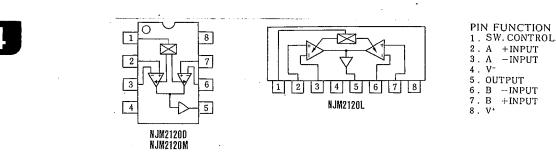
JRC

SWITCHING OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

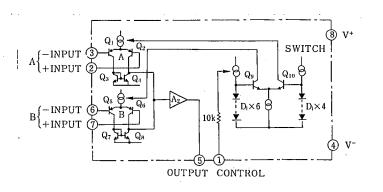

The NJM 2120 is a dual operational amplifier of 2-INPUT and 1-OUTPUT with analog switch. The NJM2120 can be used as analog switch under the condition of Gv=0 dB, as Switch + Amp in order that each gain (A or B) can be adjusted independently. Each amplifier of the NJM2120 has the same electrical characteristics as the NJM4558.

The NJM2120 is suitable for Audio, Video, Electrical musical instrument...etc.

FEATURES

- Analog Switch Function
- Operating Voltage
- Slew Rate
- Wide Unity Gain Bandwidth
- Package Outline
- Bipolar Technology

PIN CONFIGURATION


 $(\pm 2.5V \sim \pm 18V)$

DIP8, DMP8, SIP8

(2.2V/ µs typ.)

(7MHz typ.)

EQUIVALENT CIRCUIT

PACKAGE OUTLINE

NJM2120D

NJM2120M

NJM2120L

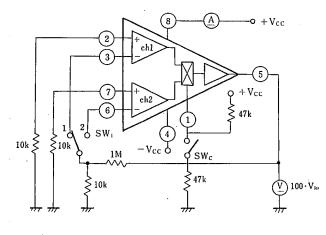
4-128-

New Japan Radio Co., Ltd.

ABSOLUTE MAXIMUM RATINGS

ABSOLUTE MAXIMUM RATINGS				
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*/V-	±18	v	
Differential Input Voltage	Vid	± 30	V	
Input Voltage	Vic	±15 (note)	v	
Output Current	Io	±50	mA	
		(DIP8) 500	mW	
Power Dissipation	PD	(DMP8) 300	mW	
		(SIP8) 800	mW	
Operating Temperature Range	Topr	-40~+85	C	
Storage Temperature Range	Tstg	-40~+125	r	

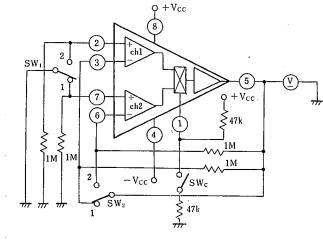
ELECTRICAL CHARACTERISTICS


PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc	Vin SW ON		2.3	6.0	mA
	·	SW OFF	_	2.1	6.0	mA
Input Offset Voltage	V _{IO}	$R_s = 10k\Omega$		0.8	6.0	mV
Input Bias Current	IB		-	80	500	nA
Large Signal Voltage Gain	Av	$R_{\rm L} = 2k\Omega$		100	_	dB.
Maximum Output Voltage Swing	· V _{OM}	$R_L = 10k\Omega$		±14		v
Total Harmonic Distortion	THD	f=1kHz, Vo=5Vrms, Gv=20dB		0.002		%
Supply Voltage Rejection Ratio	SVR			20	150	μV/V
Channel Separation	CS	f=IkHz		82		dB
Unity Gain Bandwidth	ի ք _T	$G_V = 0 dB$		7		MHz
Slew Rate	SR	$G_V = 0 dB$, $R_L = 2k\Omega/100 pF$		2.2	_	V/µs
Equivalent Input Noise Voltage	V _{NI}	$R_s = 1k\Omega$, $BW = 10Hz \sim 30kHz$, Flat		2.0	_	μVrm

 $(V^{+}/V^{-}=\pm 15V, Ta=25^{\circ}C)$

Δ

TEST CIRCUIT


(1) I_{cc} , V_{io} , SVR

	SWc	SWI	Select ch
$I_{cc1}, V_{l01}, SVR_{t}$	OFF	1	ch 1
I_{CC2} , V_{102} , SVR_2	ON	2	ch 2

(2) I_b, I_{lo}

4

		SWc	SWI	Select ch
	I_{cc1}, V_{l01}, SVR_t	OFF	1	ch 1
_	I_{CC2} , V_{IO2} , SVR_2	ON	2	ch 2

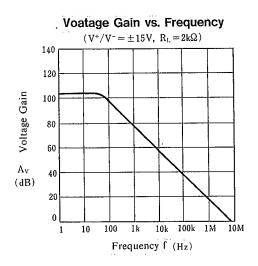
Unit Resistance: Ω Capacity : F

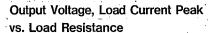
I 6' =	=Vo*/1MΩ
I _b -=	= Vo ⁻ /1MΩ
$I_{10} =$	= I _b +-I _b -

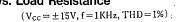
	SWc	SWı	SW_2	Select ch
V01 .	OFF	1	1	ch 1
Voi	OFF	2	2	
V02	ON	2	2	ch 2
V ₀₂	ON	1	1	ch 2

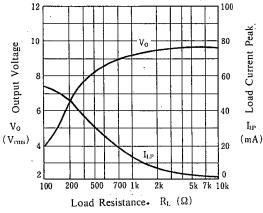
 $\varphi + V_{cc}$ 100p (8 SW11 -11-2 Ħ 1000p 0<u>.</u>____2 chl 2.2μ 3 41 *≩* 100k ±₿ -o Vo 5 V_{I} $+ V_{cc}$ 2.2/1 7 ዮ ch2 $\begin{cases} R_L \\ \ge 2k\Omega \end{cases}$ ₹47k * SW2 2 6 (1)(4)w 1M 9 $-v_{cc}$ /swc 47k 100p + # 470µ 7 * Unit Resistance: Ω

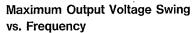
New Japan Radio Co.,Ltd.

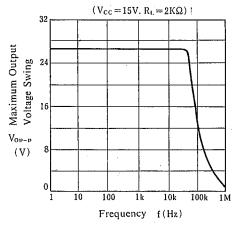

	S₩c	S₩ı	SW2	Selection
f_{t1}, A_{V1}	OFF	1	1	ch 1
f_{12}, A_{V2}	ON	2	2	ch 2

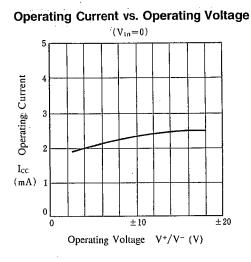

(3) ft, A_v

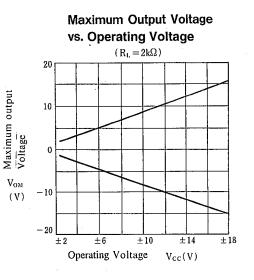

4-130

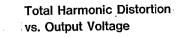

Capacity : F

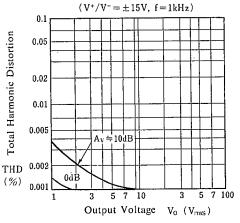

TYPICAL CHARACTERISTICS

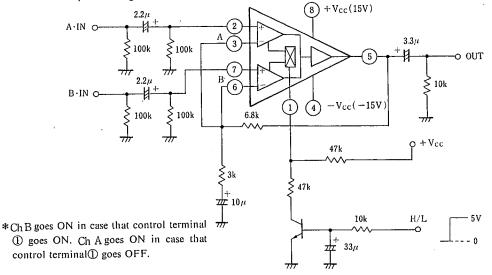




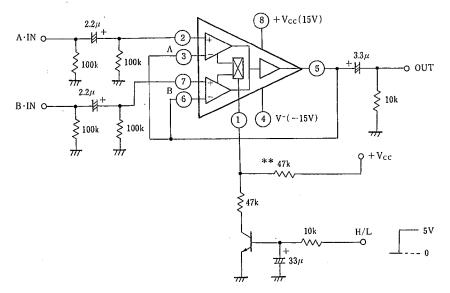







4-131

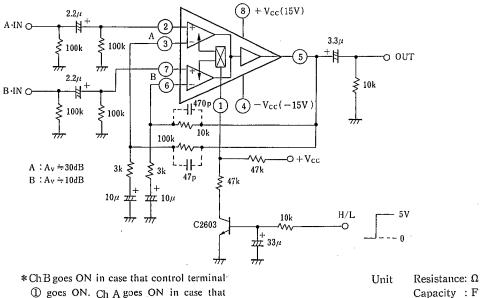
New Japan Radio Co.,Ltd.


Downloaded from Elcodis.com electronic components distributor

■ APPLICATION CIRCUIT

(1): $G_V \approx 10dB$ FLAT Amp + Analog Switch Circuit

(2) Analog Switch Circuit (GV=0dB Voltage Follower Amp)



-New Japan Radio Co.,Ltd.

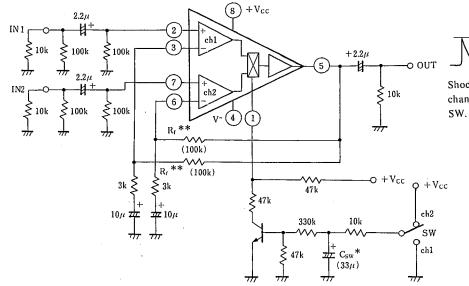
*:*Resistanc(**) is Pull-up-resistance for prevent from switching terminal going ON by reakage of external circuit (TR...etc).

4-132Downloaded from <u>Elcodis.com</u> electronic components distributor

TYPICAL APPLICATION CIRCUIT

-New Japan Radio Co.,Ltd.

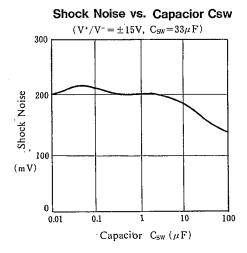
.

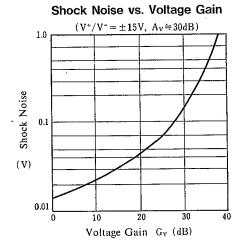

① goes ON. Ch A goes ON in case that control terminal goes OFF.

Capacity : F

4-133

SHOCK NOISE TEST

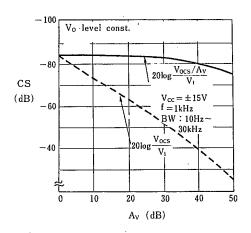

Test Curcuit



-New Japan Radio Co.,Ltd.

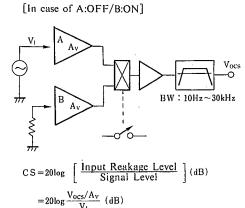
Shock Noise

Shock noise level by changeover (chl or 2) of SW

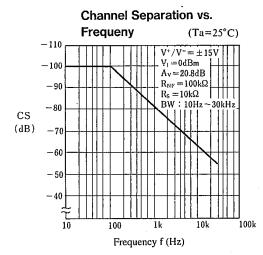


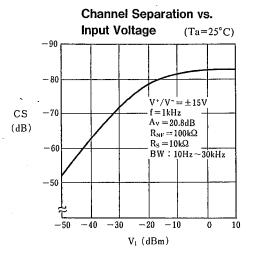
4

4-134

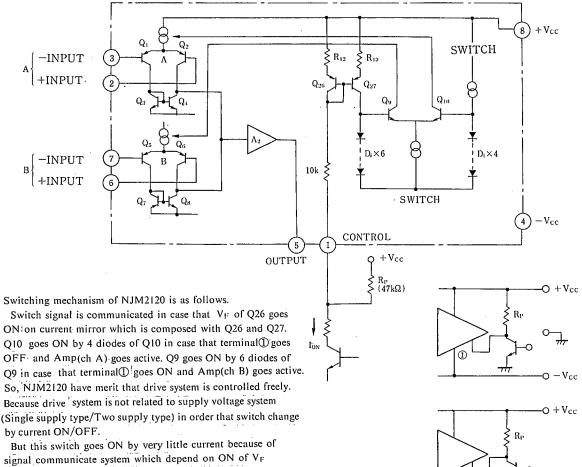

 $Downloaded \ from \ \underline{Elcodis.com} \ electronic \ components \ distributor$

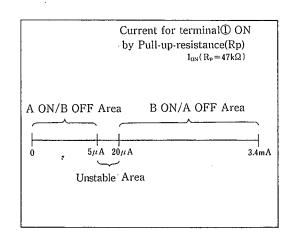
CHANNEL SEPARATION


C·S is defined on ratio of reakage signal which occur on input side and input signal. $(20\log \frac{Vocs / Av}{Vi})$


But, $C \cdot S$ seem to be inferior apparently in case that Gain(Av) is left out of consideration.

4


4-135



New Japan Radio Co., Ltd.

SWITCHING MECHANISM

So, please use NJM2120 under the conditon of lowerring sensitivity for current ON/OFF by external Pull-up-resistance(Rp)

(I)

4-136-

New Japan Radio Co.,Ltd.

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

New Japan Radio Co., Ltd.