

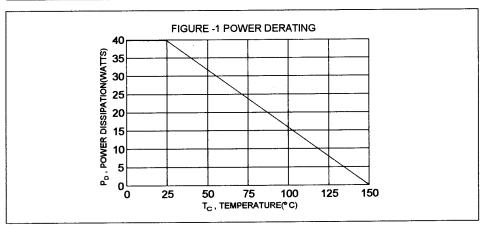
NPN SILICON POWER TRANSISTORS

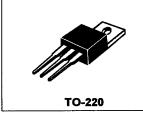
...designed for the output stage of 25W to 35W AF power amplifier

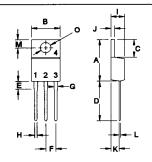
FEATURES:

- * Low Collector-Emitter Saturation Voltage $V_{CE(sat)}$ = 2.0V(Max) @I_C=4.0A,I_B=0.4A * DC Current Gain
- hFE= 40-320@I_C= 1.0A * Complementary to NPN 2SB633

NPN 2SD613


6 AMPERE POWER TRANASISTORS 85 VOLTS 40 WATTS


MAXIMUM RATINGS

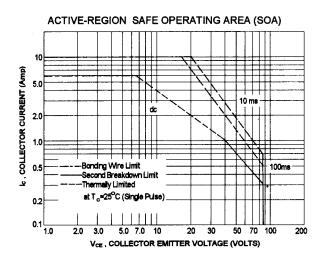

Characteristic	Symbol	2SD613	Unit
Collector-Emitter Voltage	V _{CEO}	85	V
Collector-Base Voltage	V _{CBO}	100	V
Emitter-Base Voltage	V _{EBO}	6.0	V
Collector Current - Continuous - Peak	I _C	6.0 10	А
Base current	I _B	3.0	Α
Total Power Dissipation @T _C = 25°C Derate above 25°C	P _D	40 0.32	W/°C
Operating and Storage Junction Temperature Range	T _J ,T _{STG}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction to Case	Re jc	3.125	°C/W

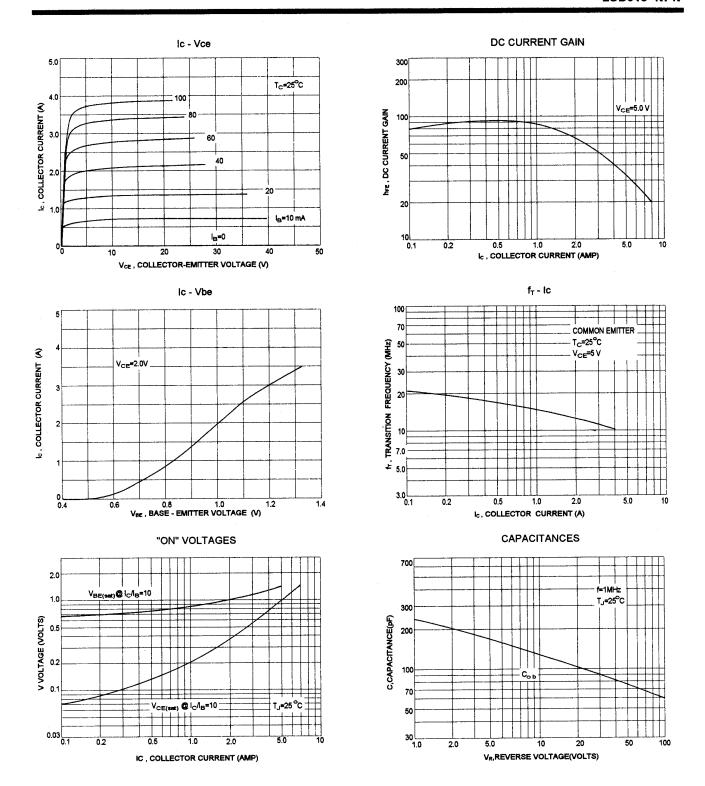
PIN 1.BASE 2.COLLECTOR 3.EMITTER 4.COLLECTOR(CASE)

D.13.4	MILLIMETERS					
DIM	MIN	MAX				
Α	14.68	15.31				
В	9.78	10.42				
С	5.01	6.52				
D	13.06	14.62				
E	3.57	4.07				
F	2.42	3.66				
G	1.12	1.36				
H	0.72	0.96				
	4.22	4.98				
J	1.14	1.38				
K	2.20	2.97				
L	0.33	0.55				
М	2.48	2.98				
0	3.70	3.90				


ELECTRICAL CHARACTERISTICS	$(T_c = 25^{\circ}C \text{ unless otherwise noted})$
-----------------------------------	--

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (I _C = 50 mA, I _B = 0)	V _{(BR)CEO}	85		>
Collector-Base Breakdown Voltage (I _C = 5.0 mA, I _E = 0)	V _{(BR)CBO}	100		>
Emitter-Base Breakdown Voltage (I _E = 5.0 mA, I _C = 0)	V _{(BR)EBO}	6.0		>
Collector Cutoff Current (V _{CB} = 40 V, I _E = 0)	І _{сво}		100	uА
Emitter Cutoff Current (V _{EB} = 4.0 V, I _C = 0)	I _{EBO}		100	uA
ON CHARACTERISTICS (1)				
DC Current Gain (I _C = 1.0 A, V _{CE} = 5.0 V) * (I _C = 3.0 A, V _{CE} = 5.0 V)	hFE(2) hFE	40 20	320	
Collector-Emitter Saturation Voltage (I _C = 4.0 A, I _B = 400 mA)	V _{CE(sat)}		2.0	٧
Base-Emitter On Voltage (I _C = 1.0 A, V _{CE} =5.0 V)	V _{BE(on)}		1.5	V
DYNAMIC CHARACTERISTICS			-	
Current-Gain-Bandwidth Product (I _C = 1.0 A, V _{CE} = 5.0 V, f = 1.0 MHz)	f _T	5.0		MHz

(1) Pulse Test: Pulse Width =300 us, Duty Cycle \leq 2.0%


* hFE(2) Classification :

=(2)											
40	С	80	60	D	120	100	E	200	160	F	320

There are two limitation on the power handling ability of a transistor:average junction temperature and second breakdown safe operating area curves indicate $I_{\text{c}}\text{-}V_{\text{CE}}$ limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than curves indicate.

The data of SOA is base on $T_{\text{J(PK)}}{=}150~^{\circ}\text{C}; T_{\text{C}}$ is variable depending on conditions.second breakdown pulse limits are valid for duty cycles to 10% provided $T_{\text{J(PK)}}{\leq}150^{\circ}\text{C}$, At high case temperatures, thermal limits tion will reduce the power that can be handled to value less than the limi-tations imposed by second breakdown.

