INTERNATIONAL RECTIFIEF

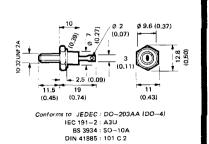
1N3879, 1N3889, 6FL, 12FL, 16FL SERIES

6A, 12A and 16A Fast Recovery Rectifiers

Major Ratings and Characteristics

		1N3879 -1N3883	1N3889 -1N3893	6FL	12FL	16FL	Unit				
IF(AV)†	6*	12"	6	12	16	Α				
	50Hz	72	145	110	145	180	Α				
FSM	60Hz	75*	150*	115	150	190	Α				
l²t	50Hz	26	103	60	103	160	A ² s				
1-6	60Hz	23	94	55	94	150	A ² s				
13, T		363	1452	855	1452	2290	A ² √s				
t _{rr} ra	nge		see table								
VRRN	/ range	50 —	50 - 400* 50 - 1000								
T _J range			-65 to 150								

^{*}JEDEC registered values.


Description

This range of fast recovery diodes is designed for applications in DC power supplies, inverters, converters, choppers, ultrasonic systems and for use as free wheel diodes.

Features

- Short reverse recovery time
- Low stored charge
- Wide current range
- Excellent surge capabilities
- Standard JEDEC types
- Stud cathode and stud anode versions
- Types up to 1000V VRRM
- Fully characterised reverse recovery conditions

20.32 (0.800) MAX. 11.00 (0.433) MAX. ACROSS FLATS

All dimensions in millimetres (inches)

[†] At max. T_C = 100°C.

REVERSE VOLTAGE RATINGS

		VRRM - Max.	VRRM Max. Non-Repetitive Peak	I _R — Max. Reverse Current At Rated V _R			
	_		Repetitive Peak Reverse Voltage	Reverse Voltage tp ≤ 5 ms	T _J = 25°C	Tj = 100°C	T _J = 150°C
	Part Number	υ ω	V	V	mA	mA	mA
	1N3879 1N3880 1N3881 1N3882 1N3883		50 100 200 300 400	75 150 250 350 450	0.015* 0.015* 0.015* 0.015* 0.015*	1.0* 1.0* 1.0* 1.0*	3.0* 3.0* 3.0* 3.0* 3.0*
	1N3889 1N3890 1N3891 1N3892 1N3893		50 100 200 300 400	75 150 250 350 45 0	0.025* 0.025* 0.025* 0.025* 0.025*	3.0* 3.0* 3.0* 3.0* 3.0*	5.0* 5.0* 5.0* 5.0* 5.0*
**6FL5S02 6FL10S02 6FL20S02 6FL40S02 6FL60S02	6FL5S05 6FL10S05 6FL2OS05 6FL4OS05 6FL6OS05 6FL8OS05 6FL8OS05	6FL5S10 6FL10S10 6FL20S10 6FL40S10 6FL60S10 6FL80S10 6FL10OS10	50 100 200 400 600 800 1000	75 150 275 500 725 950 1250	0.050 0.050 0.050 0.050 0.050 0.050 0.050	- - - -	6.0 6.0 6.0 6.0 6.0 6.0 6.0
**12FL5S02 12FL10S02 12FL20S02 12FL40S02 12FL60S02	12FL5S05 12FL10S05 12FL20S05 12FL40S05 12FL60S05 12FL80S05 12FL80S05 12FL100S05	12FL5S10 12FL10S10 12FL20S10 12FL40S10 12FL60S10 12FL60S10 12FL80S10 12FL100S10	50 100 200 400 600 800 1000	75 150 275 500 725 950 1250	0.050 0.050 0.050 0.050 0.050 0.050 0.050	- - - - -	6.0 6.0 6.0 6.0 6.0 6.0
**16FL5S02 16FL10S02 16FL20S02 16FL40S02 16FL60S02	16FL6S05 16FL10S05 16FL20S05 16FL40S05 16FL60S05 16FL80S05 16FL100S05	16FL5510 16FL10S10 16FL20S10 16FL40S10 16FL60S10 16FL80S10 16FL100S10	50 100 200 400 600 800 1000	75 150 275 500 725 950 1250	0.050 0.050 0.050 0.050 0.050 0.050 0.050		6.0 6.0 6.0 6.0 6.0 6.0 6.0

DEVERSE RECOVERY CHARACTERISTICS

ELECTRICAL SPECIFICATIONS

Max. peak forward voltage

				6FL		12FL		16F L						
		1N3879 - 1N3883	1N3889- 1N3893	502	S05	S1 <u>0</u>	S02	S05	S10	502	S05	S10		
t _{rr}	Max. reverse re- covery time	150	150	110	285	490	100	250	430	90	225	390	115	$T_J = 25^{\circ}C$, $I_F = 1A$ to $V_R = 30V$ $dI_{F/dt} = 100 A/\mu s$
		300°	300*	200	500	1000	200	500	1000	200	500	1000	nş	T _J = 25 ⁰ C, dI _{F/dt} = 25 A/μs,
RM(RE	 C) Max. peak re- covery current 	4*	5*	-		-	-		-	_	_	1	-	IFM = π x rated F(AV)
QRR	Max. reverse re- covered charge	400	350	230	1700	5000	200	1300	3800	150	1100	3000	nC	$T_J = 25^{\circ}C$, $I_F = 1A$ to $V_R = 30V$ $dI_{F/dt} = 100 A/\mu s$
		400	400	200	1200	5000	200	1200	5000	200	1200	5000	nC	$T_J = 25^{\circ}C$, $d F/dt = 25 A/\mu s$ $ F_M = \pi \times reted F(AV)$

		1N3879 1N3883	6FL	1N3889- 1N3893 12FL	16FL	Unit	Conditions	
	FORWARD CONDUCTION							
IF(AV)	Max. average forward current	6*	6	12*	16	Α	1800 conduction, half sine wave, T	C = 100°C
FIRMS	Max, r,m.s. forward current	9.5	9.5	19	25	Α		
¹ FSM	Max. peak one-cycle non- repetitive forward current	72	110	145	180	_	t = 10 ms With rated VRRM	
		75*	115	150*	190			
		85	130	170	215	7	t = 10 ms VBBM = 0	nitial Tj = 150°C
		90	135	180	225	1	t = 8.3 ms	
12t	Max, 12t for fusing	26	60	103	160		t = 10 ms With rated VRRM	
	=	23	55	94	150	A ² s		Initial T _J = 150°C
	Max. I2t for individual	36	86	145	230	A2s	t = 10 ms VRRM = 0	111111111111111111111111111111111111111
	device fusing	33	78	130	210		t = 8.3 ms	
12√t	Max. 12 \(\sqrt{t} \) for individual (s) device fusing	363	856	1452	2290	1 ² √s	t = 0.1 to 10 ms	

1.5

VFM

1.4

1.5*

 $T_J = 25^{\circ}C$, $I_F = rated I_{F(AV)}$ (D.C.)

 $T_C = 100^{\circ}$ C, $I_{FM} = \pi \times \text{rated } I_{F(AV)}$

1.4*

1.5*

1.5

^{*}JEDEC registered value
*Suffix ''\$02' may be omitted, i.e., 12FL10 implies 12FL10\$02, 12FL860 implies 12FL860\$02.

¹⁾ Types listed are cathode to case; for anode-to-case include "R" in code, i.e., 1N3879R, 6FLR20S10, 16FLR40S02.

① $I_{R(AV)}$ @ rated $I_{F(AV)}$ and V_{RRM} , and T_{C} = 100°C. ① I_{RM} @ rated V_{RRM} and T_{J} = 150°C. ② I_{C}^{2} for time t_{x} = I_{C}^{2} \sqrt{x}

When these devices are ordered without a suffix, e.g., 40HFL, the order will be filled with devices that meet the S02 specification.

Thermal and mechanical specifications

	-		1N3879 -1N3883 6FL	1N3889 -1N3893 12FL	16FL	Units	Conditions
Т	Junction operating temperature range		1	-65 to 150		°C	
T _{stg}	Storage temperature range			-65 to 175		°C	
A _{thJC}	Maximum internal ther junction to case	mai resistance,	2.5	2.0	1.6	deg C/W	DC operation
R _{thCS}	Maximum thermal resis heatsink	tance, case to		0.5		deg C/W	Mounting surface flat, smooth an greased.
Т	Mounting torque	to nut		10.5		lbf.in	Lubricated threads
	±.10%			0.12		kgf.m	(Non-lubricated threads)
				1.2		Nm	• !
		to device		11.5 (13.5)		lbf,in	
				0.13 (0.155)	kgf.m]
				1.3 (1.35)		Nm	
wt	Approximate weight		7		9		
			0.25		OZ		
	Case style	D	0-203AA (DO	-41		JEDEC	

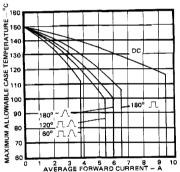


Fig. 1 — Average Forward Current Vs. Maximum Allowable Case Temperature,

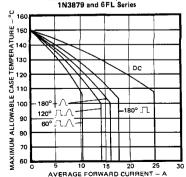


Fig. 3 — Average Forward Current Vs. Maximum Allowable Case Temperature, 16FL Series

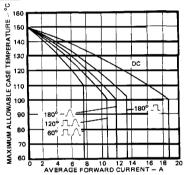
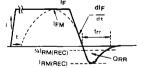
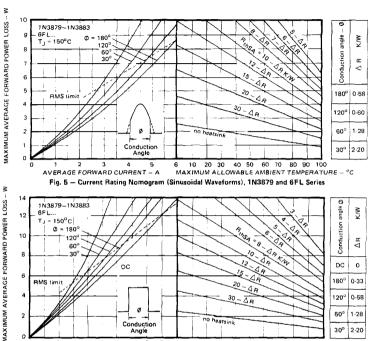



Fig. 2 — Average Forward Current Vs. Maximum Allowable Case Temperature, 1N3889 and 12FL Series

IF, IFM - Peak forward current prior to commutation


-dIF/rdt - Rate of fall of forward current

RM(REC)= Peak reverse recovery current

t_{rr} = Reverse recovery time

QRR = Reverse recovered charge

Fig. 4 - Reverse Recovery Time Test Waveform

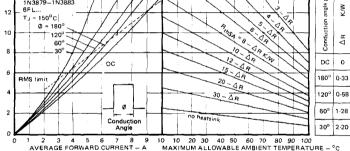


Fig. 6 - Current Rating Nomogram (Rectangular Waveforms), 1N3879 and 6FL Series

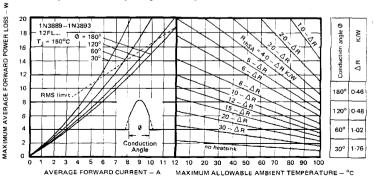


Fig. 7 - Current Rating Nomogram (Sinusoidal Waveforms), 1N3889 and 12FL Series

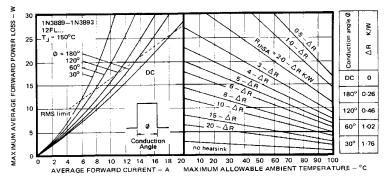


Fig. 8 - Current Rating Nomogram (Rectangular Waveforms), 1N3889 and 12FL Series

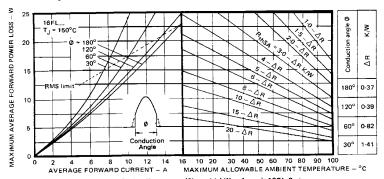


Fig. 9 - Current Rating Nomogram (Sinusoidal Waveforms), 16FL Series

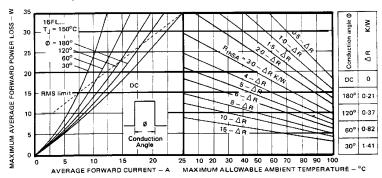


Fig. 10 - Current Rating Nomogram (Rectangular Waveforms), 16FL Series

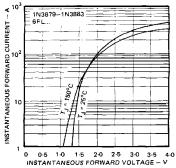


Fig. 11 - Maximum Forward Voltage Vs. Forward Current, 1N3879 and 6FL Series

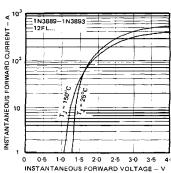


Fig. 13 — Maximum Forward Voltage Vs. Forward
Current, 1N3889 and 12FL Series

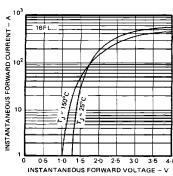


Fig. 15 - Maximum Forward Voltage Vs. Forward Current, 16FL Series

Fig. 12 ~ Maximum High Level Forward Power Loss Vs. Average Forward Current, 1N3879 and 6FL Series

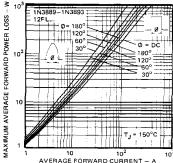


Fig. 14 — Maximum High Level Forward Power Loss Vs. Average Forward Current, 1N3889 and 12FL Series

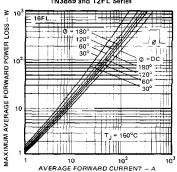


Fig. 16 - Maximum High Level Forward Power Loss Vs. Average Forward Current, 16FL Series

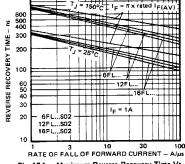


Fig. 17A - Maximum Reverse Recovery Time Vs. Rate of Fall of Forward Current, All Series ___S02

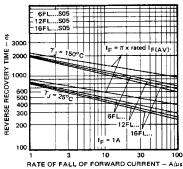
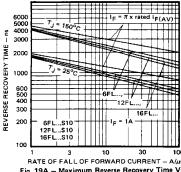



Fig. 18A - Maximum Reverse Recovery Time Vs. Rate of Fall of Forward Current, All Series ___S05

RATE OF FALL OF FORWARD CURRENT - A/us Fig. 19A - Maximum Reverse Recovery Time Vs. Rate of Fall of Forward Current, All Series __S10

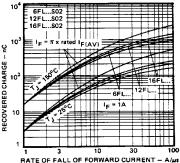


Fig. 17B - Maximum Recovered Charge Vs. Rate of Fall of Forward Current, All Series ___S02

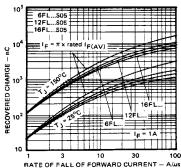
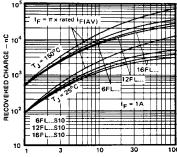



Fig. 18B - Maximum Recovered Charge Vs. Rate of Fall of Forward Current, All Series ___S05

RATE OF FALL OF FORWARD CURRENT - A/us Fig. 19B - Maximum Recovered Charge Vs. Rate of Fall of Forward Current, All Series ___S10

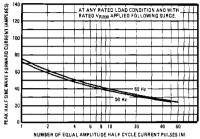


Fig. 20 - Maximum Non-Repetitive Surge Current Vs. Number of Current Pulses, 1N3879 Series

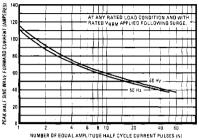


Fig. 21 - Maximum Non-Repetitive Surge Current Vs. Number of Current Pulses, 6FL Series

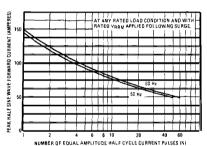


Fig. 22 - Maximum Non-Repetitive Surge Current Vs. Number of Current Pulses, 1N3889 and 12FL Series

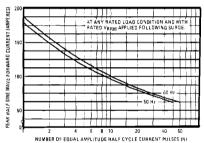


Fig. 23 - Maximum Non-Repetitive Surge Current Vs. Number of Current Pulses, 16FL Series

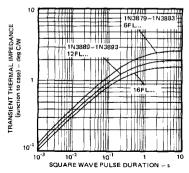


Fig. 24 - Maximum Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration, All Series.