LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice

and the secondary circuit (electronic circuit).

Current Transducer LTS 15-NP

For the electronic measurement of currents : DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power)

FI	octr	ical	data	

Primary nominal r.m.s. current	15	At	
Primary current, measuring range	0 ± 48	At	
Overload capability	250	At	
Analog output voltage @ I		2.5 ± (0.62	25 ·I_₽/I_{₽N}) V
$I_{\rm P} = 0$		2.5 ¹⁾	V
Number of secondary turns (± 0.1 %)		2000	
Load resistance		≥ 2	kΩ
Internal measuring resistance (± 0.5 %)	83.33	Ω	
Thermal drift of R		< 50	ppm/K
Supply voltage (± 5 %)		5	V
Current consumption @ $V_c = 5 V$	Тур	$28 + I_{s}^{2} + (V_{c})$	_{טעד} / R _)mA
	Primary current, measuring range Overload capability Analog output voltage @ I_p $I_p = 0$ Number of secondary turns (± 0.1 %) Load resistance Internal measuring resistance (± 0.5 %) Thermal drift of \mathbf{R}_{M} Supply voltage (± 5 %)	Primary current, measuring range Overload capability Analog output voltage @ I_p $I_p = 0$ Number of secondary turns (± 0.1 %) Load resistance Internal measuring resistance (± 0.5 %) Thermal drift of \mathbf{R}_{M} Supply voltage (± 5 %)	Primary current, measuring range $0 \dots \pm 48$ Overload capability 250 Analog output voltage @ I_p $2.5 \pm (0.62)$ $I_p = 0$ 2.5^{-1} Number of secondary turns (± 0.1 %) 2000 Load resistance ≥ 2 Internal measuring resistance (± 0.5 %) 83.33 Thermal drift of \mathbf{R}_M < 50 Supply voltage (± 5 %) 5

Ac	curacy - Dynamic performance da	ta	
х	Accuracy $@\mathbf{I}_{PN}$, $\mathbf{T}_{A} = 25^{\circ}C$	± 0.2	%
	Accuracy with $\mathbf{R}_{M} @ \mathbf{I}_{PN}$, $\mathbf{T}_{A} = 25^{\circ}C$	± 0.7	%
ε _L	Linearity error	< 0.1	%
		Тур	Max
TCV _{out}	Thermal drift of $\mathbf{V}_{OUT} \otimes \mathbf{I}_{P} = 0$ - 10°C		120 ppm/K
	- 40°C	- 10°C	170 ppm/K
TCE _G	Thermal drift of the gain - 40°C	+ 85°C	50 ³⁾ ppm/K
V _{OM}	Residual voltage @ $I_p = 0$, after an overload of	f3xI _{PN}	± 0.5 mV
		5 x I _{PN}	± 2.0 mV
		10 x I _{PN}	± 2.0 mV
t _{ra}	Reaction time @ 10 % of I _{PN}	< 100	ns
t,	Response time @ 90 % of I _{PN}	< 400	ns
di/dt	di/dt accurately followed	> 35	A/µs
f	Frequency bandwidth (0 0.5 dB)	DC	100 kHz
	(- 0.5 1 dB)	DC	200 kHz
Ge	eneral data		
TA	Ambient operating temperature	- 40	+ 85 °C
T _s	Ambient storage temperature	- 40	+ 100 °C
m	Mass	10	g
	Standards	EN 501	78 : 1997
		IEC 6	0950-1 : 2001

 $^{\scriptscriptstyle 1)}$ Absolute value @ $\boldsymbol{T}_{\scriptscriptstyle A}$ = 25°C, $\ 2.475 < \boldsymbol{V}_{\scriptscriptstyle OUT} < 2.525$ Notes :

²⁾ Please see the operation principle on the other side ³⁾ Only due to TCR_M.

Features

- · Closed loop (compensated) multirange current transducer using the Hall effect
- · Unipolar voltage supply
- · Compact design for PCB mounting
- Insulated plastic case recognized according to UL 94-V0
- Incorporated measuring resistance
- Extended measuring range.

Advantages

- Excellent accuracy
- Very good linearity
- Very low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial.

Copyright protected.

050713/15

Page 1/3

LEM Components

www.lem.com

Current Transducer LTS 15-NP

\hat{V}_{d}	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn Impulse withstand voltage 1.2/50 μs	3 >8	kV kV
V _e	R.m.s. voltage for partial discharge extinction @ 10pC	Min >1.5	kV
dCp dCl CTI	Creepage distance ⁴⁾ Clearance distance ⁵⁾ Comparative Tracking Index (Group III a)	Min 15.5 6.35 175	mm mm

Application examples

According to EN 50178 and IEC 61010-1 standards and following conditions :

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1	
dCp, dCl, Ŷ _w	Rated isolation voltage	Nominal voltage	
Single isolation	600 V	600 V	
Reinforced isolation	300 V	300 V	

Notes : ⁴⁾ On housing

⁵⁾ On PCB with soldering pattern UTEC93-703.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

050713/15 Page 2/3

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

LEM Components

		Operation principle
Bottom view	Madel, + SP number Date code	N N N N N N N N N N N N N N N N N N N
B3.2 B3.2		A B Front view
	12.7	Rep. Clearance Creepage
Back view	Right view	A-B 6.35mm 15,5mm

Dimensions LTS 15-NP (in mm. 1 mm = 0.0394 inch)

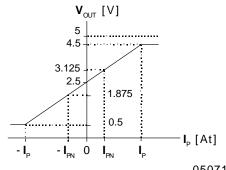
Number of primary turns	Primary nominal r.m.s. current I _{PN} [A]	Nominal output voltage V _{out} [V]	Primary resistance R _P [mΩ]	Primary insertion inductance L _P [µH]	Recommended connections
1	± 15	2.5 ± 0.625	0.18	0.013	6 5 4 OUT 0 0 0 0 IN 1 2 3
2	±7.5	2.5 ± 0.625	0.81	0.05	6 5 4 OUT 0 0 0 IN 1 2 3
3	± 5	2.5 ± 0.625	1.62	0.12	6 5 4 OUT 0 0 0 IN 1 2 3

Mechanical characteristics

- General tolerance
- Fastening & connection of primary Recommended PCB hole
 - 1.3 mm y 3 pins 0.5 x 0.35 mm

± 0.2 mm

6 pins 0.8 x 0.8 mm


- Fastening & connection of secondary 3 pins 0.8 Recommended PCB hole 0.8 mm
- Additional primary through-hole Ø 3.2 mm

Remarks

- $\bm{V}_{_{OUT}}$ is positive when $\bm{I}_{_{P}}$ flows from terminals 1, 2, 3 to terminals 6, 5, 4.
- Temperature of the primary jumper should not exceed 100°C.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice

Output Voltage - Primary Current

050713/15

www.lem.com