

Vishay High Power Products

RoH^S

COMPLIANT

Schottky Rectifier, 2 x 10 A

D²PAK

TO-262

PRODUCT SUMMARY				
I _{F(AV)}	2 x 10 A			
V _R	35/45 V			
I _{RM}	15 mA at 125 °C			

FEATURES

- 150 °C T_J operation
- Center tap D²PAK and TO-262 packages
- Low forward voltage drop
- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Lead (Pb)-free ("PbF" suffix)
- Designed and qualified for Q101 level

DESCRIPTION

This center tap Schottky rectifier has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
I _{F(AV)}	Rectangular waveform (per device)	20	^		
I _{FRM}	T _C = 135 °C (per leg)	20	0 A		
V _{RRM}		35/45	V		
I _{FSM}	$t_p = 5 \ \mu s \ sine$	1060	А		
V _F	10 Apk, T _J = 125 °C	0.57	V		
TJ	Range	- 65 to 150	°C		

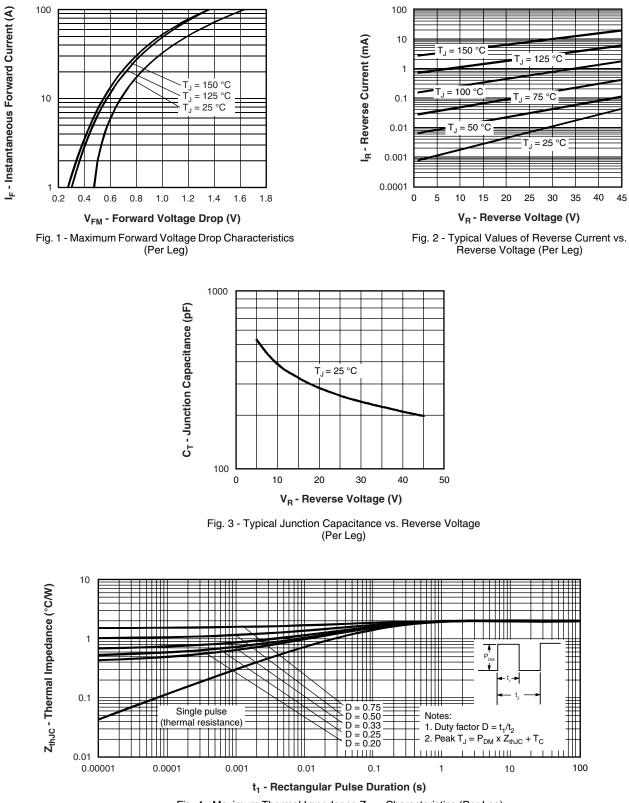
VOLTAGE RATINGS				
PARAMETER	SYMBOL	MBRB2035CTPbF MBR2035CT-1PbF	MBRB2045CTPbF MBR2045CT-1PbF	UNITS
Maximum DC reverse voltage	V _R	35	45	V
Maximum working peak reverse voltage	V _{RWM}	33	45	v

* Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay High Power Products Schottky Rectifier, 2 x 10 A

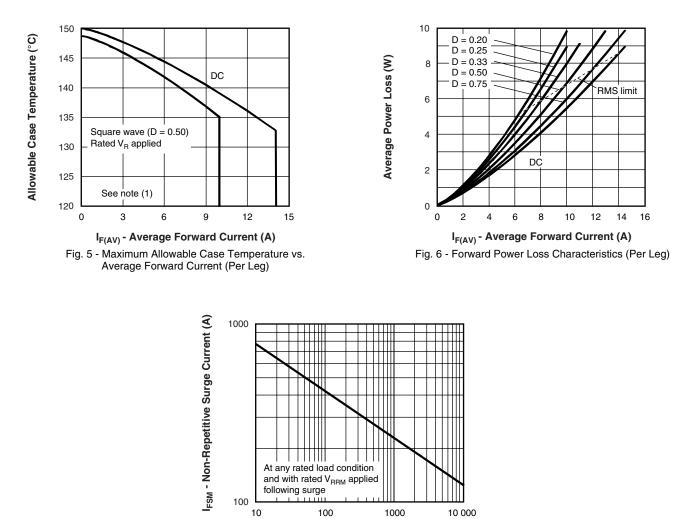
ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average per leg				10	
forward current per device	I _{F(AV)}	$T_{\rm C} = 135$ C, lated $V_{\rm R}$	$T_{C} = 135 \text{ °C}, \text{ rated } V_{R}$		
Peak repetitive forward current per leg	I _{FRM}	Rated V _R , square wave, 20	Rated V _R , square wave, 20 kHz, $T_C = 135 \text{ °C}$		
		5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated V _{RRM} applied	1060	A
Non-repetitive peak surge current	IFSM	Surge applied at rated load conditions halfwave, single phase, 60 Hz		150	150
Non-repetitive avalanche energy per leg	E _{AS}	$T_{J} = 25 \text{ °C}, I_{AS} = 2 \text{ A}, L = 4 \text{ mH}$		8	mJ
Repetitive avalanche current per leg	I _{AR}			А	

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS VALUES		UNITS	
	20 A	T _J = 25 °C	0.84		
Maximum forward voltage drop	V _{FM} ⁽¹⁾	10 A	- T _J = 125 °C	0.57	V
		20 A		0.72	
Maximum instantaneous	I _{BM} ⁽¹⁾	$T_{J} = 25 \text{ °C}$ $T_{J} = 125 \text{ °C}$	Rated DC voltage	0.1	
reverse current	IRM (')			15	mA
Threshold voltage	V _{F(TO)}	$T_{\rm J} = T_{\rm J} \text{ maximum} \qquad \qquad \frac{0.354}{17.6}$		0.354	V
Forward slope resistance	r _t			mΩ	
Maximum junction capacitance	CT	$V_{R} = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz) 25 °C 600		600	pF
Typical series inductance	L _S	Measured from top of terminal to mounting plane 8.0 r		nH	
Maximum voltage rate of change	dV/dt	Rated V _R 10 000 V		V/µs	


Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS					
PARAMETER	IETER SYMBOL TEST CONDITIONS		VALUES	UNITS	
Maximum junction temperature range	TJ		- 65 to 150	°C	
Maximum storage temperature range	T _{Stg}		- 65 to 175		
Maximum thermal resistance, junction to case per leg	R _{thJC}	DC operation	2.0	°C/W	
Typical thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth and greased	0.50		
Approximate weight			2	g	
Approximate weight			0.07	oz.	
Mounting torque		New Job Sector Holes and	6 (5)	kgf ⋅ cm	
Mounting torque maximum		Non-lubricated threads	12 (10)	(lbf · in)	
Marking device		Case style D ² PAK	MBRB20	45CT	
		Case style TO-262	MBR2045CT-1		

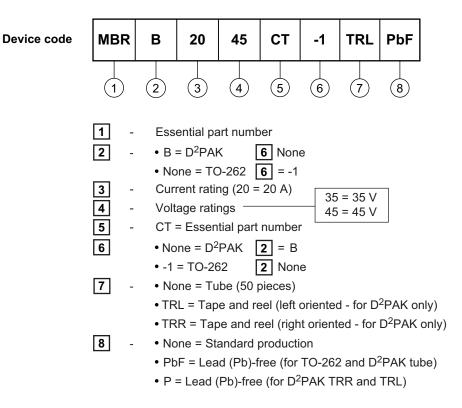

Schottky Rectifier, 2 x 10 A Vishay High Power Products

Document Number: 94305 Revision: 14-Aug-08

Vishay High Power Products Schottky Rectifier, 2 x 10 A

tp - Square Wave Pulse Duration (µs)

Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)


Note

- (1) Formula used: $T_C = T_J (Pd + Pd_{REV}) \times R_{thJC};$ $Pd = Forward power loss = I_{F(AV)} \times V_{FM} \text{ at } (I_{F(AV)}/D) \text{ (see fig. 6)};$ $Pd_{REV} = Inverse power loss = V_{R1} \times I_R (1 D); I_R \text{ at } V_{R1} = Rated V_R$

Schottky Rectifier, 2 x 10 A Vishay High Power Products

ORDERING INFORMATION TABLE

LINKS TO RELATED DOCUMENTS				
Dimensions http://www.vishay.com/doc?95014				
Part marking information	http://www.vishay.com/doc?95008			
Packaging information	http://www.vishay.com/doc?95032			

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.