

HA2556/883

Wideband Four Quadrant Analog Multiplier (Voltage Output)

July 1994

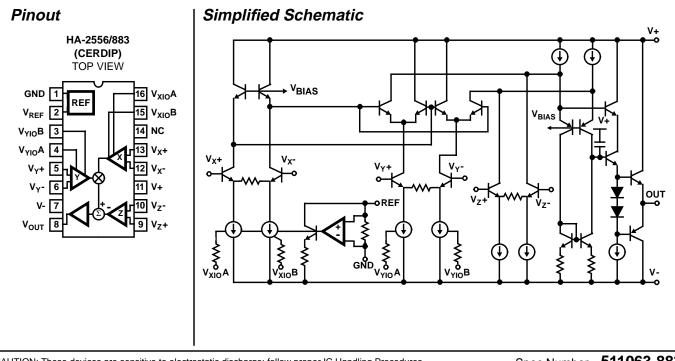
Features

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- + High Speed Voltage Output. 450V/ $\!\mu s$ (Typ)
- Low Multiplication error 1.5% (Typ)
- Signal Input Feedthrough-50dB (Typ)
- Wide Y Channel Bandwidth 57MHz (Typ)
- Wide X Channel Bandwidth 52MHz (Typ)
- 0.1dB Gain Flatness (V_Y).....5.0MHz (Typ)

Applications

- Military Avionics
- Missile Guidance Systems
- Medical Imaging Displays
- Video Mixers
- Sonar AGC Processors
- Radar Signal Conditioning
- Voltage Controlled Amplifier
- Vector Generator

Description


The HA-2556/883 is a monolithic, high speed, four quadrant, analog multiplier constructed in Intersil' Dielectrically Isolated High Frequency Process. The voltage output simplifies many designs by eliminating the current-to-voltage conversion stage required for current output multipliers. The HA-2556/883 provides a 450V/ μ s output slew rate and maintains 52MHz and 57MHz bandwidths for the X and Y channels respectively, making it an ideal part for use in video systems.

The suitability for precision video applications is demonstrated further by the Y Channel 0.1dB gain flatness to 5.0MHz, 1.5% multiplication error, -50dB feedthrough and differential inputs with 8μ A bias current. The HA-2556 also has low differential gain (0.1%) and phase (0.1°) errors.

The HA-2556/883 is well suited for AGC circuits as well as mixer applications for sonar, radar, and medical imaging equipment. The HA-2556/883 is not limited to multiplication applications only; frequency doubling, power detection, as well as many other configurations are possible.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA1-2556/883	-55°C to +125°C	16 Lead CerDIP

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 8-7

Absolute Maximum Ratings

Voltage Between V+ and V	
Output Current±40mA	
ESD Rating< 2000V	
Lead Temperature (Soldering 10s)+300°C	
Storage Temperature Range $\dots -65^{\circ}C \le T_A \le +150^{\circ}C$	
Max Junction Temperature	

Thermal Information

Thermal Resistance CerDIP Package	θ _{JA} 82ºC/W	θ _{JC} 27°C/W
Maximum Package Power Dissipation at +75 CerDIP Package		1.22W
Package Power Dissipation Derating Factor a		
CerDIP Package		12mW/ºC

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

			GROUP A		LIN	NITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	
Multiplication Error	ME	$V_Y, V_X = \pm 5V$	1	+25°C	-3	3	%FS
			2, 3	+125°C, -55°C	-6	6	%FS
Linearity Error	LE4V	$V_Y, V_X = \pm 4V$	1	+25°C	-0.5	0.5	%FS
	LE5V	V_Y , $V_X = \pm 5V$	1	+25°C	-1	1	%FS
Input Offset Voltage (V _X)	V _{XIO}	$V_Y = \pm 5V$	1	+25°C	-15	15	mV
			2, 3	+125°C, -55°C	-25	25	mV
Input Bias Current (V _X)	I _B (V _X)	$V_X = 0V, V_Y = 5V$	1	+25°C	-15	15	μΑ
			2, 3	+125°C, -55°C	-25	25	μΑ
Input Offset Current (V _X)	I _{IO} (V _X)	$V_X = 0V, V_Y = 5V$	1	+25°C	-2	2	μΑ
			2, 3	+125°C, -55°C	-3	3	μΑ
Common Mode (V _X)	CMRR (V _X)		1	+25°C	65	-	dB
Rejection Ratio		$V_{\rm Y} = 5V$	2, 3	+125°C, -55°C	65	-	dB
Power Supply (V _X) Rejection Ratio	+PSRR (V _X)	$V_{CC} = +12V \text{ to } +17V$	1	+25°C	65	-	dB
Rejection Ratio		$V_{\rm Y} = 5V$	2, 3	+125°C, -55°C	65	-	dB
	-PSRR (V _X)		1	+25°C	45	-	dB
		$V_{\rm Y} = 5V$	2, 3	+125°C, -55°C	45	-	dB
Input Offset Voltage (V _Y)	V _{YIO}	$V_X = \pm 5V$	1	+25°C	-15	15	mV
			2, 3	+125°C, -55°C	-6 6 -0.5 0.5 -1 1 -15 15 -25 25 -15 15 -25 25 -27 2 -3 3 65 - 65 - 65 - 65 - 65 - 45 -	mV	
Input Bias Current (V _Y)	I _B (V _Y)	$V_{Y} = 0V, V_{X} = 5V$	1	+25°C	-15	15	μΑ
			2, 3	+125°C, -55°C	-25	25	μΑ
Input Offset Current (V _Y)	I _{IO} (V _Y)	$V_{\rm Y} = 0$ V, $V_{\rm X} = 5$ V	1	+25°C	-2	2	μA
			2, 3	+125°C, -55°C	-3	3	μΑ
Common Mode (V _Y)	CMRR (V _Y)	V _Y CM = +9V, -10V	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+25°C	65	-	dB
Rejection Ratio		65	-	dB			
Power Supply (V _Y)	+PSRR (V _Y)		1	+25°C	-6 6 -0.5 0.5 -1 1 -15 15 -25 25 -15 15 -25 25 -25 25 -27 2 -3 3 65 - 65 - 65 - 65 - 65 - 65 - 65 - 65 - 65 - 65 - 65 - 65 - 65 - 65 - 65 - -15 15 -25 25 -15 15 -25 25 -25 25 -25 25 -25 25 -25 25 -25 25 -3 <t< td=""><td>dB</td></t<>	dB	
Rejection Ratio		$V_X = 5V$	2, 3	+125°C, -55°C	65	-	dB
	-PSRR (V _Y)		1	$+125^{\circ}C, -55^{\circ}C$ -25 $+125^{\circ}C, -55^{\circ}C$ -3 $+125^{\circ}C, -55^{\circ}C$ 65 $+125^{\circ}C, -55^{\circ}C$ 45 $+125^{\circ}C, -55^{\circ}C$ -15 $+125^{\circ}C, -55^{\circ}C$ -25 $+125^{\circ}C, -55^{\circ}C$ -25 $+125^{\circ}C, -55^{\circ}C$ -25 $+125^{\circ}C, -55^{\circ}C$ -3 $+125^{\circ}C, -55^{\circ}C$ 65	-	dB	
		$V_X = 5V$	2, 3	+125°C, -55°C	45	- 1	dB

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_F = 50\Omega$, $R_L = 1k\Omega$, $C_L = 20pF$, Unless Otherwise Specified.

			GROUP A		LIN	NITS	
PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	
Input Offset Voltage (V _Z)	V _{ZIO}	$V_X = 0V, V_Y = 0V$	1	+25°C	-15	15	mV
			2, 3	+125°C, -55°C	-25	25	mV
Input Bias Current (V _Z)	I _B (V _Z)	$V_X = 0V, V_Y = 0V$	1	+25°C	-15	15	μΑ
			2, 3	+125°C, -55°C	-25	25	μΑ
Input Offset Current (V _Z)	I _{IO} (V _Z)	$V_X = 0V, V_Y = 0V$	1	+25°C	-2	2	μΑ
			2, 3	+125°C, -55°C	-3	3	μΑ
Common Mode (V _Z)	CMRR (V _Z)	$V_Z CM = \pm 10V$	1	+25°C	65	-	dB
Rejection Ratio	$V_X = 0$ V_Z) +PSRR (V_Z) $V_{CC} =$	$V_X = 0V, V_Y = 0V$	2, 3	+125°C, -55°C	65	-	dB
Power Supply (V _Z) + Rejection Ratio	+PSRR (V _Z)	$V_{CC} = +12V \text{ to } +17V$	1	+25°C	65	-	dB
Rejection Ratio		$V_X = 0V, V_Y = 0V$	2, 3	+125°C, -55°C	65 - 65 - 45 -	dB	
	-PSRR (V _Z)	V _{EE} = -12V to -17V	1	+25°C	45	-	dB
		$V_X = 0V, V_Y = 0V$	2, 3	+125°C, -55°C	45	-	dB
Output Current	+I _{OUT}	$V_{OUT} = 5V, R_L = 250\Omega$	1	+25°C	20	-	mA
			2, 3	+125°C, -55°C	20	-	mA
	-I _{OUT}	$V_{OUT} = 5V, R_L = 250\Omega$	1	+25°C	-	-20	mA
			2, 3	+125°C, -55°C	-	-20	mA
Output Voltage Swing	+V _{OUT}	R _L = 250Ω	1	+25°C	5	-	V
			2, 3	+125°C, -55°C	5	-	V
	-V _{OUT}	R _L = 250Ω	1	+25°C	-	-5	V
			2, 3	+125°C, -55°C	-	-5	V
Supply Current	±I _{CC}	$V_X, V_Y = 0V$	1	+25°C	-	22	mA
			2, 3	+125°C, -55°C	-	22	mA

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at: $V_{SUPPLY} = \pm 15V$, $R_F = 50\Omega$, $R_L = 1k\Omega$, $C_L = 20pF$, Unless Otherwise Specified

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Table 2 Intentionally Left Blank. See AC Specifications in Table 3.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested: at $V_{SUPPLY} = \pm 15V$, $R_F = 50\Omega$, $R_L = 1k\Omega$, $C_L = 20pF$, Unless Otherwise Specified.

						LIMITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	
V_{Y} , V_{Z} CHARACTERISTIC	S (NOTE 2)		-		-		
Bandwidth	BW(V _Y)	$\begin{array}{l} \text{-3dB, V}_X = 5\text{V},\\ \text{V}_Y \leq 200\text{mV}_{\text{P-P}} \end{array}$	1	+25°C	30	-	MHz
Gain Flatness	GF(V _Y)	0.1dB, $V_X = 5V$, $V_Y \le 200mV_{P-P}$	1	+25°C	4.0	-	MHz
AC Feedthrough	V _{ISO}		1, 3	+25°C	-	-45	dB
Rise and Fall Time	T _R , T _F	$V_{Y} = 200 \text{mV}$ Step,	1	+25°C	-	9.5	ns
		V _X = 5V, 10% to 90% pts	1	+125°C, -55°C	-	10	ns

					LIN	IITS	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	
Overshoot	+0S, -0S	$V_{\rm Y} = 200 {\rm mV}$ step,	1	+25°C	-	35	%
		$V_X = 5V$	1	+125°C, -55°C	-	50	%
Slew Rate	+SR, -SR	$V_{\rm Y} = 10V$ step,	1	+25°C	410	-	V/µs
		V _X = 5V	1	+125°C, -55°C	360	-	V/µs
Differential Input Resistance	R _{IN} (V _Y)	$V_{Y} = \pm 5V, V_{X} = 0V$	1	+25°C	650	-	kΩ
V _X CHARACTERISTICS	-			•	•		
Bandwidth	BW (V _X)	-3dB, $V_Y = 5V$, $V_X \le 200mV_{P-P}$	1	+25°C	30	-	MHz
Gain Flatness	GF (V _X)	0.1dB, $V_Y = 5V$, $V_X \le 200mV_{P-P}$	1	+25°C	2.0	-	MHz
AC Feedthrough	V _{ISO}		1, 3	+25°C	-	-45	dB
Rise & Fall Time	T _R , T _F	$V_X = 200 \text{mV} \text{ step},$	1	+25°C	-	9.5	ns
		V _Y = 5V, 10% to 90% pts	1	+125°C, -55°C	-	10	ns
Overshoot	+0S, -0S	V _X = 200mV step,	1	+25°C	-	35	%
		$V_{\rm Y} = 5V$	1	+125°C, -55°C	-	50	%
Slew Rate	+SR, -SR	$V_X = 10V$ step,	1	+25°C	410	-	V/µs
		V _Y = 5V	1	+125°C, -55°C	360	-	V/µs
Differential Input Resistance	R _{IN} (V _X)	$V_X = \pm 5V, V_Y = 0V$	1	+25°C	650	-	kΩ
OUTPUT CHARACTERI	STICS			•			
Output Resistance	R _{OUT}	$V_{Y} = \pm 5V, V_{X} = 5V$ $R_{L} = 1k\Omega$ to 250 Ω	1	+25°C	-	1	Ω

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested: at $V_{SUPPLY} = \pm 15V$, $R_F = 50\Omega$, $R_L = 1k\Omega$, $C_L = 20pF$, Unless Otherwise Specified.

NOTES:

1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.

2. V_Z AC characteristics may be implied from V_Y due to the use of V_Z as feedback in the test circuit.

3. Offset voltage applied to minimize feedthrough signal.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLE 1)
Interim Electrical Parameters (Pre Burn-In)	-
Final Electrical Test Parameters	1 (Note 1), 2, 3
Group A Test Requirements	1, 2, 3
Groups C and D Endpoints	1

NOTE:

1. PDA applies to Subgroup 1 only. No other subgroups are included in PDA.

Die Characteristics

DIE DIMENSIONS:

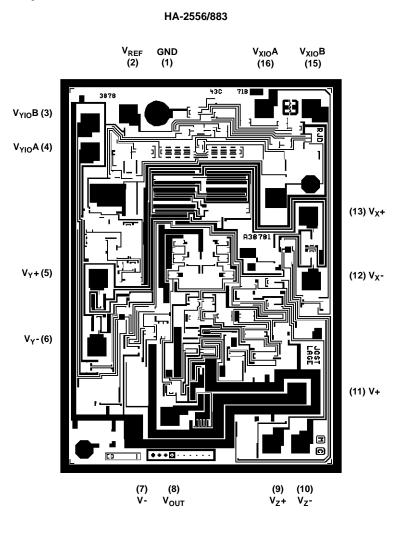
71 mils x 100 mils x 19 mils \pm 1 mils

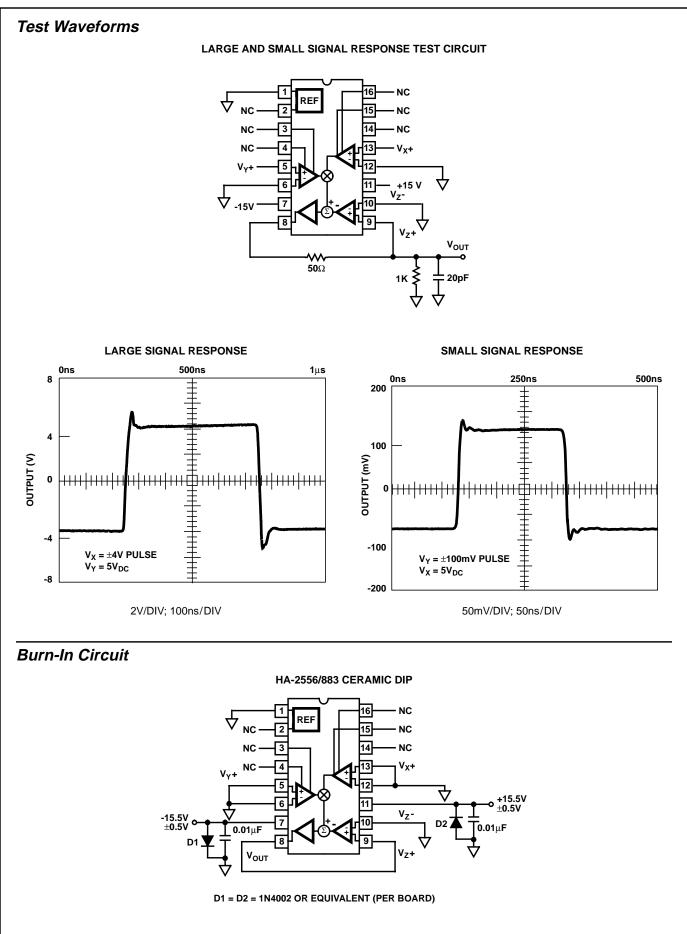
METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ \pm 2kÅ

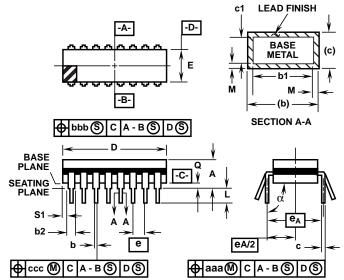
GLASSIVATION:

Type: Nitride (Si₃N₄) over Silox (SiO₂, 5% Phos) Silox Thickness: 12kÅ \pm 2kÅ Nitride Thickness: 3.5kÅ \pm 1.5kÅ


TRANSISTOR COUNT: 84


SUBSTRATE POTENTIAL: V-

WORST CASE CURRENT DENSITY: $0.47 \times 10^{5} \text{A/cm}^2$


0.47 x 10⁵A/cm²

Metallization Mask Layout

Packaging

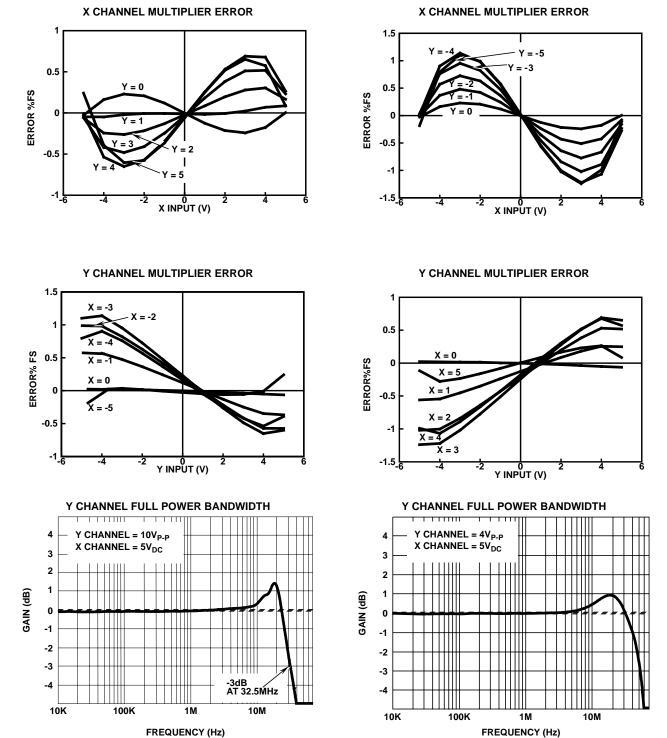
NOTES:

- 1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- 2. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- 3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b1.
- 5. This dimension allows for off-center lid, meniscus, and glass overrun.
- 6. Dimension Q shall be measured from the seating plane to the base plane.
- 7. Measure dimension S1 at all four corners.
- 8. N is the maximum number of terminal positions.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling Dimension: Inch.
- 11. Lead Finish: Type A.
- 12. Materials: Compliant to MIL-I-38535.

F16.3 MIL-STD-1835 GDIP1-T16 (D-2, CONFIGURATION A)
16 LEAD DUAL-IN-LINE FRIT-SEAL CERAMIC PACKAGE

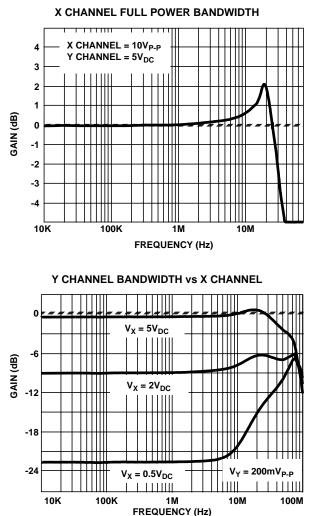
	INC	HES	MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.840	-	21.34	5
E	0.220	0.310	5.59	7.87	5
е	0.100 BSC 2.54 BSC		BSC	-	
eA	0.300	BSC	7.62 BSC		-
eA/2	0.150	BSC	3.81	BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
S2	0.005	-	0.13	-	-
α	90 ⁰	105 ⁰	90 ⁰	105 ⁰	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
CCC	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2
Ν	1	6	1	6	8

DESIGN INFORMATION

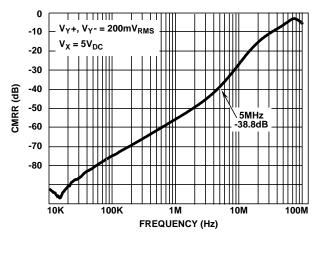

August 1999

HA2556

Wideband Four Quadrant Analog Multiplier

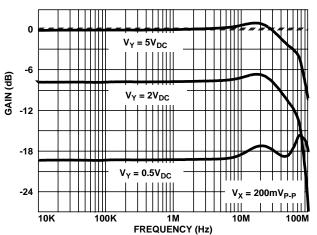

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves

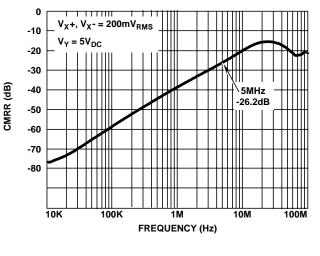


The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves (Continued)

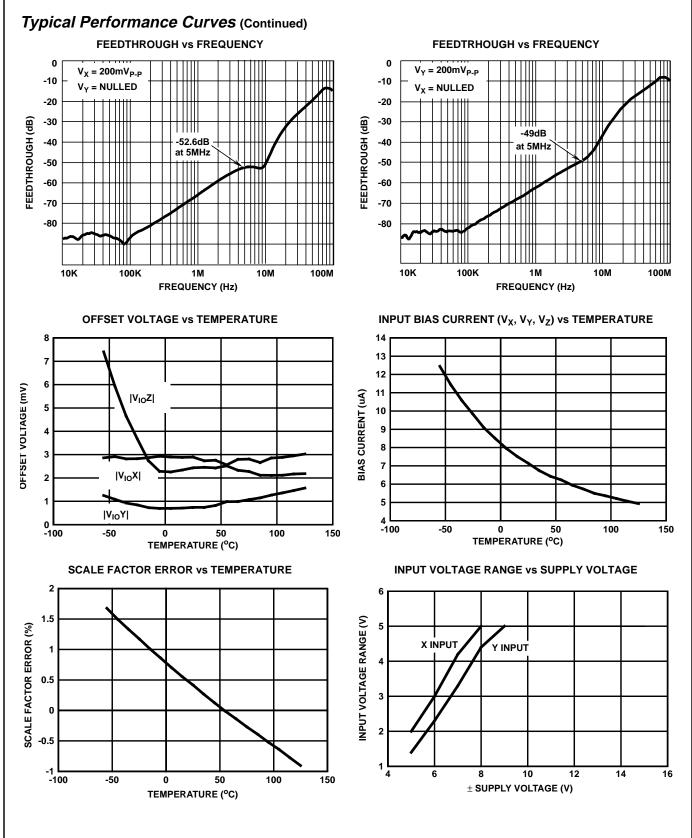


Y CHANNEL CMRR vs FREQUENCY

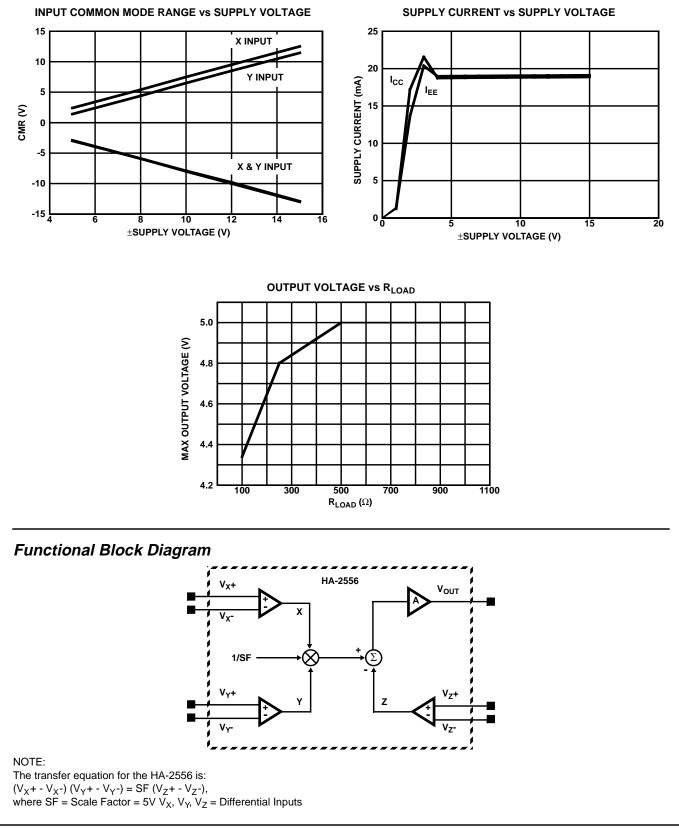


X CHANNEL FULL POWER BANDWIDTH X CHANNEL = 4V_{P-P} Y CHANNEL = 5V_{DC} 3 2 GAIN (dB) 1 0 -1 -2 -3 -4 10K 100K 10M 1M FREQUENCY (Hz)

X CHANNEL BANDWIDTH vs Y CHANNEL



X CHANNEL CMRR vs FREQUENCY


Spec Number 511063-883

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

Typical Performance Curves (Continued)

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

Applications Information

Operation at Reduced Supply Voltages

The HA-2556 will operate over a range of supply voltages, $\pm 5V$ to $\pm 15V$. Use of supply voltages below $\pm 12V$ will reduce input and output voltage ranges. See "Typical Performance Curves" for more information.

Offset Adjustment

X and Y channel offset voltages may be nulled by using a 20K potentiometer between the V_{YIO} or V_{XIO} adjust pin A and B and connecting the wiper to V-. Reducing the channel offset voltage will reduce AC feedthrough and improve the multiplication error. Output offset voltage can also be nulled by connecting V_Z- to the wiper of a potentiometer which is tied between V+ and V-.

Capacitive Drive Capability

When driving capacitive loads >20pF a 50 Ω resistor should be connected between V_{OUT} and V_Z+, using V_Z+ as the output (see Figure 1). This will prevent the multiplier from going unstable and reduce gain peaking at high frequencies. The 50 Ω resistor will dampen the resonance formed with the capacitive load and the inductance of the output at pin 8. Gain accuracy will be maintained because the resistor is inside the feedback loop.

Theory of Operation

The HA-2556 creates an output voltage that is the product of the X and Y input voltages divided by a constant scale factor of 5V. The resulting output has the correct polarity in each of the four quadrants defined by the combinations of positive and negative X and Y inputs. The Z stage provides the means for negative feedback (in the multiplier configuration) and an input for summation into the output. This results in the following equation, where X, Y and Z are high impedance differential inputs.

To accomplish this the differential input voltages are first converted into differential currents by the X and Y input transconductance stages. The currents are then scaled by a constant reference and combined in the multiplier core. The multiplier core is a basic Gilbert Cell that produces a differential output current proportional to the product of X and Y input signal currents. This current becomes the output for the HA-2557.

The HA-2556 takes the output current of the core and feeds it to a transimpedance amplifier, that converts the current to a voltage. In the multiplier configuration, negative feedback is provided with the Z transconductance amplifier by connecting V_{OUT} to the Z input. The Z stage converts V_{OUT} to a current which is subtracted from the multiplier core before being applied to the high gain transimpedance amp. The Z stage, by virtue of it's similarity to the X and Y stages, also cancels second order errors introduced by the dependence of V_{BE} on collector current in the X and Y stages.

The purpose of the reference circuit is to provide a stable current, used in setting the scale factor to 5V. This is achieved with a bandgap reference circuit to produce a temperature stable voltage of 1.2V which is forced across a NiCr resistor. Slight adjustments to scale factor may be possible by overriding the internal reference with the V_{REF} pin. The scale factor is used to maintain the output of the multiplier within the normal operating range of \pm 5V when full scale inputs are applied.

The Balance Concept

The open loop transfer equation for the HA-2556 is:

$$V_{OUT} = A \left[\frac{(V_{X+} - V_{X-}) \times (V_{Y+} - V_{Y-})}{5} - (V_{Z+} - V_{Z-}) \right]$$

where:

A = Output Amplifier Open Loop Gain V_X, V_Y, V_Z = Differential Input Voltages 5V = Fixed Scale Factor

An understanding of the transfer function can be gained by assuming that the open loop gain, A, of the output amplifier is infinite. With this assumption, any value of V_{OUT} can be generated with an infinitesimally small value for the terms within the brackets. Therefore we can write the equation:

$$0 = \frac{(V_{X+} - V_{X-}) \times (V_{Y+} - V_{Y-})}{5} - (V_{Z+} - V_{Z-})$$

which simplifies to:

$$(V_{X+} - V_{X-}) \times (V_{Y+} - V_{Y-}) = 5(V_{Z+} - V_{Z-})$$

This form of the transfer equation provides a useful tool to analyze multiplier application circuits and will be called the Balance Concept.

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

Let's first examine the Balance Concept as it applies to the standard multiplier configuration (Figure 2).

Signals A and B are input to the multiplier and the signal W is the result. By substituting the signal values into the Balance equation you get:

$$(A) \times (B) = 5 (W)$$

And solving for W:

$$W = \frac{A \times B}{5}$$

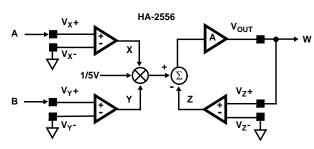


FIGURE 2. MULTIPLIER

Notice that the output (W) enters the equation in the feedback to the Z stage. The Balance Equation does not test for stability, so remember that you must provide negative feedback. In the multiplier configuration, the feedback path is connected to V_Z + input, not V_Z -. This is due to the inversion that takes place at the summing node just prior to the output amplifier. Feedback is not restricted to the Z stage, other feedback paths are possible as in the Divider Configuration shown in Figure 3.

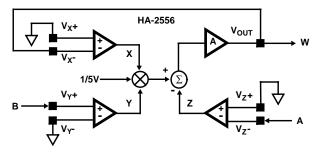
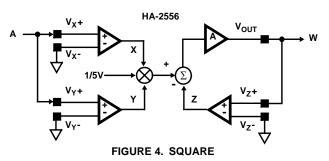


FIGURE 3. DIVIDER

Inserting the signal values A, B and W into the Balance Equation for the divider configuration yields:

$$(-W) \times (B) = 5V \times (-A)$$

Solving for W yields:


$$W = \frac{5A}{B}$$

Notice that, in the divider configuration, signal B must remain ≥ 0 (positive) for the feedback to be negative. If signal B is negative, then it will be multiplied by the V_{X-} input to produce positive feedback and the output will swing into the rail.

Signals may be applied to more than one input at a time as in the Squaring configuration in Figure 4:

Here the Balance equation will appear as:

$$(A) \times (A) = 5 (W)$$

Which simplifies to:

$$W = \frac{A^2}{5}$$

The last basic configuration is the Square Root as shown in Figure 5. Here feedback is provided to both X and Y inputs.

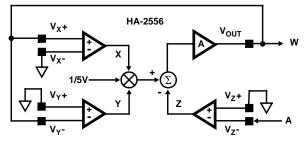


FIGURE 5. SQUARE ROOT (FOR A > 0)

The Balance equation takes the form:

$$W) \times (-W) = 5 (-A)$$

Which equates to:

$$W = \sqrt{5A}$$

Application Circuits

The four basic configurations (Multiply, Divide, Square and Square Root) as well as variations of these basic circuits have many uses.

Frequency Doubler

For example, if $ACos(\omega \tau)$ is substituted for signal A in the Square function, then it becomes a Frequency Doubler and the equation takes the form:

$$(ACos(\omega\tau)) \times (ACos(\omega\tau)) = 5(W)$$

And using some trigonometric identities gives the result:

$$W = \frac{A^2}{10} (1 + \cos(2\omega\tau))$$

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

Square Root

The Square Root function can serve as a precision/wide bandwidth compander for audio or video applications. A compander improves the Signal to Noise Ratio for your system by amplifying low level signals while attenuating or compressing large signals (refer to Figure 17; $X^{0.5}$ curve). This provides for better low level signal immunity to noise during transmission. On the receiving end the original signal may be reconstructed with the standard Square function.

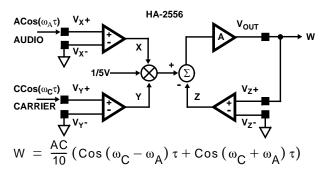
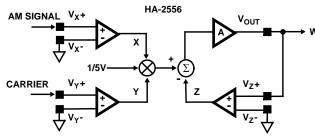
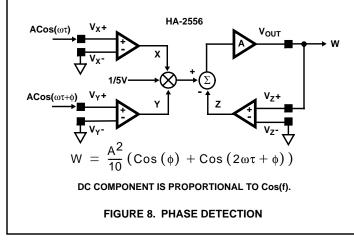
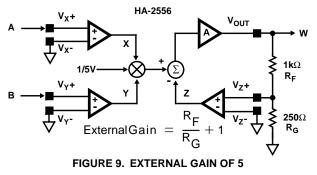




FIGURE 6. AM SIGNAL GENERATION

LIKE THE FREQUENCY DOUBLER YOU GET AUDIO CENTERED AT DC AND $\rm 2F_C.$

FIGURE 7. SYNCHRONOUS AM DETECTION

Communications

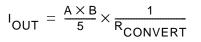

The Multiplier configuration has applications in AM Signal Generation, Synchronous AM Detection and Phase Detection to mention a few. These circuit configurations are shown in Figure 6, Figure 7 and Figure 8. The HA-2556 is particularly useful in applications that require high speed signals on all inputs.

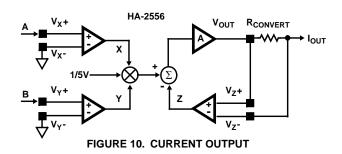
Each input X, Y and Z has similar wide bandwidth and input characteristics. This is unlike earlier products where one input was dedicated to a slow moving control function as is required for Automatic Gain Control. The HA-2556 is versa-tile enough for both.

Although the X and Y inputs have similar AC characteristics, they are not the same. The designer should consider input parameters such as small signal bandwidth, ac feedthrough and 0.1dB gain flatness to get the most performance from the HA-2556. The Y channel is the faster of the two inputs with a small signal bandwidth of typically 57MHz verses 52MHz for the X channel. Therefore in AM Signal Generation, the best performance will be obtained with the Carrier applied to the Y channel and the modulation signal (lower frequency) applied to the X channel.

Scale Factor Control

The HA-2556 is able to operate over a wide supply voltage range \pm 5V to \pm 17.5V. The \pm 5V range is particularly useful in video applications. At \pm 5V the input voltage range is reduced to \pm 1.4V. The output cannot reach its full scale value with this restricted input, so it may become necessary to modify the scale factor. Adjusting the scale factor may also be useful when the input signal itself is restricted to a small portion of the full scale level. Here we can make use of the high gain output amplifier by adding external gain resistors. Generating the maximum output possible for a given input signal will improve the Signal to Noise Ratio and Dynamic Range of the system. For example, let's assume that the input signals are 1V_{PEAK} each. Then the maximum output for the HA-2556 will be 200mV. (1V x 1V / (5V) = 200mV. It would be nice to have the output at the same full scale as our input, so let's add a gain of 5 as shown in Figure 9.


One caveat is that the output bandwidth will also drop by this factor of 5. The multiplier equation then becomes:


$$W = \frac{5AB}{5} = A \times B$$

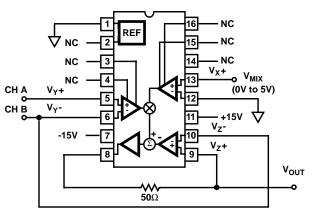
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

Current Output

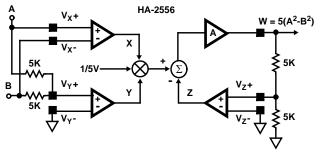
Another useful circuit for low voltage applications allows the user to convert the voltage output of the HA2556 to an output current. The HA-2557 is a current output version offering 100MHz of bandwidth, but its scale factor is fixed and does not have an output amplifier for additional scaling. Fortunately the circuit in Figure 10 provides an output current that can be scaled with the value of R_{CONVERT} and provides an output impedance of typically 1M Ω . The equation for I_{OUT} becomes:

Video Fader

The Video Fader circuit provides a unique function. Here Ch B is applied to the minus Z input in addition to the minus Y input. In this way, the function in Figure 11 is generated. V_{MIX} will control the percentage of Ch A and Ch B that are mixed together to produce a resulting video image or other signal.

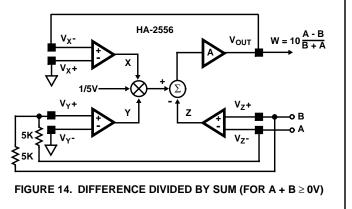

The Balance equation looks like:

$$(V_{MIX}) \times (ChA - ChB) = 5(V_{OUT} - ChB)$$


Which simplifies to:

$$V_{OUT} = ChB + \frac{V_{MIX}}{5} (ChA - ChB)$$

When V_{MIX} is 0V the equation becomes V_{OUT} = Ch B and Ch A is removed, conversely when VMIX is 5V the equation becomes V_{OUT} = Ch A eliminating Ch B. For VMIX values 0V \leq VMIX \leq 5V the output is a blend of Ch A and Ch B.

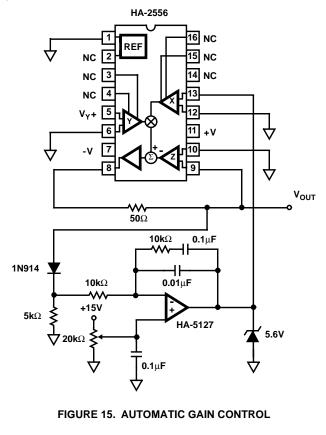


R1 and R2 set scale to 1V/%, other scale factors possible for A \geq 0V.

FIGURE 13. PERCENTAGE DEVIATION

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

Other Applications

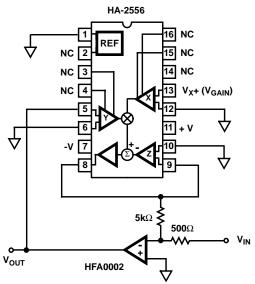

As shown above, a function may contain several different operators at the same time and use only one HA-2556. Some other possible multi-operator functions are shown in Figure 12, Figure 13 and Figure 14.

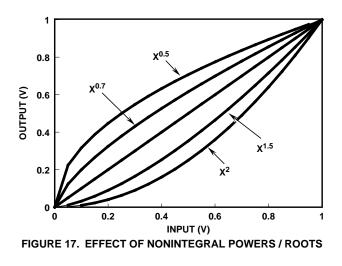
Of course the HA-2556 is also well suited to standard multiplier applications such as Automatic Gain Control and Voltage Controlled Amplifier.

Automatic Gain Control

Figure 15 shows the HA-2556 configured in an Automatic Gain Control or AGC application. The HA-5127 low noise amplifier provides the gain control signal to the X input. This control signal sets the peak output voltage of the multiplier to match the preset reference level. The feedback network around the HA-5127 provides a response time adjustment. High frequency changes in the peak are rejected as noise or the desired signal to be transmitted. These signals do not indicate a change in the average peak value and therefore no gain adjustment is needed. Lower frequency changes in the peak value are given a gain of -1 for feedback to the control input. At DC the circuit is an integrator automatically compensating for Offset and other constant error terms.

This multiplier has the advantage over other AGC circuits, in that the signal bandwidth is not affected by the control signal gain adjustment.




FIGURE 16. VOLTAGE CONTROLLED AMPLIFIER

Voltage Controlled Amplifier

A wide range of gain adjustment is available with the Voltage Controlled Amplifier configuration shown in Figure 16. Here the gain of the HFA0002 can be swept from 20V/V to a gain of almost 1000V/V with a DC voltage from 0 to 5V.

Wave Shaping Circuits

Wave shaping or curve fitting is another class of application for the analog multiplier. For example, where a non-linear sensor requires corrective curve fitting to improve linearity the HA-2556 can provide nonintegral powers in the range 1 to 2 or nonintegral roots in the range 0.5 to 1.0 (refer to Further Reading). This effect is displayed in Figure 17.

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

Well, OK a multiplier can't do nonintegral roots "exactly" but we can get very close. We can approximate nonintegral roots with equations of the form:

$$V_{o} = (1 - \alpha) V_{IN}^{2} + \alpha V_{IN}$$
$$V_{o} = (1 - \alpha) V_{IN}^{1/2} + \alpha V_{IN}$$

Figure 18 compares the function V_{OUT} = V_{IN}^{0.7} to the approximation V_{OUT} = $0.5V_{IN}^{0.5} + 0.5V_{IN}$.

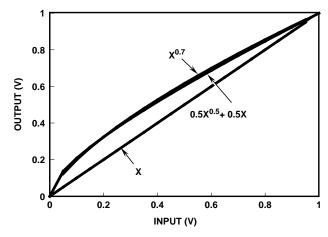
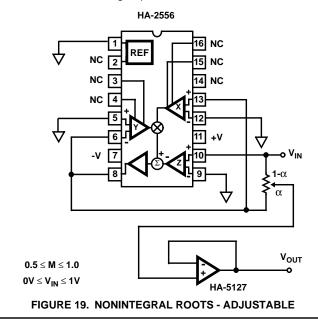



FIGURE 18. COMPARE APPROXIMATION TO NONINTEGRAL ROOT

This function can be easily built using an HA-2556 and a potentiometer for easy adjustment as shown in Figures 19 and 20. If a fixed nonintegral power is desired, the circuit shown in Figure 21 eliminates the need for the output buffer amp. These circuits approximate the function V_{IN}^{M} where M is the desired nonintegral power or root.

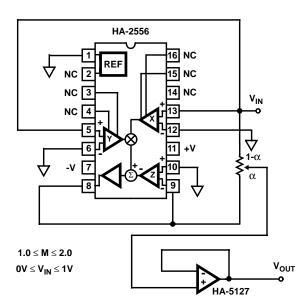
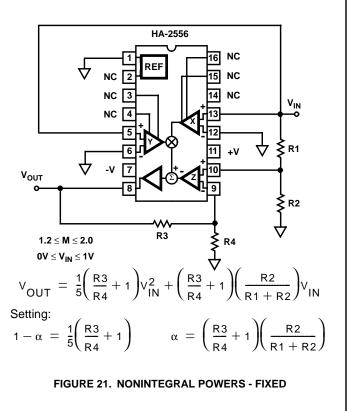



FIGURE 20. NONINTEGRAL POWERS - ADJUSTABLE

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

ROOTS - F	FIGURE 19	POWERS - FIGURE 20							
М			α						
0.5	0	1.0	1						
0.6	≈ 0.25	1.2	≈0.75						
0.7	≈ 0.50	1.4	≈0.5						
0.8	≈0.70	1.6	≈0.3						
0.9	≈ 0.85	1.8	≈0.15						
1.0	1	2.0	0						

Values for α to give a desired M root or power are as follows:

Sine Function Generators

Similar functions can be formulated to approximate a SINE function converter as shown in Figure 22. With a linearly changing (0 to 5V) input the output will follow 0° to 90° of a sine function (0 to 5V) output. This configuration is theoretically capable of $\pm 2.1\%$ maximum error to full scale.

By adding a second HA-2556 to the circuit an improved fit may be achieved with a theoretical maximum error of 0.5% as shown in Figure 23. Figure 23 has the added benefit that it will work for positive and negative input signals. This makes a convenient triangle (\pm 5V input) to sine wave (\pm 5V output) converter.

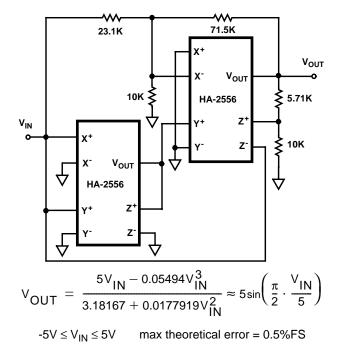


FIGURE 23. BIPOLAR SINE-FUNCTION GENERATOR

Further Reading

- 1. Pacifico Cofrancesco, "RF Mixers and ModulatorsMade with a Monolithic Four-Quadrant Multiplier" Microwave Journal, December 1991 pg. 58 - 70.
- 2. Richard Goller, "IC Generates Nonintegral Roots" Electronic Design, December 3, 1992.

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

TYPICAL PERFORMANCE CHARACTERISTICS

Device Tested at Supply Voltage = $\pm 15V$, R_F = 50 Ω , R_L = 1k Ω , C_L = 20pF, Unless Otherwise Specified.

SYMBOL	CONDITIONS	TEMP	TYP	UNITS
ME	$V_Y, V_X = \pm 5V$	+25°C	±1.5	%FS
		+125°C, -55°C	±3.0	%FS
	$V_{Y}, V_{X} = \pm 5V$	+125°C, -55°C	±0.003	%FS/°C
LE3V	$V_{Y}, V_{X} = \pm 3V$	+25°C	±0.02	%FS
LE4V	$V_{Y}, V_{X} = \pm 4V$	+25°C	±0.05	%FS
LE5V	$V_Y, V_X = \pm 5V$	+25°C	±0.2	%FS
DG	f = 4.43MHz, V _Y = 300mV _{P-P} , V _X = 5V	+25°C	0.1	%
DP	f = 4.43MHz, V _Y = 300mV _{P-P} , V _X = 5V	+25°C	0.1	Deg.
SF		+25°C	5	V
E _N (1kHz)	$f = 1 \text{kHz}, V_X = 0 \text{V}, V_Y = 0 \text{V}$	+25°C	150	nV/√Hz
E _N (100kHz)	$f = 100 \text{kHz}, V_X = 0 \text{V}, V_Y = 0 \text{V}$	+25°C	40	nV/√Hz
+PSRR	V _S + = +12V to +15V, V _S - = -15V	+25°C	80	dB
		+125°C, -55°C	80	dB
-PSRR	V _S - = -12V to -15V, V _S + = +15V	+25°C	55	dB
		+125°C, -55°C	55	dB
Icc	$V_X, V_Y = 0V$	+25°C	18	mA
		+125°C, -55°C	18	mA
				1
VIO	$V_{Y} = \pm 5V$	+25°C	±3	mV
		+125°C, -55°C	±8	mV
VIOTC	$V_{Y} = \pm 5V$	+125°C, -55°C	±45	μV/ºC
-		+25°C	±8	μΑ
D		+125°C, -55°C	±12	μΑ
lin	$V_X = 0V, V_Y = 5V$		±0.5	μΑ
10			±1.0	μΑ
		+25°C	±5	· V
CMR (V _x)		+25°C	±10	v
		+25°C		V
	$V_{x}CM = \pm 10V. V_{y} = 5V$	+25°C		dB
		+125°C55°C		dB
CMRR (V _V)	$V_{\rm Y}$ CM = +9V10V. $V_{\rm Y}$ = 5V			dB
				dB
CMRR (Vz)	$V_7CM = \pm 10V$ $V_7 = 0V$ $V_7 = 0V$			dB
011111(12)	$v_2 \circ m = \pm 1 \circ v_1, v_3 = \circ v_1, v_4 = \circ v_1$			dB
(Note 1)	1			
	-3dB Vy = 5V Vy < 200mVp p	+25°C	57	MHz
				MHz
				dB
				dB
				ns
'R, 'F	$1 v_{Y} - 20000 v_{Sicp}, v_{X} - 3v, 10 0 0 30 0 pls$	1 720 0	^د ا	
	ME LE3V LE4V LE5V DG DP SF E _N (1kHz) +PSRR -PSRR -PSRR UC VIO VIO VIO CMR (V _X) CMR (V _X)	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c } \mbox{ME} & V_{Y}, V_X = \pm 5V & \pm 25^{\circ}C & \pm 1.5 \\ & \pm 125^{\circ}C, -55^{\circ}C & \pm 3.0 \\ \hline & V_{Y}, V_X = \pm 5V & \pm 125^{\circ}C, -55^{\circ}C & \pm 0.003 \\ \hline & LE3V & V_{Y}, V_X = \pm 3V & \pm 25^{\circ}C & \pm 0.02 \\ \hline & LE4V & V_{Y}, V_X = \pm 4V & \pm 25^{\circ}C & \pm 0.02 \\ \hline & LE5V & V_{Y}, V_X = \pm 4V & \pm 25^{\circ}C & \pm 0.1 \\ \hline & V_{Y}, V_X = \pm 5V & \pm 25^{\circ}C & \pm 0.1 \\ \hline & DG & f = 4.43MHz, V_Y = 300mV_{P,P}, V_X = 5V & \pm 25^{\circ}C & 0.1 \\ \hline & DP & f = 4.43MHz, V_Y = 300mV_{P,P}, V_X = 5V & \pm 25^{\circ}C & 150 \\ \hline & SF & \pm 25^{\circ}C & 5 \\ \hline & E_N (10kHz) & f = 100kHz, V_X = 0V, V_Y = 0V & \pm 25^{\circ}C & 150 \\ \hline & E_N (100kHz) & f = 100kHz, V_X = 0V, V_Y = 0V & \pm 25^{\circ}C & 80 \\ \hline & \pm 125^{\circ}C, -55^{\circ}C & 80 \\ \hline & \pm 125^{\circ}C, -55^{\circ}C & 18 \\ \hline & \pm 125^{\circ}C, -55^{\circ}C & 55 \\ \hline & I_{CC} & V_X, V_Y = 0V & \pm 25^{\circ}C & 18 \\ \hline & \pm 125^{\circ}C, -55^{\circ}C & 18 \\ \hline & \pm 125^{\circ}C, -55^{\circ}C & 18 \\ \hline & 125^{\circ}C, -55^{\circ}C & 18 \\ \hline & 125^{\circ}C, -55^{\circ}C & 18 \\ \hline & 125^{\circ}C, -55^{\circ}C & 112 \\ \hline & V_{IO} & V_Y = \pm 5V & \pm 15V & \pm 125^{\circ}C, -55^{\circ}C & \pm 145 \\ \hline & I_8 & V_{IO}TC & V_Y = 5V & \pm 125^{\circ}C, -55^{\circ}C & \pm 112 \\ \hline & I_10 & V_X = 0V, V_Y = 5V & \pm 125^{\circ}C, -55^{\circ}C & \pm 112 \\ \hline & I_{I0} & V_X = 0V, V_Y = 5V & \pm 125^{\circ}C, -55^{\circ}C & \pm 112 \\ \hline & I_{I0} & V_X = 0V, V_Y = 5V & \pm 125^{\circ}C, -55^{\circ}C & \pm 110 \\ \hline & CMR(V_X) & V_X CM = \pm 10V, V_Y = 5V & \pm 25^{\circ}C & 178 \\ \hline & CMR(V_Y) & V_X CM = \pm 10V, V_X = 5V & \pm 25^{\circ}C & 78 \\ \hline & 1125^{\circ}C, -55^{\circ}C & 78 \\ \hline & 110^{\circ}CMRR(V_Y) & V_YCM = \pm 10V, V_Y = 200mV_{P,P},$

The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as application and design information only. No guarantee is implied.

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at Supply Voltage = $\pm 15V$, R_F = 50 Ω , R_L = 1k Ω , C_L = 20pF, Unless Otherwise Specified.

PARAMETERS	SYMBOL	CONDITIONS	TEMP	TYP	UNITS
Overshoot	+OS, -OS	$V_{Y} = 200 \text{mV} \text{ step}, V_{X} = 5 \text{V}$	+25°C	17	%
			+125°C, -55°C	17	%
Slew Rate	+SR, -SR	$V_{Y} = 10V$ step, $V_{X} = 5V$	+25°C	450	V/µs
			+125°C, -55°C	450	V/µs
Differential Input Resistance	R _{IN} (V _Y)	$V_{Y} = \pm 5V, V_{X} = 0V$	+25°C	1	MΩ
V _X CHARACTERISTICS			•		
Bandwidth	BW (V _X)	-3dB, $V_{Y} = 5V$, $V_{X} \le 200mV_{P-P}$	+25°C	52	MHz
Gain Flatness	GF (V _X)	0.1dB, $V_{Y} = 5V$, $V_{X} \le 200mV_{P-P}$	+25°C	4.0	MHz
AC Feedthrough	V _{ISO} (1MHz)	$f_0 = 1MHz$, $V_X = 200mV_{P-P}$, $V_Y = nulled$ (Note 2)	+25°C	-65	dB
	V _{ISO} (5MHz)	$f_0 = 5MHz$, $V_X = 200mV_{P-P}$, $V_Y = nulled$ (Note 2)	+25°C	-50	dB
Rise & Fall Time	T _R , T _F	$V_{\rm X}$ = 200mV step, $V_{\rm Y}$ = 5V, 10% to 90% pts	+25°C	8	ns
			+125°C, -55°C	8	ns
Overshoot	+OS, -OS	$V_X = 200 \text{mV} \text{ step}, V_Y = 5 \text{V}$	+25°C	17	%
			+125°C, -55°C	17	%
Slew Rate	+SR, -SR	$V_X = 10V$ step, $V_Y = 5V$	+25°C	450	V/µs
			+125°C, -55°C	450	V/µs
Differential Input Resistance	R _{IN} (V _X)	$V_X = \pm 5V, V_Y = 0V$	+25°C	1	MΩ
OUTPUT CHARACTERISTIC	S				
Output Resistance	R _{OUT}	$V_{Y} = \pm 5V$, $V_{X} = 5V$, $R_{L} = 1k\Omega$ to 250Ω	+25°C	0.7	Ω
Output Current	I _{OUT}	$V_{OUT} = 5V, R_L = 250\Omega$	+25°C	±45	mA
			+125°C, -55°C	±45	mA
Output Voltage Swing	+V _{OUT}	$R_L = 250\Omega$	+25°C	±6.05	V
			+125°C, -55°C	±6.05	V

NOTES:

1. V_Z AC characteristics may be implied from V_Y due to the use of V_Z as feedback in the test circuit.

2. Offset voltage applied to minimize feedthrough signal.

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com