) Unless specified, tested with three mode below.

a) S1=1, S2=S3=S4=S5=2 b) S2=S4=1, S1=S3=S5=2 c) S3=S5=1, S1=S2=2, S4=1 or 2


5-122------

-New Japan Radio Co.,Ltd.-


NJM2243

APPLICATION

Oscillation Prevention on light loading conditions Recommended under circuit

TEST CIRCUIT

DC Voltage Each Terminal Typ. on Test Circuit Ta =25°C

-New Japan Radio Co.,Ltd.-

51			-					
Terminal Name	V _{IN} I	SWI	$V_{IN}2$	SW2	V _{IN} 3	V+	Vout	GND
DC Voltage	$\frac{3}{5}V^{+}$		$\frac{3}{5}$ V+		$\frac{3}{5}V^{+}$		$\frac{2}{5}$ V ⁺ -0.7	_

5-123

NJM2243

EQUIVALENT CIRCUIT

5

5-124 _____ New Japan Radio Co., Ltd.

Downloaded from Elcodis.com electronic components distributor

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

New Japan Radio Co., Ltd.