INTEGRATED CIRCUITS

DATA SHEET

UMA1005TDual low-power frequency synthesizer

Preliminary specification Supersedes data of September 1992 File under Integrated Circuits, IC03 November 1994

Philips Semiconductors

PHILIPS

UMA1005T

FEATURES

- · Fast locking by 'Fractional-N' divider
- · Auxiliary synthesizer
- Digital phase comparator with proportional and integral charge pump output
- · High-speed serial input
- Low-power consumption
- Programmable charge pump currents
- Supply voltage range 2.9 to 5.5 V.

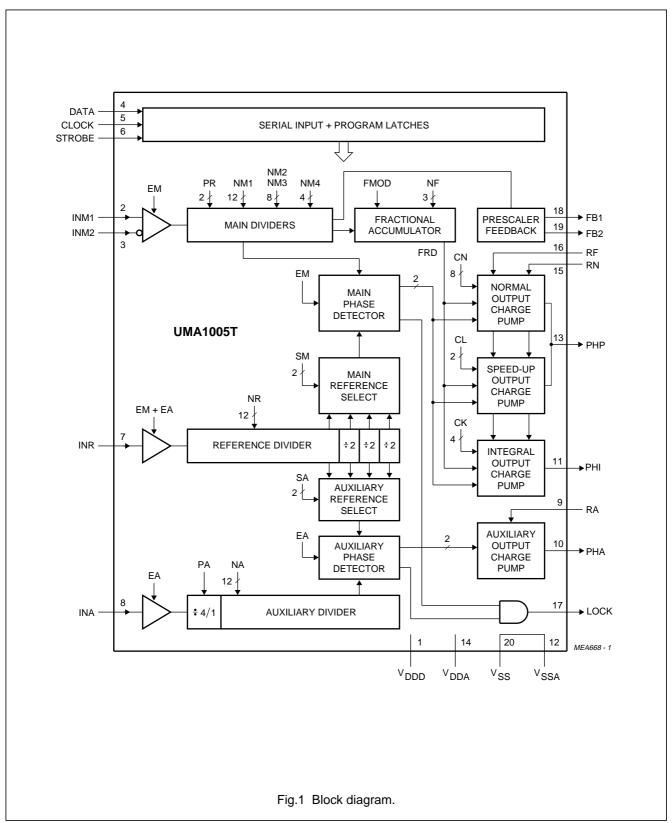
APPLICATIONS

- · Mobile telephony
- Portable battery-powered radio equipment.

GENERAL DESCRIPTION

The UMA1005T is a low-power, high-performance dual frequency synthesizer fabricated in CMOS technology. Fractional-N division with selectable modulo 5 or 8 is implemented in the main synthesizer.

The detectors and charge pumps are designated to achieve 10 to 5000 kHz channel spacing using fractional-N decreases the channel spacing by a factor 5 or 8. Together with an external standard 2, 3 or 4 ratio prescaler the main synthesizer can operate in the GHz frequency range.


Channel selection and programming is realized by a high-speed 3-wire serial interface.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE					
I TPE NOWIBER	NAME	NAME DESCRIPTION VERSION				
UMA1005T	SSOP20	plastic shrink small outline package; 20 leads; body width 4.4 mm	SOT266-1			

UMA1005T

BLOCK DIAGRAM

UMA1005T

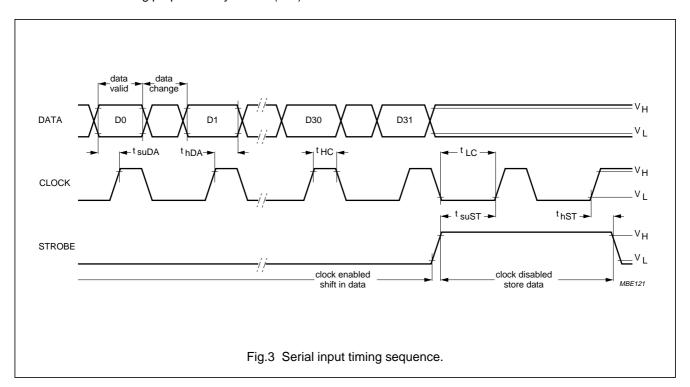
PINNING

SYMBOL	PIN	DESCRIPTION
	1	
V _{DDD}	•	digital supply voltage
INM1	2	main divider positive input; rising edge active
INM2	3	main divider negative input; falling edge active
DATA	4	serial data input line
CLOCK	5	serial clock input line
STROBE	6	serial strobe input line
INR	7	reference divider input line; rising edge active
INA	8	auxiliary divider input line; rising edge active
RA	9	auxiliary current setting; resistor to V _{SS}
PHA	10	auxiliary phase detector output
PHI	11	integral phase detector output
V _{SSA}	12	analog ground; internally connected to V_{SS}
PHP	13	proportional phase detector output
V_{DDA}	14	analog supply voltage
RN	15	main current setting input; resistor to V _{SS}
RF	16	fractional compensation current setting input; resistor to V _{SS}
LOCK	17	lock detector output
FB1	18	feedback output 1 for prescaler modulus control
FB2	19	feedback output 2 for prescaler modulus control
V _{SS}	20	common ground connection

UMA1005T

FUNCTIONAL DESCRIPTION

Serial programming input


The serial input is a 3-wire input (CLOCK, STROBE and DATA) to program all counter ratios, DACs, selection and enable bits. The programming data is structured into 24 or 32-bit words. Each word includes 1 or 4 address bits. Figure 3 shows the timing diagram of the serial input. When the STROBE = LOW, the clock driver is enabled and on the positive edges of the CLOCK the signal on the DATA input is clocked into a shift register. When the STROBE = HIGH, the clock is disabled and the data in the shift register remains stable. Depending on the 1 or 4 address bits the data is latched into different working registers or temporary registers. In order to fully program the synthesizer, 4 words must be sent:

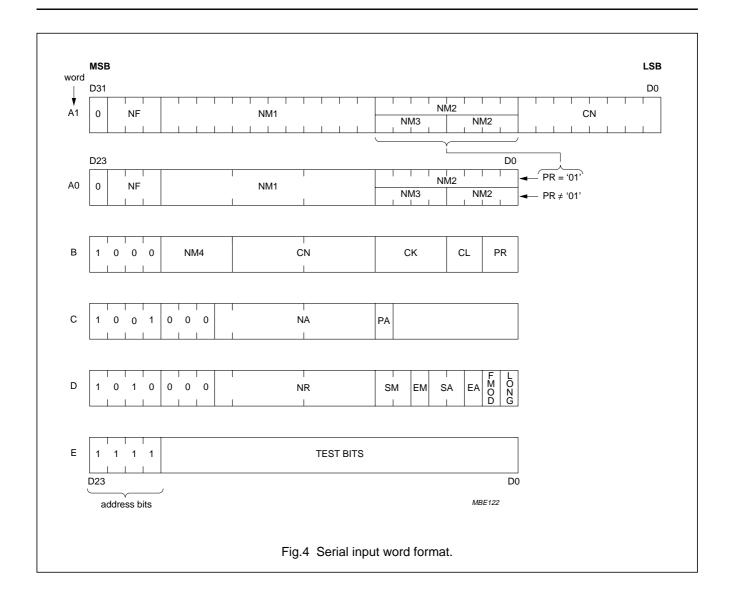

- 1. D word.
- 2. C word.
- 3. B word.
- 4. A word.

Figure 4 shows the format and the contents of each word. The E word is for testing purposes only. The E (test) word

is reset when programming the D word. The data for NM4, CN and PR is stored by the B word temporary registers. When the A word is loaded, the data of these temporary registers is loaded together with the A word into the work registers which avoids false temporary main divider input. CN is only loaded from the temporary registers when a short 24-bit A0 word is used. CN will be directly loaded by programming a long 32-bit A1 word. The flag LONG in the D word determines whether A0 (LONG = 0) or A1 (LONG = 1) format is applicable.

The A word contains new data for the main divider. The A word is loaded only when a main divider synchronization signal is also active, to avoid phase jumps when reprogramming the main divider. The synchronization signal is generated by the main divider. It disables the loading of the A word each main divider cycle during maximum 300 main divider input cycles. To make sure that the A word will be correctly loaded the STROBE signal must be HIGH for at least 300 main divider input cycles. Programming the A word also means that the main charge pumps on outputs PHP and PHI are set into the speed-up mode as long as the STROBE remains HIGH.

Dual low-power frequency synthesizer

UMA1005T

Table 1 Description of symbols used in Fig.4

SYMBOL	BITS ⁽¹⁾	FUNCTION
NM1	12	number of main divider cycles when prescaler is programmed in ratio R1 (FB1 = 1; FB2 = 0); note 2
NM2	8 if PR = 01	number of main divider cycles when prescaler is programmed in ratio
	4 if PR ≠ 01	R2 (FB1 = 0; FB2 = 0); note 2
NM3	4 if PR = 1X	number of main divider cycles when prescaler is programmed in ratio R3 (FB1 = 0; FB2 = 1); note 2
NM4	4 if PR = 11 or 00	number of main divider cycles when prescaler is programmed in ratio R4 (FB1 = 1; FB2 = 1); note 2
PR	2	prescaler type in use:
		PR = 01; modulus 2 prescaler
		PR = 10; modulus 3 prescaler
		PR = 11; modulus 4 prescaler
		PR = 00; modulus 4 prescaler (inhibit ratio 3)
NF	3	fractional-N increment
FMOD	1	fraction-N modulus selection flag:
		1 = modulo 8
		0 = modulo 5
LONG	1	A word format selection flag:
		0 = 24-bit A0 format
		1 = 32-bit A1 format
CN	8	binary current setting factor for main charge pumps
CL	2	binary acceleration factor for proportional charge pump current
CK	4	binary acceleration factor for integral charge pump current
EM	1	main divider enable flag
EA	1	auxiliary divider enable flag
SM	2	reference select for main phase detector
SA	2	reference select for auxiliary phase detector
NR	9	reference divider ratio
NA	9	auxiliary divider ratio
PA	1	auxiliary prescaler mode:
		PA = 0; divide-by-4
		PA = 1; divide-by-1

Notes

- 1. X = don't care.
- 2. Not including reset cycles and fractional-N effects.

Auxiliary variable divider

The input signal on INA is amplified to a logic level by a single ended input buffer, which accepts LOW level AC coupled input signals. This input stage is enabled if the serial control bit EA = 1. Disabling means that all currents

in the input stage are switched off. A fixed divide by 4 is enabled if PA = 0. This divider has been optimized to accept a high-frequency (90 MHz at a supply voltage range of 4.75 to 5.5 V) input signal. If PA = 1 this divider is disabled and the input signal is fed directly to the second

Dual low-power frequency synthesizer

UMA1005T

stage, which is a 9-bit programmable divider with standard input frequency (30 MHz). The division ratio can be expressed as:

If PA = 0; $N = 4 \times NA$.

If PA = 1; N = NA; with NA = 4 to 511.


Reference variable divider (Fig.5)

The input signal on INR is amplified to a logic level by a single ended input buffer, which accepts LOW level AC coupled input signals. This input stage is enabled by the OR function of the serial input bits EA and EM. Disabling means that all currents in the input stage are switched off. The reference divider consists of a programmable divider by NR (NR = 4 to 511) followed by a 3-bit binary counter. The 2-bit SM determines which of the 4 output pulses is selected as main phase detector input. The 2-bit SA determines the selection of the auxiliary phase detector signal. To obtain the best time spacing for the main and

auxiliary reference signals, the opposite output will be used for the auxiliary phase detector, reducing the possibility of unwanted interactions. For this reason the programmable divider produces a symmetric output pulse for even ratios and a 1 input cycle asymmetric pulse for odd ratios.

Main variable divider

The input signals on INM1 and INM2 are amplified to a logic level by a balanced input comparator giving a common mode rejection. This input stage is enabled when serial control bit EM = 1. Disabling means that all currents in the comparator are switched off. The main divider is built-up by a 12-bit counter plus a sign bit. Depending on the serial input values of NM1, NM2, NM3, NM4 and the prescaler select PR, the counter will select a prescaler ratio during a number of input cycles in accordance with the information in Table 2.

Dual low-power frequency synthesizer

UMA1005T

Table 2 Selection of prescaler ratio

COUNTER STATUS	FB1	FB2	PRESCALER RATIO(1)
(-NM1 – 1) to 0	1	0	R1
(-NM1 – 1) to –1	1	0	R1 ⁽²⁾
1 to NM2	0	0	R2
0 to NM2	0	0	R2 ⁽²⁾
0 to NM3	0	1	R3; if PR = 1X
0 to NM4	1	1	R4; if PR = 11 or 00

Notes

- 1. X = don't care.
- 2. When the fractional accumulator overflows.

The total division ratio from prescaler to the phase detector expressions are given in Table 3.

 Table 3
 Total division from prescaler to phase detector expressions

CONDITION	EXPRESSION		
PR = 01	$N = (NM1 + 2) \times R1 + NM2 \times R2$		
	$N' = (NM1 + 1) \times R1 + (NM2 + 1) \times R2$; note 1		
PR = 10	$N = (NM1 + 2) \times R1 + NM2 \times R2 + (NM3 + 1) \times R3$		
	$N' = (NM1 + 1) \times R1 + (NM2 + 1) \times R2 + (NM3 + 1) \times R3$; note 1		
PR = 11	$N = (NM1 + 2) \times R1 + NM2 \times R2 + (NM3 + 1) \times R3 + (NM4 + 1) \times R4$		
	$N' = (NM1 + 1) \times R1 + (NM2 + 1) \times R2 + (NM3 + 1) \times R3 + (NM4 + 1) \times R4$; note 1		
$PR = 00$ $N = (NM1 + 2) \times R1 + NM2 \times R2 + (NM4 + 1) \times R4$			
	$N' = (NM1 + 1) \times R1 + (NM2 + 1) \times R2 + (NM4 + 1) \times R4$; note 1		

Note

1. When the fractional accumulator overflows.

When the prescaler ratio is R2 = R1 + 1 the total division ratio N' = N + 1.

Table 4 Modulus prescaler

PR	MODULUS PRESCALER		BIT CA	PACITY	
PK PK	MODULUS PRESCALER	NM1	NM2	NM3	NM4
00	4	12	4	_	4
01	2	12	8	_	_
10	3	12	4	4	_
11	4	12	4	4	4

UMA1005T

The loading of the work registers NM1, NM2, NM3, NM4 and PR is synchronized with the state of the main counter, to avoid extra phase disturbance when switching over to another main divider ratio as is explained in Section "Serial programming input".

At the completion of a main divider cycle, a main divider output pulse is generated which will drive the main phase comparator. Also the fractional accumulator is incremented with NF. The accumulator works modulo Q. Q is preset by the serial control bit FMOD to 8 when FMOD = 1. Each time the accumulator overflows, the feedback to the prescaler will select one cycle using prescaler ratio R2 instead of R1.

As shown above, this will increase the overall division ratio by 1 if R2 = R1 + 1. The mean division ratio over Q main

divider cycles will then be: $NQ = N + \frac{NF}{Q}$

Programming a fraction means the prescaler with main divider will divide by N or N + 1.

The output of the main divider will be modulated with a fractional phase ripple. This phase ripple is proportional to the contents of the fractional accumulator FRD, which is used for fractional current compensation.

Phase detectors (Fig.6)

The auxiliary and main phase detectors are a 2 D-type flip-flop phase and frequency detector. The flip-flops are set by the negative edges of output signals of the dividers. The reset inputs are activated when both flip-flops have been set and when the reset enable signal is active (LOW). Around zero phase error this has the effect of delaying the reset for 1 reference input cycle. This avoids non-linearity or dead band around zero phase error. The flip-flops drive on-chip charge pumps. A pull-up current from the charge pump indicates that the VCO frequency shall be increased while a pull-down pulse indicates that the VCO frequency shall be decreased.

Current settings

The UMA1005T has 3 current setting pins RA, RN and RF. The active charge pump currents and the fractional compensation currents are linearly dependent on the current in the current setting pins. This current I_R can be set by an external resistor to be connected between the current setting pin (pin 9) and V_{SS} . The typical value for R (current setting resistor) can be calculated with the

equation:

$$R = \frac{(V_{DDA} - 0.5) - 237\sqrt{I_{R}}}{I_{P}}$$

The current can be set to zero by connecting the corresponding pin to V_{DDA} .

Auxiliary output charge pumps

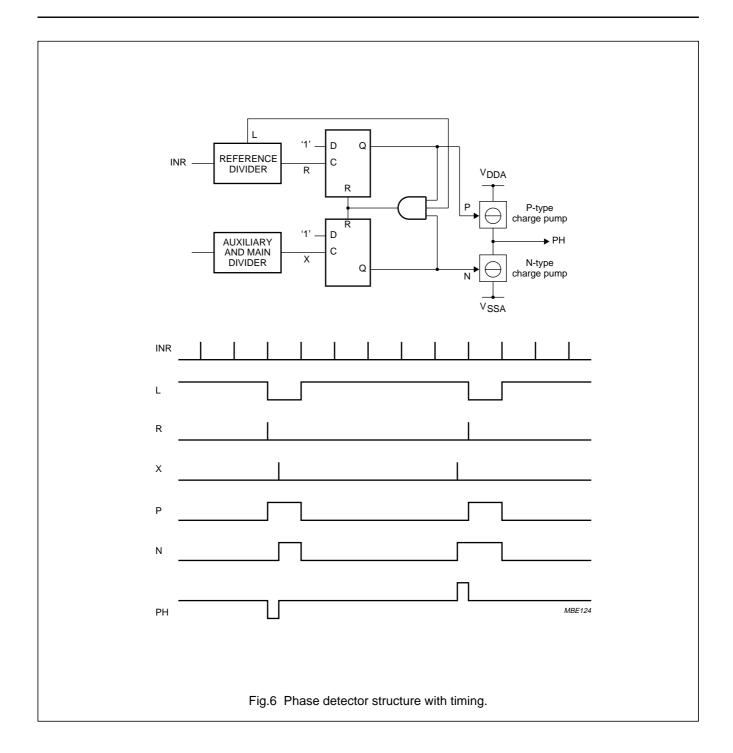
The auxiliary charge pumps on pin PHA are driven by the auxiliary phase detector and the current value is determined by the external resistor (R_{ext}) at pin RA. The active charge pump current is typically: $|I_{PHA}| = 8 \times I_{RA}$.

Main output charge pumps and fractional compensation currents

The main charge pumps on pins PHP and PHI are driven by the main phase detector and the current value is determined by the current at pin RN and via a number of DACs which are driven by registers of the serial input. The fractional compensation current is determined by the current at pin RF, the contents of the fractional accumulator FRD and a number of DACs driven by registers from the serial input. The timing for the fractional compensation is derived from the reference divider. The current is on during 1 input reference cycle before and 1 cycle after the output signal to the phase comparator. Figure 7 shows the waveforms for a typical case.

When the serial input A word is loaded, the output circuits are in the 'speed-up mode' as long as the STROBE is HIGH, else the 'normal mode' is active.

NORMAL MODE


In the 'normal mode' the current output at PHP is: $I_{PHP(N)} = I_{pump10} + I_{comp10}$.

Where:

$$|I_{pump10}| = \frac{CN \times I_{RN}}{29}$$
; charge pump current.

$$I_{comp10} = \frac{FRD \times I_{RF}}{128}$$
; fractional compensation current.

In 'normal mode' the current at output PHI is zero.

UMA1005T

SPEED-UP MODE

In 'speed-up mode' the current in output PHP is:

 $I_{PHP(S)} = I_{PHP(N)} + I_{pump11} + I_{comp11}$.

Where:

 $I_{pump11} = I_{pump10} \times 2^{(CL+1)}$; charge pump current.

 $I_{comp11} = I_{comp10} \times 2^{(CL + 1)}$; fractional compensation current.

In 'speed-up mode' the current in output PHI is:

 $I_{PHI(S)} = I_{pump21} + I_{comp21}$.

Where:

 $I_{pump21} = I_{pump11} \times CK$; charge pump current.

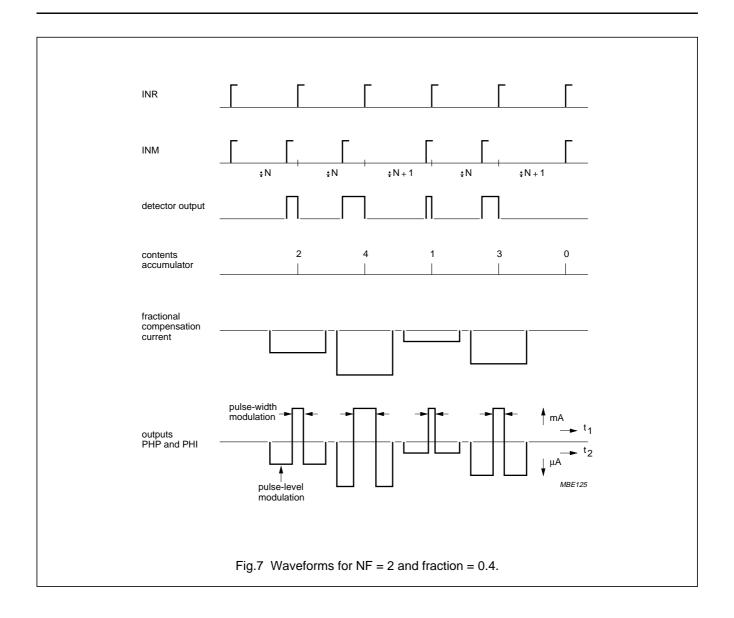
 $I_{comp21} = I_{comp11} \times CK$; fractional compensation current.

Figure 7 shows that for a proper fractional compensation the area of the fractional compensation current pulse must be equal to the area of the charge pump ripple output. This means that the current setting on the inputs RN and RF

must have following ratio:
$$\frac{I_{RN}}{I_{RF}} = \frac{29 \times Q \times f_{VCO}}{64 \times CN \times f_{i \, (max) \, 2}}.$$

Where:

Q = fractional-N modulus.


 $f_{VCO} = f_{i(max)1} \times N$; input frequency of the prescaler.

 $f_{i(max)1}$ = maximum input frequency of the main divider (pins INM1 and INM2).

 $f_{i(max)2}$ = maximum input frequency of the reference divider (pin INR).

Lock detect

The output LOCK is HIGH when the auxiliary phase detector and the main phase detector indicate a lock condition. The lock condition is defined as a phase difference of less than ± 1 cycle on the reference input INR. The lock condition is also fulfilled when the relative counter is disabled (EM = 0 or EA = 0 respectively) for the main or auxiliary counter respectively.

UMA1005T

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DDD}	digital supply voltage	-0.5	6.5	V
V_{DDA}	analog supply voltage	-0.5	6.5	V
VI	voltage on any input	-0.5	$V_{DD} + 0.5$	V
In	DC current into any input or output	-10	+10	mA
P _{tot}	total power dissipation	_	25	mW
T _{stg}	storage temperature	-65	+150	°C
T _{amb}	operating ambient temperature	-40	+70	°C

DC CHARACTERISTICS

 V_{DDD} = V_{DDA} = 2.9 to 5.5 V; T_{amb} = -40 to +70 °C; unless otherwise specified.

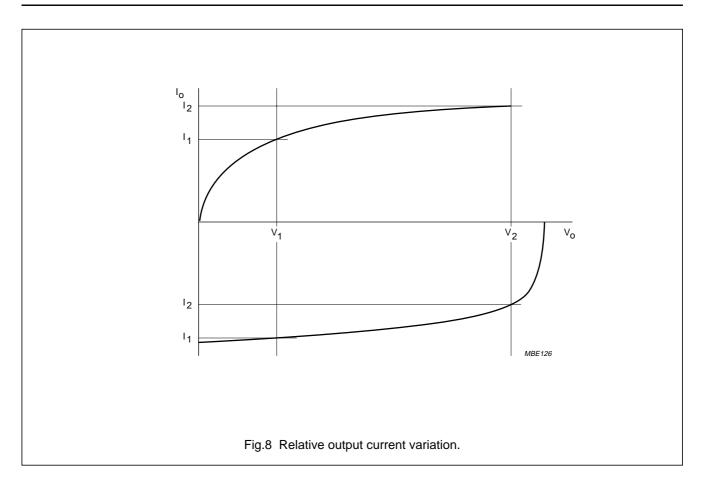
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply		-	•	'	'	
I _{DDD(stb)}	digital standby supply current	EM = EA = 0; inputs on V _{DD} or 0	_	_	5	μΑ
I _{DDD}	operating digital supply current	note 1	_	_	5	mA
I _{DDA(stb)}	analog standby supply current	$V_{RA} = V_{DDA}; V_{RF} = V_{DDA};$ $V_{RN} = V_{DDA}$	_	_	10	μА
I _{DDA}	operating analog supply current	note 1	_	_	0.6	mA
Digital inp	outs CLK, DATA and STROE	BE				
V _{IH}	HIGH level input voltage		0.7V _{DD}	_	V_{DD}	V
V _{IL}	LOW level input voltage		0	_	0.3V _{DD}	V
Digital out	puts FB1, FB2 and LOCK					
V _{OL}	LOW level output voltage	I _O = 2 mA; note 2	_	_	0.4	V
V _{OH}	HIGH level output voltage	$I_O = -2$ mA; note 2	V _{DD} - 0.4	_	_	V
Charge pu	ımp PHA			•		
I _{PHA}	output current	$I_{RA} = -62.5 \mu\text{A};$ $V_{PHA} = \frac{1}{2} V_{DD}; \text{ note } 2$	400	500	600	μΑ
		$I_{RA} = -25 \mu A; V_{PHA} = \frac{1}{2} V_{DD}$	160	200	240	μΑ
$\frac{\Delta I_{PHA}}{\left I_{PHA}\right }$	relative output current variation	$I_{RA} = -62.5 \mu\text{A};$ notes 2 and 3	_	2	6	%
$\Delta I_{PHA\;M}$	output current matching	$I_{RA} = -62.5 \mu A;$ $V_{PHA} = \frac{1}{2} V_{DD};$ notes 2 and 4	-	_	±50	μΑ

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Charge pu	ımp PHP; normal mode (no	otes 5, 6 and 7); V _{RF} = V _{DD}	'			<u>'</u>
I _{PHP(N)}	output current	$I_{RN} = -62.5 \mu\text{A};$ $V_{PHP} = \frac{1}{2} V_{DD}; \text{ note } 2$	440	550	660	μΑ
		$I_{RN} = -25 \mu A; V_{PHP} = \frac{1}{2} V_{DD}$	175	220	265	μΑ
$\Delta I_{PHP(N)}$	relative output current variation	$I_{RN} = -62.5 \mu\text{A}$; note 3	_	2	6	%
$\Delta I_{\text{PHP(N M)}}$	output current matching	$I_{RN} = -62.5 \mu A;$ $V_{PHP} = \frac{1}{2} V_{DD};$ notes 2 and 4	_	_	±50	μΑ
Charge pu	ımp PHP; speed-up mode	(notes 5, 6 and 8); V _{RF} = V _{DD}		•	•	•
I _{PHP(S)}	output current	$I_{RN} = -62.5 \mu\text{A};$ $V_{PHP} = \frac{1}{2} V_{DD}; \text{ note } 2$	2.20	2.75	3.30	mA
		$I_{RN} = -25 \mu\text{A}; V_{PHP} = \frac{1}{2} V_{DD}$	0.85	1.1	1.35	mA
$\Delta I_{PHP(S)}$	relative output current variation	$I_{RN} = -62.5 \mu\text{A};$ notes 2 and 3	_	2	6	%
$\Delta I_{\text{PHP(S M)}}$	output current matching	$I_{RN} = -62.5 \mu A;$ $V_{PHP} = \frac{1}{2} V_{DD};$ notes 2 and 4	_	_	±250	μΑ
Charge pu	ımp PHI; speed-up mode (notes 5, 6 and 9); V _{RF} = V _{DD}	'			'
I _{PHI(S)}	output current	$I_{RN} = -62.5 \mu\text{A};$ $V_{PHI} = \frac{1}{2}V_{DD}; \text{ note } 2$	4.4	5.5	6.6	mA
		$I_{RN} = -25 \mu A; V_{PHI} = \frac{1}{2} V_{DD}$	1.75	2.2	2.65	mA
$\Delta I_{PHI(S)}$	relative output current variation	$I_{RN} = -62.5 \mu\text{A};$ notes 2 and 3	_	2	8	%
ΔI _{PHI(S M)}	output current matching	$I_{RN} = -62.5 \mu\text{A};$ $V_{PHI} = \frac{1}{2} V_{DD};$ notes 2 and 4	_	_	±500	μΑ
Fractional	compensation PHP; norm	al mode (notes 5, 10 and 11); \	V _{RN} = V _{DD} ; \	$I_{PHP} = \frac{1}{2}V_{E}$	DD .	•
I _{PHP(F N)}	fractional compensation output current PHP as a function of FRD	I _{RF} = -62.5 μA; FRD = 1 to 7; notes 2 and 12	-675	-500	-325	nA
		$I_{RF} = -25 \mu A$; FRD = 1 to 7; note 12	-270	-200	-130	nA
Fractional	compensation PHP; spee	d-up mode (notes 5, 11 and 13); V _{RN} = V _{DD}	$V_{PHP} = \frac{1}{2}$	V _{DD}	•
I _{PHP(FS)}	fractional compensation output current PHP as a function of FRD	I _{RN} = -62.5 μA; FRD = 1 to 7; notes 2 and 12	-3.35	-2.50	-1.65	μΑ
		$I_{RN} = -25 \mu A$; FRD = 1 to 7; note 12	-1.35	-1.00	-0.65	μΑ

UMA1005T

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Fractional	compensation PHI; speed-t	up mode (notes 5, 11 and 14);	; V _{RN} = V _{DD} ; \	$I_{PHP} = \frac{1}{2}V$	DD	
I _{PHI(F)}	fractional compensation output current PHI as a function of FRD	$I_{RN} = -62.5 \mu A;$ FRD = 1 to 7; notes 2 and 12	-5.4	-4.0	-2.6	μΑ
		$I_{RN} = -25 \mu A$; FRD = 1 to 7; note 12	-2.15	-1.60	-1.05	μΑ
Charge pu	ımp leakage currents; charg	je pump not active	•	•	•	•
I _{PHP(LO)}	output leakage current PHP	normal mode; V _{PHP} = 0.7 to V _{DDA} – 0.8 V note 5	_	10	750	nA
I _{PHI(LO)}	output leakage current PHI	normal mode; $V_{PHI} = 0.7$ to $V_{DDA} - 0.8$ V note 5	_	10	100	nA
I _{PHA(LO)}	output leakage current PHA	$V_{PHA} = 0.7 \text{ to } V_{DDA} - 0.8 \text{ V}$	_	10	750	nA

Notes


- 1. Operational conditions:
 - a) Main and auxiliary divider enabled (EM = EA = 1).
 - b) NA = 125.
 - c) NR = 125.
 - d) NM1 = 60.
 - e) NM2 = 63.
 - f) $f_{i(max)1} = f_{i(max)2} = 15 \text{ MHz}.$
 - g) $f_{i(max)3} = 60 \text{ MHz}.$
 - h) Lock condition.
 - i) Normal mode; note 5
 - j) $I_{RN} = I_{RF} = I_{RA} = 25 \mu A$.
 - k) CN = 255.
 - I) PA = 0.
- 2. Limited supply voltage range 4.5 to 5.5 V.
- 3. The relative output current variation is defined as:

$$\frac{\Delta I_{O}}{I_{O}} = 2 \times \frac{I_{2} - I_{1}}{|I_{2} + I_{1}|}; \text{ with } V_{1} = 0.7 \text{ V}; V_{2} = V_{DD} - 0.8 \text{ V (see Fig.8)}.$$

- 4. The output current matching is measured when both (positive and negative current) sections of the output charge pumps are on.
- 5. When a serial 'A' word is programmed, the main charge pumps on PHP and PHI are in the 'speed-up mode' as long as STROBE = HIGH, otherwise the main charge pumps are in the 'normal mode'.
- 6. Monotonicity is guaranteed with CN = 0 to 255.
- 7. Typical output current: $|I_{PHP(N)}| = -I_{RN} \times \frac{CN}{29}$; specification condition: CN = 255.

- 8. Typical output current: $\left|I_{PHP(S)}\right| = -I_{RN} \times CN \times \frac{2^{(CL+1)}+1}{29}$; specification conditions:
 - a) CN = 255; CL = 1 or,
 - b) CN = 75; CL = 3.
- 9. Typical output current: $\left|I_{PHI}\right| = -I_{RN} \times CN \times 2^{(CL+1)} \times \frac{CK}{29}$; specification conditions:
 - a) CN = 160; CL = 3; CK = 1 or,
 - b) CN = 160; CL = 2; CK = 2 or,
 - c) CN = 160; CL = 1; CK = 4 or,
 - d) CN = 160; CL = 0; CK = 8.
- 10. Typical fractional compensation output current: $I_{PHP(F N)} = I_{RF} \times \frac{FRD}{128}$; specification condition: FRD = 1 to 7.
- 11. The compensation current specified does not include the leakage current of this output.
- 12. FRD is the value of the 3-bit fractional accumulator.
- 13. Typical fractional compensation output current: $I_{PHP(FS)} = I_{RF} \times FRD \times \frac{2^{(CL+1)} + 1}{128}$; specification conditions: FRD = 1 to 7; CL = 1.
- 14. Typical fractional compensation output current: $I_{PHI(F)} = I_{RF} \times FRD \times 2^{(CL+1)} \times \frac{CK}{128}$; specification conditions:
 - a) FRD = 1 to 7; CL = 1; CK = 2 or,
 - b) FRD = 1 to 7; CL = 2; CK = 1.

UMA1005T

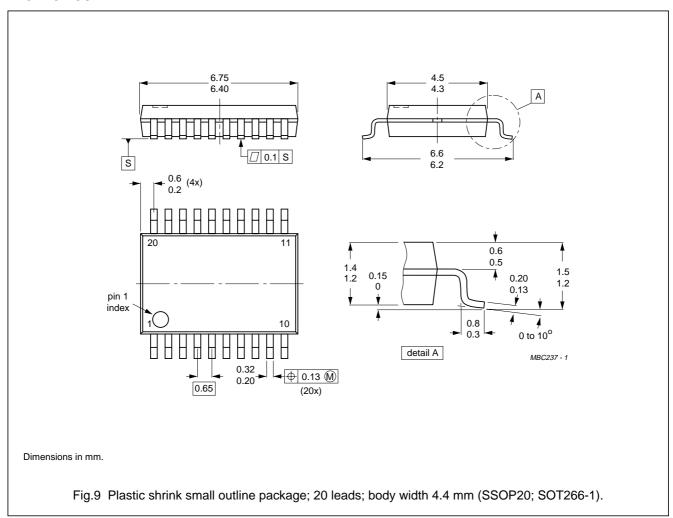
AC CHARACTERISTICS

 V_{DDD} = V_{DDA} = 2.9 to 5.5 V; T_{amb} = –40 to +70 $^{\circ}C;$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Main divid	ler (inputs INM1 and INM2)			•		•
f _{i(max)1}	maximum input frequency		10	_	_	MHz
		note 1	30	_	_	MHz
ΔV _{INM(p-p)}	differential input signal amplitude V _{INM1} – V _{INM2} (peak-to-peak value)		600	-	-	mV
V _{CM}	common mode range for V _{INM1} and V _{INM2}		1	_	V _{DD} – 1	V
t _{pd}	propagation delay time			_	60	ns
	from I _{NM1} and I _{NM2} to FB1 and FB2	note 1	-	18	30	ns
msr	mark-to-space ratio for differential input signals		35 : 65	_	65 : 35	
Z _{i(min)}	minimum input impedance	resistive; note 2	5	_	_	kΩ
		capacitive; note 2	_		5	pF

Dual low-power frequency synthesizer

UMA1005T


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Reference	e divider (input INR)	1				- !
f _{i(max)2}	maximum input frequency		15	_	_	MHz
		note 1	30	_	_	MHz
V _{i(p-p)}	input signal amplitude AC coupled (peak-to-peak value)		300	_	-	mV
Z _{i(min)}	minimum input impedance	resistive; note 2	5	_	_	kΩ
		capacitive; note 2	_	_	5	pF
Auxiliary	divider (input INA)					
f _{i(max)3}	maximum input frequency	prescaler enabled; PA = 0	35	_	_	MHz
.(,		prescaler enabled; PA = 0; note 1	90	_	-	MHz
		prescaler disabled; PA = 1	15	_	_	MHz
		prescaler disabled; PA = 1; note 1	30	_	_	MHz
V _{i(p-p)}	input signal amplitude AC coupled (peak-to-peak value)		300	-	-	mV
Z _{i(min)}	minimum input impedance	resistive; note 2	5	_	_	kΩ
		capacitive; note 2	_	_	5	pF
Serial inte	erface (inputs DATA, CLOCK	(and STROBE); see Fig.3		•		•
f _{clk}	clock frequency		_	_	10	MHz
t _{HC}	clock HIGH time		30	_	_	ns
t _{LC}	clock LOW time		30	_	_	ns
t _{suDA}	DATA set-up time		30	_	_	ns
t _{hDA}	DATA hold time		30	_	_	ns
t _{suST}	STROBE set-up time		30	_	_	ns
t _{hST}	STROBE hold time		30	-	_	ns

Notes

- 1. Limited supply voltage range 4.5 to 5.5 V.
- 2. Periodically sampled; not 100% tested.

UMA1005T

PACKAGE OUTLINE

UMA1005T

SOLDERING

Plastic small-outline packages

BY WAVE

During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.

Maximum permissible solder temperature is 260 $^{\circ}$ C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 $^{\circ}$ C within 6 s. Typical dwell time is 4 s at 250 $^{\circ}$ C.

A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications.

By solder paste reflow

Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be

applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C.

REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING IRON OR PULSE-HEATED SOLDER TOOL)

Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to 300 °C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 °C. (Pulse-heated soldering is not recommended for SO packages.)

For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

UMA1005T

NOTES

UMA1005T

NOTES

Philips Semiconductors – a worldwide company

Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428) BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,

Tel. (02)805 4455, Fax. (02)805 4466

Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213, Tel. (01)60 101-1236, Fax. (01)60 101-1211

Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands, Tel. (31)40 783 749, Fax. (31)40 788 399

Brazil: Rua do Rocio 220 - 5th floor, Suite 51, CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970)

Tel. (011)821-2333, Fax. (011)829-1849

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS: Tel. (800) 234-7381, Fax. (708) 296-8556

Chile: Av. Santa Maria 0760, SANTIAGO, Tel. (02)773 816, Fax. (02)777 6730

Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17, 77621 BOGOTA, Tel. (571)249 7624/(571)217 4609, Fax. (571)217 4549

Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. (032)88 2636, Fax. (031)57 1949

Finland: Sinikalliontie 3, FIN-02630 ESPOO,

Tel. (9)0-50261, Fax. (9)0-520971 France: 4 Rue du Port-aux-Vins, BP317,

92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427

Germany: P.O. Box 10 63 23, 20043 HAMBURG, Tel. (040)3296-0, Fax. (040)3296 213.

Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01)4894 339/4894 911, Fax. (01)4814 240

Hong Kong: PHILIPS HONG KONG Ltd., 6/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T., Tel. (852)424 5121, Fax. (852)428 6729

India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, Bombay 400 018 Tel. (022)4938 541, Fax. (022)4938 722

Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,P.O. Box 4252, JAKARTA 12950,Tel. (021)5201 122, Fax. (021)5205 189

Ireland: Newstead, Clonskeagh, DUBLIN 14,

Tel. (01)640 000, Fax. (01)640 200 Italy: PHILIPS SEMICONDUCTORS S.r.l. Piazza IV Novembre 3, 20124 MILANO

Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. (03)3740 5028, Fax. (03)3740 0580

Korea: (Republic of) Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,

SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905,

Tel. 9-5(800)234-7381, Fax. (708)296-8556

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB Tel. (040)783749, Fax. (040)788399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09)849-4160, Fax. (09)849-7811

Norway: Box 1, Manglerud 0612, OSLO, Tel. (022)74 8000, Fax. (022)74 8341 Pakistan: Philips Electrical Industries of Pakistan Ltd., Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546.

Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc. 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474

Portugal: PHILIPS PORTUGUESA, S.A.

Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores, Apartado 300, 2795 LINDA-A-VELHA,

Tel. (01)4163160/4163333, Fax. (01)4163174/4163366.

Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. (65)350 2000, Fax. (65)251 6500

South Africa: S.A. PHILIPS Pty Ltd.

195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494.

Spain: Balmes 22, 08007 BARCELONA, Tel. (03)301 6312, Fax. (03)301 42 43

Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM, Tel. (0)8-632 2000, Fax. (0)8-632 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. (01)488 2211, Fax. (01)481 77 30

Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978, TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382.

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, Bangkok 10260, THAILAND,

Tel. (662)398-0141, Fax. (662)398-3319.

Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. (0212)279 2770, Fax. (0212)269 3094

United Kingdom: Philips Semiconductors LTD. 276 Bath road, Hayes, MIDDLESEX UB3 5BX, Tel. (081)73050000, Fax. (081)7548421

United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556

Uruguay: Coronel Mora 433, MONTEVIDEO, Tel. (02)70-4044, Fax. (02)92 0601

For all other countries apply to: Philips Semiconductors. International Marketing and Sales, Building BE-p, P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-724825

SCD35 © Philips Electronics N.V. 1994

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

413061/1500/02/pp24 Document order number: Date of release: November 1994 9397 743 40011

Philips Semiconductors

