NJM2162M

NJM2162V

J-FET INPUT OPERATIONAL AMPLIFIER

The NJM2162/64 combines feature of the NJM062/064 as well as and providing the capability of wider bandwidth and higher slew rate.

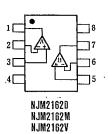
- It is suitable for telecom application (active filters etc.).
- **FEATURES**
 - Operating Voltage
 - High Input Resistance
 - Low Operating Current
 - High Slew Rate
 - J-FET Input
 - Wide Unity Gain Bandwidth
 - Bipolar Technology
 - Package Outline
- $(10^{12} \Omega \text{ typ.})$ (1.2mA typ.) (10V/ µs typ.)

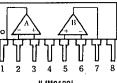
 $(\pm 2V \sim \pm 18V)$

- (3MHz typ.)
 - DIP8/14, DMP8/14, SIP8, SSOP8/14

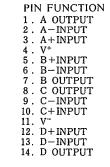
PACKAGE OUTLINE

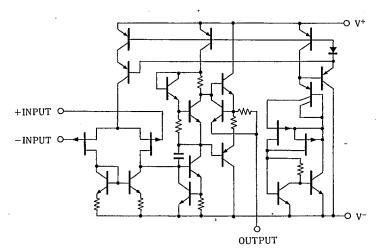
NJM2162D


NJM2164V


NJM2164D

PIN CONFIGURATION




EQUIVALENT CIRCUIT (2162 is 1/2 Shown, 2164 is 1/4 Shown)

NJMZ	162L	

4-166

Downloaded from Elcodis.com electronic components distributor

 $(V^{+}/V^{-}=\pm 15V, Ta=25^{\circ}C)$

4-167

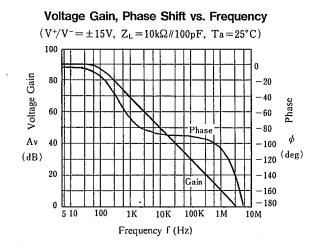
ABSOLUTE MAXIMUM BATINGS

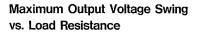
ABSOLUTE MAXIMUM RATINGS			(Ta=25℃)	
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*/V-	±18	V	
Differential Input Voltage	Vid	±30	v	
Input Voltage	V _{IC}	±15 (note 1)	V	
		(DIP8) 500	mW	
		(DMP) 300	mW	
		(SIP8) 800	mW	
Power Dissipation	PD	(SSOP8) 250	mW	
		(DIP14) 700	mW	
		(DMP14) 700 (note2)	mW	
		(SSOP14) 300	mW	
Operating Temperature Range	Topr	-20~+75		
Storage Temperature Range	Tstg	-40~+125 °C		

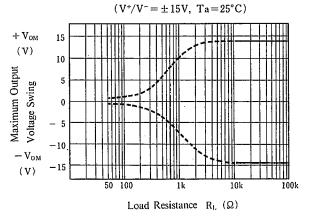
(note 1) For supply voltage less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage. (note 2) at on PC board

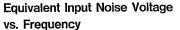
ELECTRICAL CHARACTERISTICS

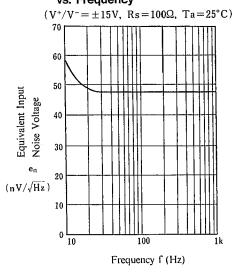
PARAMETER	SYMBOL	TEST CONDITION	MIN.	ТҮР.	MAX.	UNIT
Operating Voltage	V+/V-		±2	_	±18	v
Input Offset Voltage	Vю	$R_s = 50\Omega$	_	5	15	mV
Input Offset Current	Iю		- 1	1	200	pА
Input Bias Current	IB		· —	2	400	pA
Input Common Mode voltage Range	VICM		±13	+15		v
				-13.5		
Maximum Output Voltage Swing	Vом	$R_{L} = 10\Omega$	±13	+14	·	v
				-14.0		
Large signal Voltage Gain	Av	$R_L \ge 10k\Omega, V_O = \pm 10V$	70	80		dB
Unity Gain Bandwidth	fr	$R_L = 10\Omega$	—	3	I —	MHz
Input Resistance	Rin		1 —	1012		Ω
Common Mode Rejection Ratio	CMR	$R_{S} \leq 10k\Omega$	70	90	- 1	dB
Supply voltage Rejection Ratio	SVR	$R_{S} \leq 10k\Omega$	-70	100		dB
Operating Current	lcc	$R_L = \infty$ (1 circuit)		0.3	0.45	mA
Slew Rate	SR	$R_L = 10k\Omega$	—	10	—	V/µs
Equivalent Input Noise Voltage	en	$_{I}$ RS=100 Ω , f=1kHz	-	40	-	nv√Hz

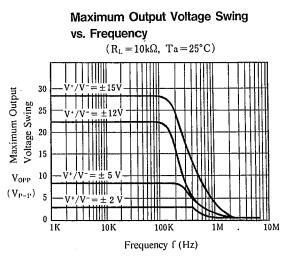

(Note) The NJM 2162/64 is the produc in which the AC feature have been made much higher comparing to NJM062/64. Therefore special care being required for the oscillation due to the capacitive load when operation on voltage follower.

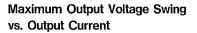

-New Japan Radio Co.,Ltd.-

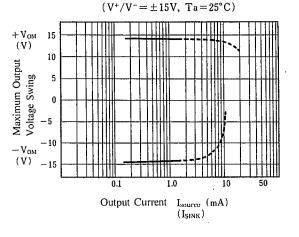

Downloaded from Elcodis.com electronic components distributor

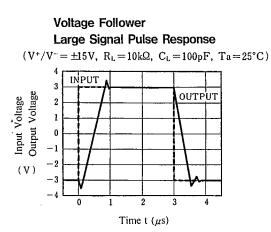

NJM2162/2164

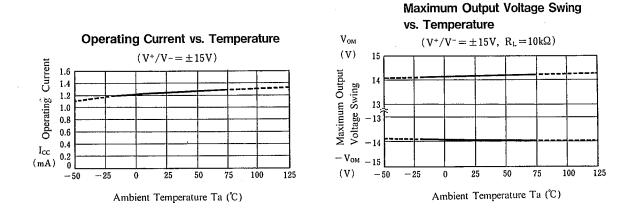

TYPICAL CHARACTERISTICS



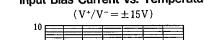


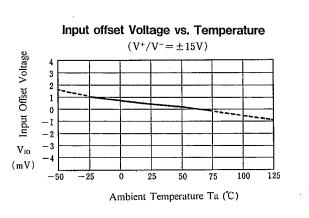


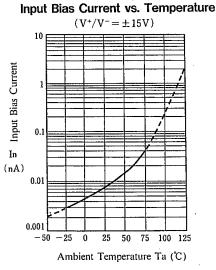



-New Japan Radio Co.,Ltd.

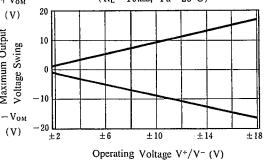
4


Downloaded from Elcodis.com electronic components distributor


4-168⁻


TYPICAL CHARACTERISTICS

New Japan Radio Co., Ltd.



Operating Current vs. Operating Voltage (Ta=25℃) + Vом 1.4 1.3 1.2 1.1 A Operating Current Maximum Output 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 (mA) 0.2 0.1 Ō 0 +4±8 ± 12 ± 16 Operating Voltage V^+/V^- (V)

Maximum Output Voltage Swing vs. Operating Voltage $(R_L = 10k\Omega, Ta = 25^{\circ}C)$

4-169

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

New Japan Radio Co.,Ltd.