

HA17358B Series

Dual Operational Amplifier

REA03D0001-0100 Rev.1.00 Dec 25, 2006

Description

HA17358B is dual operational amplifiers that provide high gain and internal phase compensation, with single power supply. Operation from split power supply is also possible and the low power supply current drain is independent of the magnitude of the power supply voltages. They can be widely applied to control equipment and to general use.

DataSheet4U.com

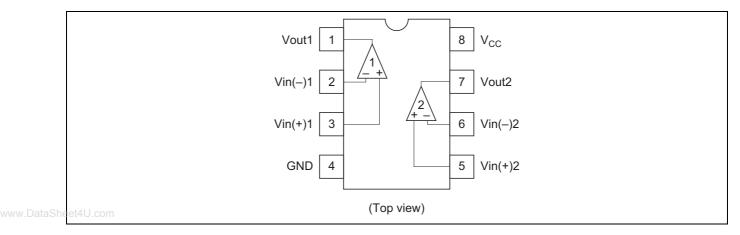
Features

- Wide range of supply voltage
- Single supply: 3 V to 36 V, Dual supplies: ± 1.5 V to ± 18 V
- Wide range of common mode voltage, and possible to operate with an input about 0 V, and output around 0 V is available.
- Internally frequency compensated for unity gain.
- Common mode input voltage range includes ground.
- Package outline available in Pb free lead frame: DP-8 SOP-8 (JEITA)

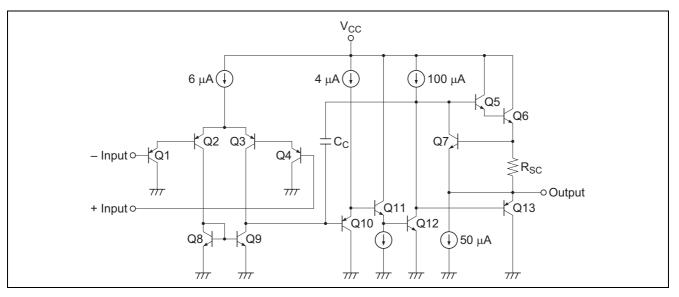
SOP-8 (JEDEC)

Applications

- Battery charger
- Cordless telephone
- Switching power supply


Ordering Information

Type No.	Application	Package Code (Package Name)
HA17358B	Commercial use	PRDP0008AF-B (DP-8FV)
HA17358BF		PRSP0008DE-B (FP-8DGV)
HA17358BRP		PRSP0008DD-C (FP-8DCV)


Note: This product is designed for consumer use and not for automotive.

Pin Arrangement

Circuit Schematic (1/2)

Absolute Maximum Ratings

					$(Ta = 25^{\circ}C)$
			Ratings		
Item	Symbol	HA17358B	HA17358BF	HA17358BRP	Unit
Supply Voltage	Vcc	36	36	36	V
Differential input voltage	V _{IN} (diff)	Vcc	Vcc	Vcc	V
Common mode input voltage	V _{CM}	-0.3 to V _{CC}	-0.3 to V _{CC}	-0.3 to V _{CC}	V
Power dissipation	PT	570 * ¹	385 * ²	385 * ²	mW
Operating temperature	Topr	-40 to +85	-40 to +85	-40 to +85	°C
Storage temperature	Tstg	-55 to +125	-55 to +125	-55 to +125	°C

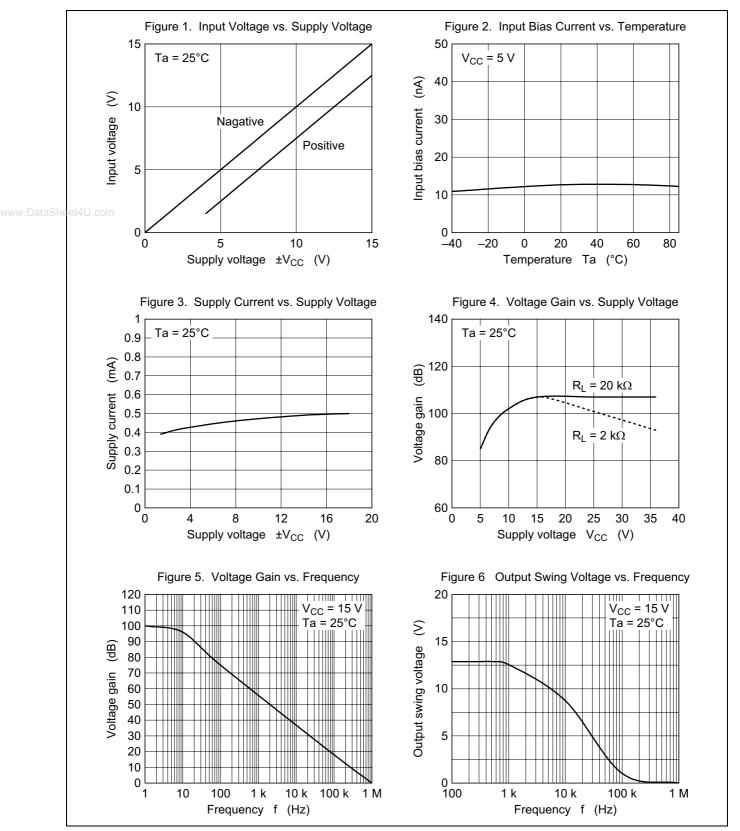
Notes: 1. This is the allowable value up to $Ta = 55^{\circ}C$. Derate by 8.3 mW/°C above that temperature.

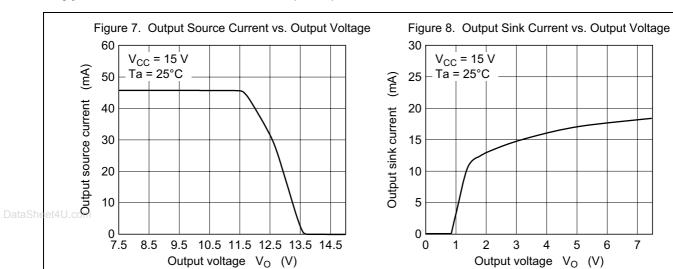
These are the allowable values up to Ta = 25°C mounting in air. When it is mounted on glass epoxy board of 40 mm × 40 mm × 1.5 mm (t) with 30% wiring density, the allowable value is 570 mW up to Ta = 45°C. If Ta > 45°C, derate by 7.14 mW/°C.

Electrical Characteristics

(Ta = 25° C, V_{CC} = +5 V, unless otherwise specified)

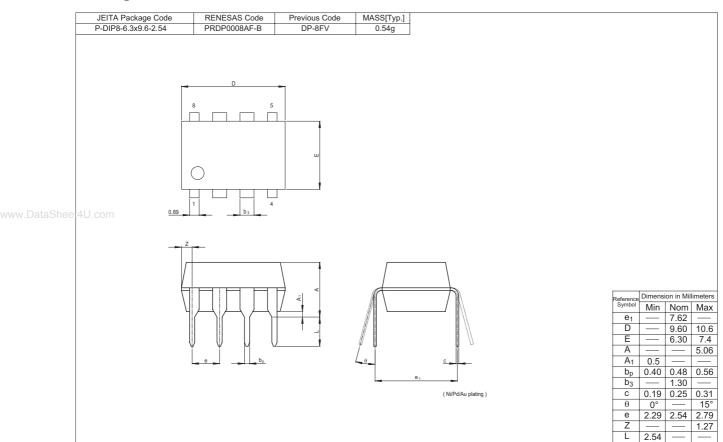
ltem	Symbol	Min	Тур	Max	Unit	Test Conditions
Input offset voltage	V _{IO}	_	2	5	mV	$V_0 = 1.4 \text{ V}, \text{ R}_S = 0 \Omega$
						$V_{CC} = 5 V$ to 30 V
Input offset current	l _{io}	—	5	30	nA	$V_{CM} = 0 V, I_{IO} = I_{IN(+)} - I_{IN(-)} $
Input bias current	I _{IB}	_	20	200	nA	$V_{CM} = 0 V$, $I_{IN(+)}$ or $I_{IN(-)}$
Power supply rejection ratio	PSRR	_	100	_	dB	$V_{CC} = 5 V$ to 30 V
Voltage gain	Av	85	100		dB	V_{CC} = 15 V, $R_L \ge 2 \ k\Omega$,
						$V_0 = 1 V \text{ to } 11 V$
Common mode rejection Ratio	CMR	60	70	_	dB	DC, $V_{CM} = 0$ V to $(V_{CC} - 1.5)$ V
Common mode input voltage range	V _{IR}	0	_	V _{cc} -1.5	V	$V_{CC} = 30 V$
Output swing voltage	V _{OH}	26	_	_	V	$V_{CC} = 30 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega$
		27	28		V	$V_{CC} = 30 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega$
	V _{OL}	_	5	20	mV	$V_{CC} = 5 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega$
Output source current	IOSOURCE	20	40	_	mA	$V_{IN(+)} = 1 V, V_{IN(-)} = 0 V,$
						$V_0 = 2 V, V_{CC} = 15 V$
Output sink current	I _{OSINK}	10	15	—	mA	$V_{IN(-)} = 1 V, V_{IN(+)} = 0 V,$
						$V_0 = 2 V, V_{CC} = 15 V$
		12	50	_	μA	$V_{IN(-)} = 1 V, V_{IN(+)} = 0 V,$
						$V_0 = 0.2 \text{ V}, V_{CC} = 15 \text{ V}$
Supply current	Icc	—	0.5	1.2	mA	$R_L = \infty$, $V_{CC} = 5 V$
			0.7	2	mA	$R_L = \infty$, $V_{CC} = 30 V$
Channel separation	CS		-120	_	dB	f = 1 kHz to 20 kHz

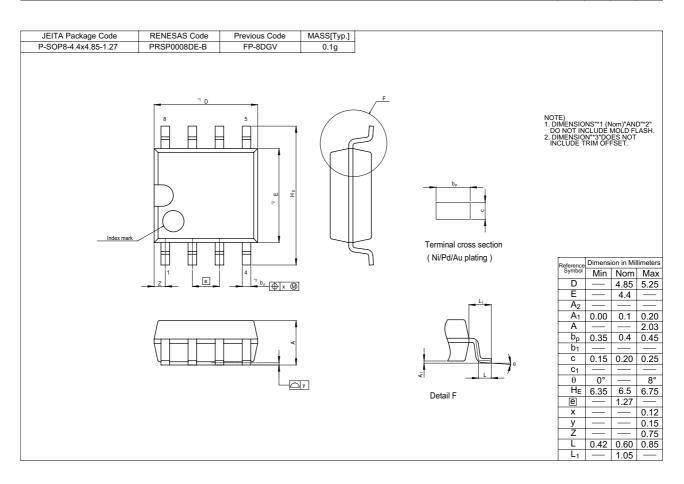

Table of Graphs


Electrical Characteristics		Figure	
Input voltage	vs. Supply voltage ±V _{CC}	1	
Input bias current	vs. Temperature Ta	2	
Supply current	vs. Supply voltage ±V _{CC}	3	
Voltage gain	vs. Supply voltage V _{CC}	4	
Voltage gain	vs. Frequency f	5	
Output swing voltage	vs. Frequency f	6	
Output source current	vs. Output voltage Vo	7	
Output sink current	vs. Output voltage Vo	8	

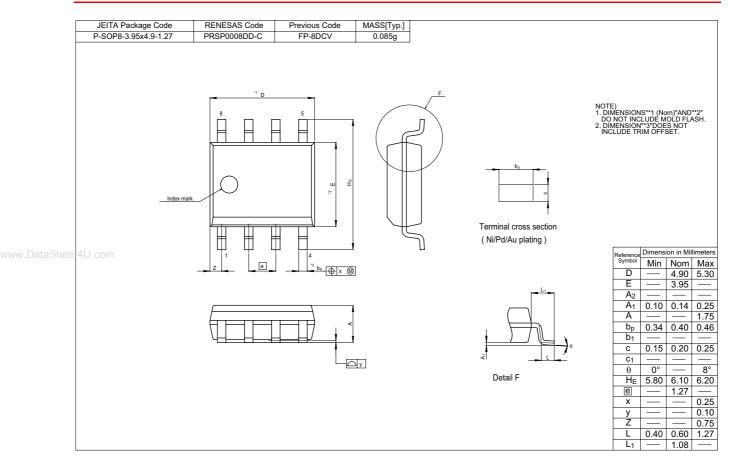
ww.DataSheet4U.com

Typical Characteristics Curves





Typical Characteristics Curves (cont.)


Package Dimensions

HA17358B Series

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510