GaAs Transfer Switch, DC-3.0 GHz

Features

- Small Ceramic Package, 0.250" Sq.
- Fast Switching Speed, 4 ns Typical
- Ultra Low DC Power Consumption
- 50 Ohm Nominal Impedance
- MIL-STD-883 screening available
- Lead-Free CR-4 Package
- $260^{\circ} \mathrm{C}$ Reflow Compatible

Description

M/A-COM's SW-283-PIN is a GaAs MMIC transfer switch packaged in lead-free, surface mount CR-4 ceramic style packages. SW-283-PIN offers low insertion loss, high isolation, and fast switching. This ceramic switch platform has a common footprint for all three designs. The CR-4 package is hermetically sealed, making this switch ideal for space, military radios, and other environmentally harsh applications.

Typical applications include synthesizer switching, transmit/receive switching, switch matrices and filter banks in systems such as radio and cellular equipment, PCM, GPS, and fiber optic modules.

The SW-283-PIN transfer switch contains a monolithic GaAs MMIC which is fabricated using a 1.0 micron MESFET process.

Ordering Information

Part Number	Package
SW-283-PIN	Bulk Packaging

Note: Reference Application Note M513 for reel size information.
Note: Die quantity varies.

Functional Block Diagram

Pin Configuration

Pin No.	Function	Pin No.	Function
1	RF1	9	RF3
2	GND	10	GND
3	GND	11	GND
4	RF2	12	RF4
5	GND	13	GND
6	A	14	GND
7	B	15	GND
8	GND	16	GND

The metal bottom of the case must be connected to RF and DC ground.

[^0]- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information.
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

Electrical Specifications： $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega^{1,2}$

Parameter	Test Conditions	Frequency	Units	Min	Typ	Max
Insertion Loss	－	$\begin{gathered} \mathrm{DC}-3 \mathrm{GHz} \\ \mathrm{DC}-2 \mathrm{GHz} \\ \mathrm{DC}-1 \mathrm{GHz} \\ \mathrm{DC}-0.5 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.8 \\ & 1.3 \\ & 1.0 \end{aligned}$
VSWR	－	$\begin{gathered} \mathrm{DC}-3 \mathrm{GHz} \\ \mathrm{DC}-2 \mathrm{GHz} \\ \mathrm{DC}-1 \mathrm{GHz} \\ \mathrm{DC}-0.5 \mathrm{GHz} \end{gathered}$	Ratio Ratio Ratio Ratio	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 二 } \\ & \text { - } \end{aligned}$	$\begin{gathered} 1.9: 1 \\ 1.7: 1 \\ 1.3: 1 \\ 1.25: 1 \end{gathered}$
Isolation	－	$\begin{gathered} \mathrm{DC}-3 \mathrm{GHz} \\ \mathrm{DC}-2 \mathrm{GHz} \\ \mathrm{DC}-1 \mathrm{GHz} \\ \mathrm{DC}-0.5 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 40 \\ & 45 \end{aligned}$	－	－
Trise，Tfall Ton，Toff Transients	10／90\％or 90／10\％RF 50\％CTL to 90／10\％RF In－Band	-	$\begin{aligned} & \mathrm{nS} \\ & \mathrm{nS} \\ & \mathrm{mV} \end{aligned}$	二	$\begin{gathered} 2 \\ 4 \\ 30 \end{gathered}$	－
1 dB Compression	Control Voltage 0／－5 VDC Control Voltage 0／－8 VDC	$\begin{gathered} 0.5-3 \mathrm{GHz} \\ 0.05 \mathrm{GHz} \\ 0.5-3 \mathrm{GHz} \\ 0.05 \mathrm{GHz} \end{gathered}$	dBm dBm dBm dBm	-	$\begin{aligned} & +27 \\ & +21 \\ & +33 \\ & +26 \end{aligned}$	－
IP_{2}	For two－tone Input power up to +13 dBm	$\begin{gathered} 0.5-3 \mathrm{GHz} \\ 0.05 \mathrm{GHz} \end{gathered}$	dBm dBm	－	$\begin{aligned} & +68 \\ & +62 \end{aligned}$	－
IP_{3}	For two－tone Input power up to +13 dBm	$\begin{gathered} 0.5-3 \mathrm{GHz} \\ 0.05 \mathrm{GHz} \end{gathered}$	dBm dBm	-	$\begin{aligned} & +50 \\ & +45 \end{aligned}$	－
Control Voltages	$\begin{gathered} \mathrm{V}_{\text {IN }} \text { Low: } 0 \text { to }-0.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}} \text { High: }-5 \mathrm{~V} @ 10 \mu \mathrm{~A} \text { Typ } \\ \text { to }-8 \mathrm{~V} \end{gathered}$	二	-	-	－	$\begin{gathered} 5 \mu \mathrm{~A} \\ 200 \mu \mathrm{~A} \end{gathered}$

1．All specifications apply with 50 ohm impedance connected to all RF ports with 0 and -5 VDC control voltages．
2．Faster switching speed can be achieved with enhanced driver waveform．

Absolute Maximum Ratings ${ }^{3,4}$

Parameter	Absolute Maximum
Input Power	
0.05 GHz	+27 dBm
$0.5-3.0 \mathrm{GHz}$	+34 dBm
Control Voltage	$-8.5 \mathrm{~V} \leq \mathrm{Vc} \leq+5 \mathrm{~V}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

3．Exceeding any one or combination of these limits may cause permanent damage to this device．
4．$M / A-C O M$ does not recommend sustained operation near these survivability limits．

M／A－COM Inc．and its affiliates reserve the right to make changes to the product（s）or information contained herein without notice．M／A－COM makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does M／A－COM assume any liability whatsoever arising out of the use or application of any product（s）or information．
－North America Tel：800．366．2266／Fax：978．366．2266
－Europe Tel：44．1908．574．200／Fax：44．1908．574．300
－Asia／Pacific Tel：81．44．844．8296／Fax：81．44．844．8298
Visit www．macom．com for additional data sheets and product information．

GaAs Transfer Switch, DC-3.0 GHz

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Typical Performance Curves

Insertion Loss vs. Frequency

VSWR vs. Frequency

Truth Table (Switch)

Control Input		Condition of Switch			
A	B	RF1- RF2	RF2- RF3	RF1- RF4	RF3- RF4
HI	LOW	OFF	ON	ON	OFF
LOW	HI	ON	OFF	OFF	ON

Low $=0.0 \mathrm{~V}$, High $=-5.0 \mathrm{~V}$

Isolation vs. Frequency

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macom.com for additional data sheets and product information.

Lead-Free, CR-4 Ceramic Package ${ }^{\dagger}$

[^1]
[^0]: * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[^1]: † Reference Application Note M538 for lead-free solder reflow recommendations.

