

HA17393B Series

Dual Comparators

REA03D0002-0100 Rev.1.00 Dec 25, 2006

Description

HA17393B is dual comparators designed for general purpose, especially for power control systems. This IC operates from a single power-supply voltage over a wide range of voltages. Operation from split power supply current is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators have the merit which ground is included in the common-mode input voltage range at a single-voltage power supply operation.

Features

• Wide range of supply voltage

Single supply: 2 V to 36 V, Dual supplies: ± 1 V to ± 18 V

Very low supply current: 0.6 mA

• Small input bias current: 25 nA

• Small input offset voltage: 2 mV

• Common mode input voltage range includes ground.

• Low output saturation voltage: 200 mV at 4 mA

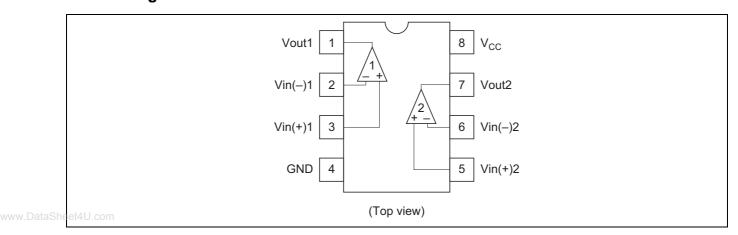
• Open collector output

• Package outline available in Pb free lead frame:

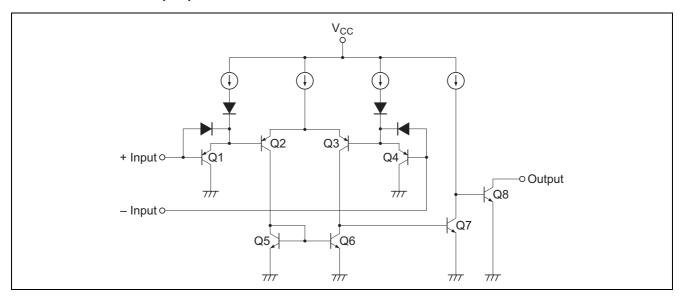
DP-8 SOP-8 (JEITA) SOP-8 (JEDEC)

Applications

- Battery charger
- Cordless telephone
- Switching power supply
- DC/DC module
- · PC motherboard
- Communication equipment


Ordering Information

Type No.	Application	Package Code (Package Name)	
HA17393B	Commercial use	PRDP0008AF-B (DP-8FV)	
HA17393BF		PRSP0008DE-B (FP-8DGV)	
HA17393BRP		PRSP0008DD-C (FP-8DCV)	


Note: This product is designed for consumer use and not for automotive.

Pin Arrangement

Circuit Schematic (1/2)

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

		Ratings			
Item	Symbol	HA17393B	HA17393BF	HA17393BRP	Unit
Supply Voltage	Vcc	36	36	36	V
Differential input voltage	V _{IN} (diff)	Vcc	Vcc	Vcc	V
Input voltage	V _{IN}	-0.3 to V _{CC}	-0.3 to V _{CC}	-0.3 to V _{CC}	V
Input current (V _{IN} < -0.3 V)	I _{IN}	50	50	50	mA
Power dissipation	P _T	570 * ¹	385 * ²	385 * ²	mW
Output short-circuit to ground		Continuous	Continuous	Continuous	
Operating temperature	Topr	-40 to +85	-40 to +85	-40 to +85	°C
Storage temperature	Tstg	-55 to +125	-55 to +125	-55 to +125	°C

- www.DataShee Notes: 1. This is the allowable value up to Ta = 55°C. Derate by 8.3 mW/°C above that temperature.
 - 2. These are the allowable values up to Ta = 25° C mounting in air. When it is mounted on glass epoxy board of 40 mm \times 40 mm \times 1.5 mm (t) with 30% wiring density, the allowable value is 570 mW up to Ta = 45° C. If Ta > 45° C, derate by 7.14 mW/°C.

Electrical Characteristics

 $(Ta = 25^{\circ}C, V_{CC} = +5 V, unless otherwise specified)$

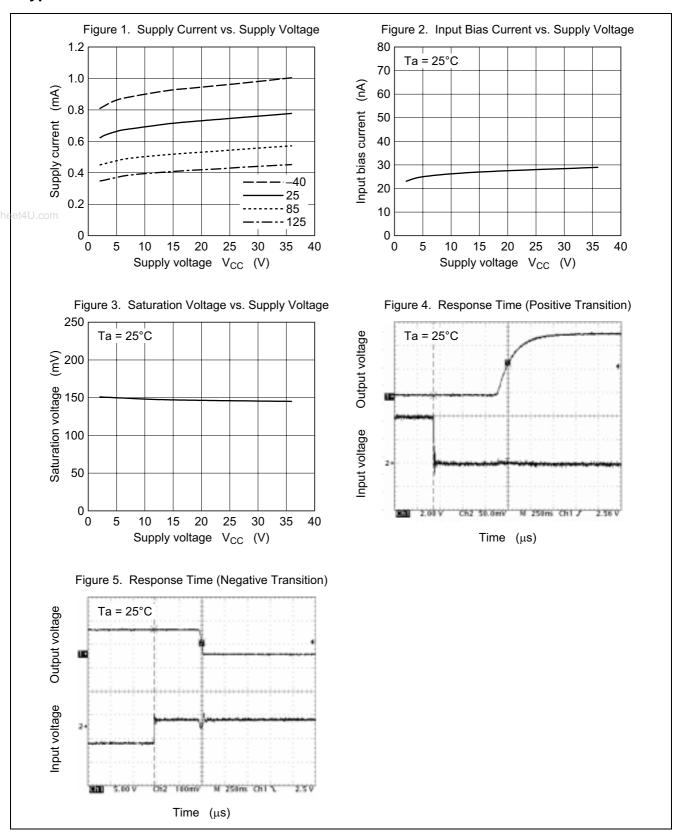
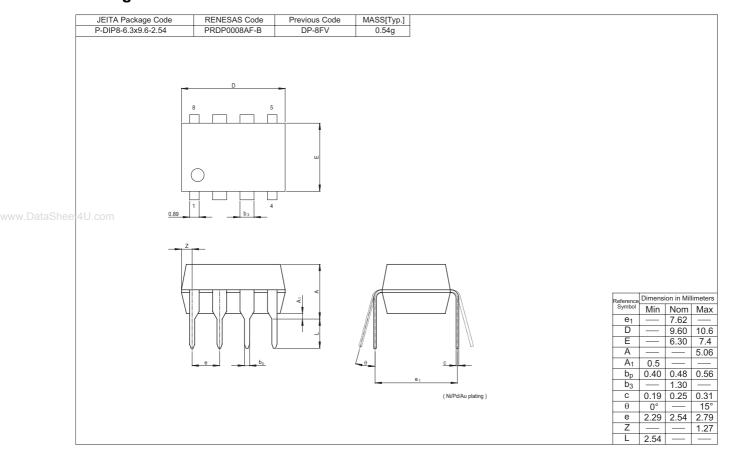
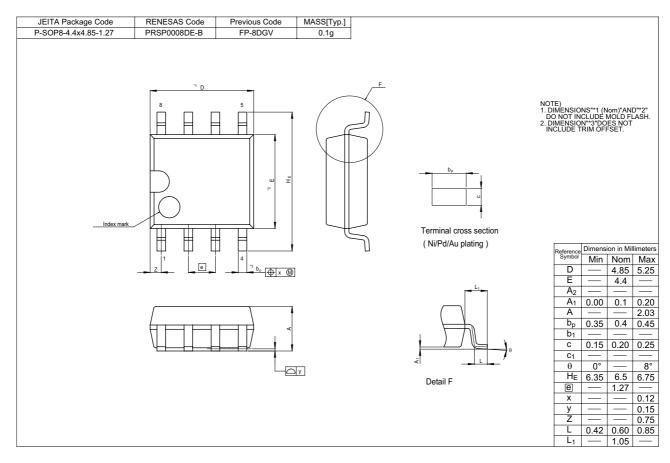
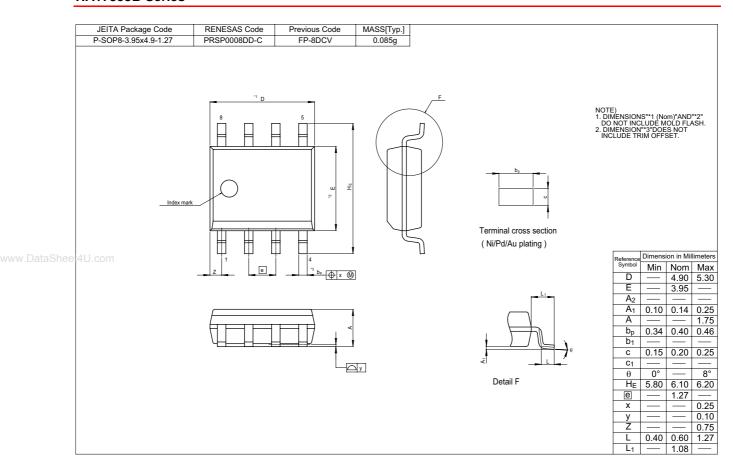

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Input offset voltage	V _{IO}	_	2	5	mV	$V_{O} = 1.4 \text{ V}, R_{S} = 0 \Omega$
						V _{CC} = 5 V to 30 V
Input offset current	I _{IO}		5	50	nA	V _{CM} = 0 V
Input bias current	I_{IB}	_	25	250	nA	$V_{CM} = 0 \text{ V}, I_{IN(+)} \text{ or } I_{IN(-)} \text{ with}$
						output in linear range
Voltage gain	A _V	_	200	_	dB	V_{CC} = 15 V, $R_L \ge$ 15 k Ω ,
						V _O = 1 V to 11 V
Common mode input voltage range	V_{IR}	0	_	V _{CC} -1.5	V	V _{CC} = 30 V
Supply current	Icc	_	0.6	1.0	mA	$V_{CC} = 5 \text{ V}, R_L = \infty$
		_	0.8	1.7	mA	$V_{CC} = 36 \text{ V}, R_L = \infty$
Response time	t _R	_	1.3	_	μS	$V_{RL} = 5 \text{ V}, R_{L} = 5.1 \text{ k}\Omega$
Large signal response time	t _{RL}	_	200	_	ns	V _{IN} = TTL logic swing, V _{REF} =
						1.4 V, $V_{RL} = 5 \text{ V}$, $R_L = 5.1 \text{ k}\Omega$
Output sink current	I _{OSINK}	6	16	_	mA	$V_{IN(-)} = 1 \text{ V}, V_{IN(+)} = 0 \text{ V},$
						V _O = 1.5 V
Output saturation voltage	$V_{O(SAT)}$	_	200	400	mV	$V_{IN(-)} = 1 \text{ V}, V_{IN(+)} = 0 \text{ V},$
						I _{OSINK} ≤ 4 mA
Output leakage current	I _{LO}	_	0.1	_	nA	$V_{IN(-)} = 0 \text{ V}, V_{IN(+)} = 1 \text{ V},$
						V _O = 5 V

Table of Graphs


Electri	Figure	
Supply current	vs. Supply voltage ±V _{CC}	1
Input bias current	vs. Supply voltage ±V _{CC}	2
Saturation voltage	vs. Supply voltage ±V _{CC}	3
Response time (Positive transition)	vs. Time s	4
Response time (Negative transition)	vs. Time s	5


www.DataSheet4LL.com


Typical Characteristics Curves

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Notes:

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property rights or any other rights of Renesas or shy third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, but not limited to, product data, diagrams, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass and regulations, and procedures required by such laws and regulations and procedures required by such laws and regulations, and procedures required by such laws and regulations. All procedures required by such laws and regulations and procedures required by such laws and regulations and procedures required by such laws and regulations. All procedures required by such laws and regulations and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures are such as a result of errors or omissions in the information with a Renesas sales office to change without a procedure or products are products and procedure or pr

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510