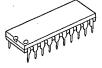
AM/FM RADIO

GENERAL DESCRIPTION

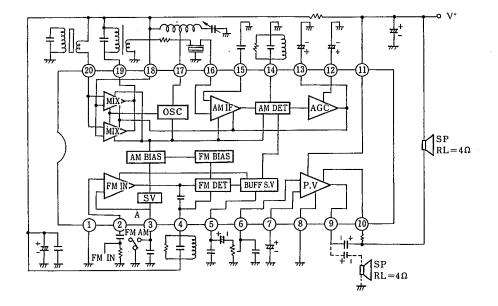
The NJM2237 is monolithic integrated circuit in a 20-lead dual inline plastic package designed for use in 3-6V protable AM/FM radio

The functions incorporated are AM RF amplifier, AM mixer, FM/AM IF amplifier, FM/AM detecter, AM AGC circuit Audio Power amplifier.


■ FEATURES

- Wide Operating Voltage
- (1.8~6.0V)
- Very Simple DC switching of FM/AM
- High AM signal handling
- 4Ω speaker direct drive
- Low tweet
- Most suitable to use with NJM2236
- Package Outline

D1P20


Bipolar Technology

■ BLOCK DIAGRAM

PACKAGE OUTLINE

NJM 2237 D

(note) Dotted line shws $V^* = 4.5V$

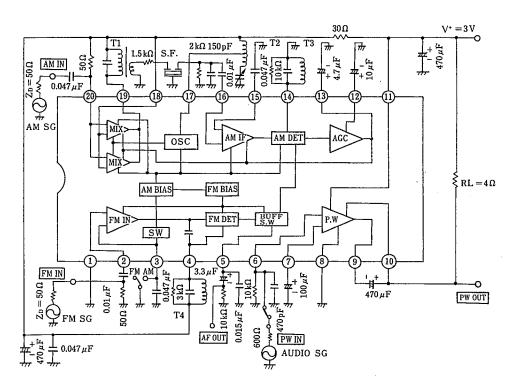
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT:
Supply Voltage	V+	8	· V
Output Current	I _{O(peak)}	550	mA
Power Dissipation	PD	1.2	W
Operating Temperature Range	Topr	-20~75	°C
Storage Temperature Range	T _{stg}	-40~125	°C

■ ELECTRICAL CHARACTERISTICS

(V* =3V, Ta=25°C, FM: f=10.7MHz, \triangle f=22.5kHz dev., fm=1kHz AM: f=1MHz, Mod=30%, fm=1kHz Unless otherwise noted)

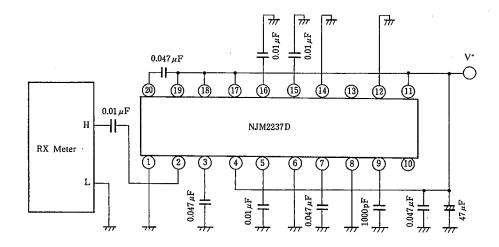

CHARACTERISTICS		SYMBOLS	TEST CONDITIONS		TYP.	MAX.	UNIT
		I _{CC} (FM)	V _{IN} =0	_	15	20	
	Operating Current		(AM) V _{IN} =0		15	20	mA
	-3dB Limiting Sensitivity			_	36	42	dΒμ
F	Detection Output Voltage	V _{OD}	$V_{IN} = 80 dB_{\mu}$	22	31	44	mVrms
	Signal to Noise Ratio	S/N	$V_{1N} = 80 dB\mu$	_	70		dB
М	Total Harmonic Distortion	THD	V _{IN} =80dB _μ	_	0.3	_	%
	Am Rejection Ratio	AMR	V _{IN} =80dB _μ		33	_	dB
	Voltage Gain	Gv	V _{IN} =30dB _μ	5	11	17	mVrms
	Detection Output Voltage	V _{OD} .	V _{IN} =66dB _μ	22	31	44	mVrms
A	Signal to Noise Ratio	S/N	V _{IN} =66dB _μ		46	_	dB
М	T. III	THDI	$V_{1N}=66dB\mu$ — 1.		1.5	_	0/
	Total Harmonic Distortion	THD2	$V_{1N} = 106 dB_{\mu}$		4.0		%
	Local OSC Stop Voltage	V _{STOP}	V _{OSC} -6dB	_	1.0	1.5	٧
	Voltage Gain	Gν	$f=1kHz$, $R_L=4\Omega$	37	40	43	dB
		P _{OD} 1	$f=1kHz$, $R_L=4\Omega$, $THD=10\%$	180	220	_	
Р	Output Power	P _{OD} 2	$V^{+} = 4.5V$ f=1kHz, R _L =4\Omega, THD=10%		500	_	mW
W	Total Harmonic Distortion	THD	$f=1 \text{kHz}, R_L=4\Omega, P_O=50 \text{mW}$	_	0.5	20	%
Output Noise Voltage		V _{NO}	$R_O=10k\Omega$, $RL=4\Omega$ $BW=30Hz\sim20kHz$		0.18	_	mVrms

■ TERMINAL VOLTAGE AT NO SIGNAL

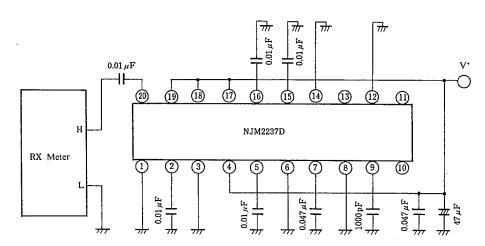
(V+=3V, Ta=25°C)

	VALUE.	SYMBOLS TYPICAL VAI		CHARACTERISTICS		
UŅI	AT FM	AT AM	STMBOLS	PIN NO FUNCTION I GND V ₁		
\	0	0	V ₁			
V	2.0	2.4	V ₂	FM IF IN	2	
\	2.0	0	V ₃	FM/AM Switch	3	
\	2.9	2.9	V ₄	FM DET	4	
\	0.7	0.4	V ₅	DET OUT	5	
\	0	0	V ₆	PW IN	6	
\	0.6	0.6	V ₇	PW Bipass	7	
\ \ \\	0	0	V_8	PW GND	8	
\	1.5	1.5	V ₉	PW OUT	9	
\	2.8	2.8	V ₁₀	PW Bootstrap	10	
\	3.0	3.0	Vii	V+ 1	11	
\	0	0.6	V ₁₂	AGC1	12	
\	0	0.6	V ₁₃	AGC2	13	
\	0	0	V ₁₄	AM DET	14	
\	0	1.3	V ₁₅	AM Bipass	15	
\	0	1.3	V ₁₆	AM IF IN	16	
\	2.9	2.9	V ₁₇	AM Osc	17	
\	2.9	2.9	V ₁₈	V* 2	18	
, l	2.9	2.9	V ₁₉	AM MIX OUT	19	
, I	2.9	2.9	V ₂₀	AM RF IN	20	

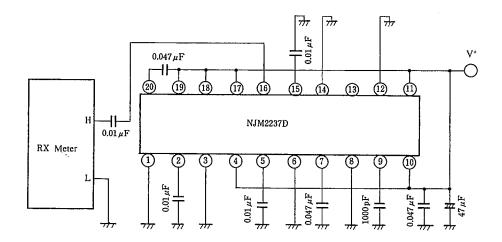
■ TEST CIRCUIT

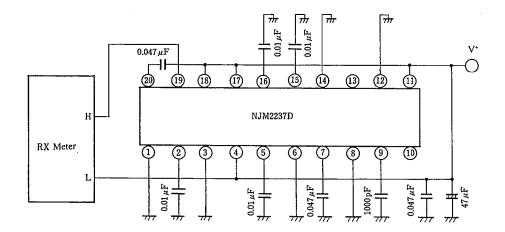

■ TEST CIRCUIT COIL DATA

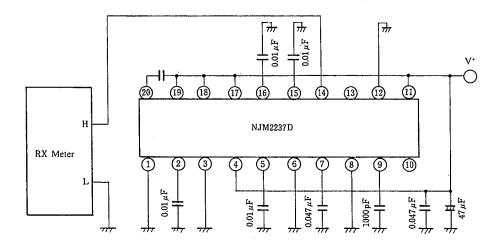
COIL NO.	F ₀	Qo	TURNS	Co	BOTTOM VIEW
T ₁ : FM IFT (MIX OUT)	455kHz	①-③ 80	①—③ 60T ④—⑥ 16T Wire: 0.09 mm ø UEW SUMIDA 2150 — 2173 — 302	①一③ 1500pF	3 4 2 6 Bottom View
T ₂ : AM OSC	796kHz	①-③ 125	①—② 15T ②—③ 89T Wire: 0.06mm \(\phi\) UEW SUMIDA 2157—2239—213A	_	3 4 2 6 Bottom View
T ₃ : AM DET	455 kHz	①-③ 105	①—③ 127T Wire: 0.06 mm Ø UEW SUMIDA 2150—2083—061	①③ 330 pF	3 4 2 5 6 Bottom View
T₄: FM DET	10.7 MHz	①-③ 100	①—③ 10T Wire: 0.12 mm \(\phi\) UEW SUMIDA 2153—4095—331	①一③ 150pF	3 4 2 7 6 Bottom View


■ INPUT OUTPUT IMPEDANCE

CHARACTERISTIC	SYMBOL	CIRCUIT	TEST_ CONDITION	TYP.	UNIT
Pin 2 Input Impedance (FM)	R _{1N2} C _{1N2}	1	f=10.7MHz	4.6 5.0	kΩ pF
Pin 20 Input Impedance (AM)	R _{1N20} C _{1N20}	2	f=1MHz	20 11	kΩ pF
Pin 16 Input Impedance (AM)	RIN16 CIN16	3	f=455kHz	6 3.7	kΩ pF
Pin 19 Output Impedance (AM)	R ₀₁₉ C ₀₁₉	4	f=455kHz	2.5 5.5	kΩ pF
Pin 14 Output Impedance (AM)	Ro ₁₄ C ₀₁₄	5	f=455kHz	100 5.0	kΩ pF


■ TEST CIRCUIT 1 (Pin 2 FM Input Resistance, Capacitance)


■ TEST CIRCUIT 2 (Pin 20 AM Input Resistance, Capacitance)


-New Japan Radio Co.,Ltd.-

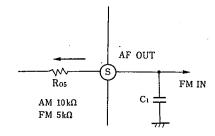
■ TEST CIRCUIT 4 (Pin 19 AM Mix Output Resistance, Capacitance)

■ TEST CIRCUIT 5 (Pin 14 AM DET Output Resistance, Capacitance)

4-70

New Japan Radio Co., Ltd.

■ NOTES


1. The frequency characteristics at AM and FM mode

The output impedance of pin5 (Ro5) and external capacitor C1 decide frequency characteristics.

The value of Ro5 turns to $10k\Omega$ at AM mode and $5k\Omega$ at FM mode.

Accordingly should consider above, trim C! to get proper frequency response.

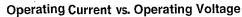
Besides should design the location of C1 closer to pin1 (GND) to get low tweet.

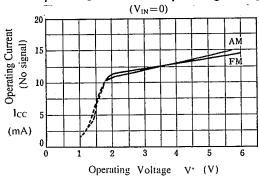
2. Loading speaker

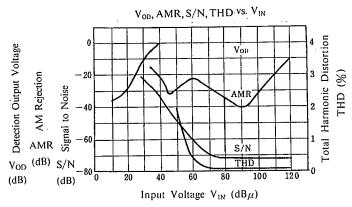
Recommend to connect the speaker between pin11 (V^*) and pin10 (bootstrap) at $V^*=3V$ for better low supply to voltage operation.

When Vcc is above 4.5V, recommend the speaker connection between pin9 (PW OUT) and (GND) through a coupling capacitor.

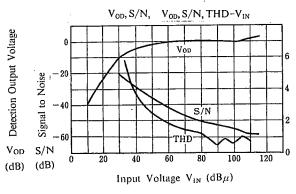
3. Termination to the power stage

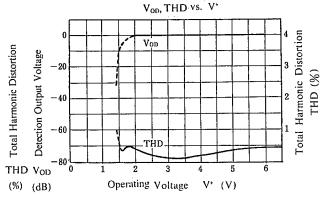

The audio signal of output pin5 includes carrier component slightly, therefore a capacitor between pin6 and GND have to be connected to decrease carrier component.

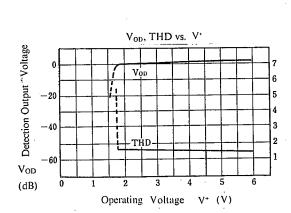

4. Supply voltage start-up

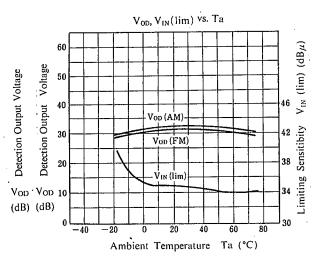

The supply voltage of radio circuit block should not start up before power stage start-up.

4

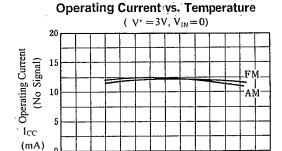

■ TYPICAL CHARACTERISTICS

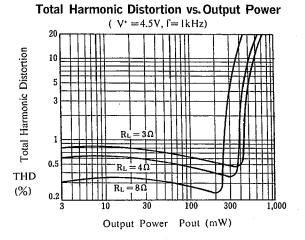


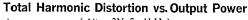




4

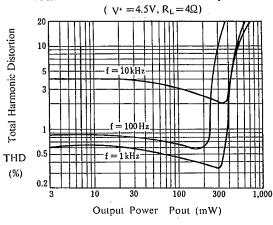


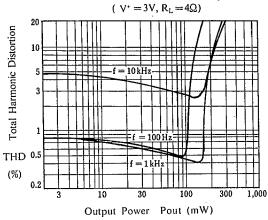


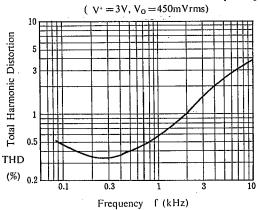


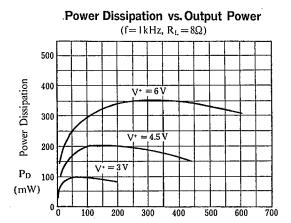
4

TYPICAL CHARACTERISTICS

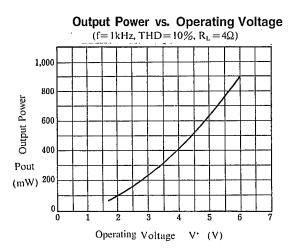


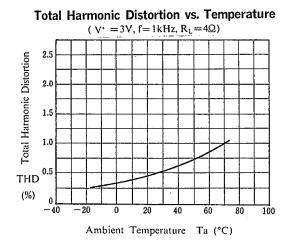

Ambient Temperature Ta (°C)

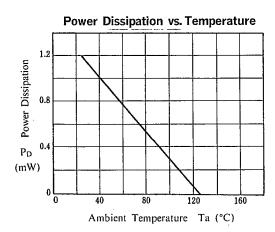

Total Harmonic Distortion vs. Output Power

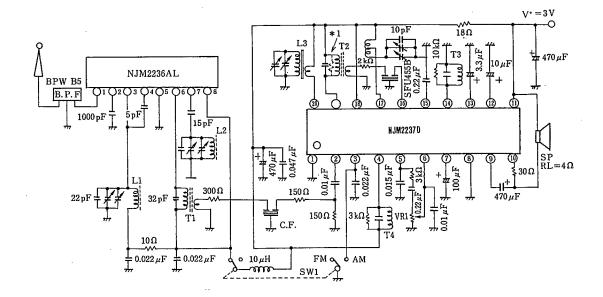

Total Harmonic Distortion vs. Output Power

Total Harmonic Distortion vs. Frequency


■ TYPICAL CHARACTERISTICS




Output Power Pout (mW)


4

■ FM/AM RADIO APPLICATION CIRCUIT

■ FM/AM RADIO APPLICATION CIRCUIT

COIL NO.	Fo	Q0	TURNS	Co	BOTTOM VIEW
Lı: RF Coil	100 MHz	100	0.7mm ≠ 2 1/4 T (Japan Band) SUMIDA 0295-057	22 pF (ext.)	7 mm 5 mm Ferrite Core '
L ₂ : OSC Coil	100 MHz	100	0.7mm≠ 2 ½ T (Japan Band) SUMIDA [†] 0295−056	30pF (ext.)	7mm 5mm Ferrite Core
L ₃ : AM ANT	796 kHz	①-② 200	①—② 100 T L=600 µH ③—④ 17 T Wire: 4/0.07mm UATC Core: 10mm ≠×80mm MITUMI YI-7160-1		1) 2 3 4 GND V.C. V* 20 pin 10 mm 1 2 3
L ₄ : AM OSC	796 kHz	①-③ 125	①-② 15 T ②-③ 89 T Wire: 0.06 mm ø UEW SUMIDA 2157-2239-213 A		V.C. 17 pin Vcc 1

COIL NO.	F ₀	Q0	TURNS	Co	BOTTOM VIEW
Tı:FM IFT	10.7MHz	Ú−3 90	①-③ 11 T ④-⑥ 2 T Wire: 0.12 mm Ø UEW SUMIDA 2153-414-041	①-③ 82pF	V. 3 GND GND C.F.
T2: AM IFT	4 55 kHz	①-③ 80	①-③ 60 T ④-⑥ 16 T Wire: 0.09 mm ø UEW SUMIDA 2150-2173-302	①-③ 1500pF	19 pin (3) (4) 16 pin (2) (5) (6) GND
T ₃ : AM DET	455 kHz	①-③ 105	①③ 127 T Wire: 0.06 mm # UEW SUMIDA: 2150-2083-061	①-③ 3330 pF	14 pin (3) (4) (2) (5) (6)
T₄:FM DET	10.7 MHz	①-③ 100	①-③ 10 T Wire: 0.12mmø UEW SUMIDA' 2153-4095-331	①-③ 150pF	V. (3) (4) (2) (5) (6)

N		П	V	7	2	2	3	7
17	·	J	IV	41	Z	Z	J	•

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.