
DISCRETE SEMICONDUCTORS

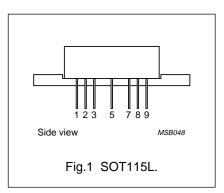
Product specification Supersedes data of 1995 Apr 04 File under Discrete Semiconductors, SC05 1995 Oct 23

CR2424S

FEATURES

PINNING

- Typical transition times (10 to 90%) with C_L at 8.5 pF:
 - 2.2 ns rise and 2.0 ns fall with 35 V (p-p) swing
 - 2.3 ns rise and 2.1 ns fall with 40 V (p-p) swing
 - 2.5 ns rise and 2.2 ns fall with 50 V (p-p) swing
- Low power consumption
- Minimum small-signal bandwidth 130 MHz
- Very fast slew rate; 15000 V/μs
- Excellent grey-scale linearity
- Unconditional stability
- Gold metallization ensures excellent reliability.


APPLICATIONS

It is designed for application in cathode-ray tube (CRT) drivers in high-resolution colour and monochrome monitors.

DESCRIPTION

Hybrid amplifier module mounted in SOT115L package.

PIN	DESCRIPTION
1	input
2	ground
3	ground
5	supply voltage (V_S)
7	ground
8	ground
9	output

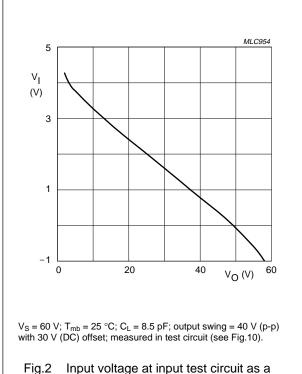
LIMITING VALUES

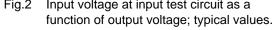
In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
Vs	supply voltage (DC)	_	70	V
T _{mb}	operating mounting base temperature	-20	+100	°C
T _{stg}	storage temperature	-40	+125	°C

CR2424S

CHARACTERISTICS


 T_{mb} = 25 °C; C_L = 8.5 pF; measured in test circuit (see Fig.10); unless otherwise specified.


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _S = 60 V;	output swing = 40 V (p-p) with	30 V (DC) offset; unless otherw	vise speci	fied		
I _S	supply current	input and output open	39	45	51	mA
VI	input voltage (DC)	input and output open	1.3	1.6	1.9	V
t _r	rise time transient response	10 to 90%; note 1	-	2.3	2.9	ns
t _f	fall time transient response	10 to 90%; note 1	-	2.1	2.6	ns
V _S = 65 V;	output swing = 50 V (p-p) with	32.5 V (DC) offset; unless othe	rwise spe	cified		
I _S	supply current	input and output open	-	50	57	mA
VI	input voltage (DC)	input and output open	1.4	1.75	2.1	V
t _r	rise time transient response	10 to 90%; note 2	-	2.5	3.2	ns
t _f	fall time transient response	10 to 90%; note 2	-	2.2	3.2	ns
V _S = 60 or	65 V; output swing = 40 or 50 V	/ (p-p) with 30 or 32.5 V (DC) of	fset; unle	ss otherw	vise speci	fied
P _{tot}	total power dissipation	50 MHz square wave	-	4.6	6	W
BW	small-signal bandwidth	between -3 dB points; note 3	130	145	_	MHz
V _{tilt}	low frequency tilt voltage	1 kHz square wave	-	1.3	1.5	V
V _{os}	overshoot voltage	varied by C1; see Fig.10	-	3	10	%
NLN	non-linearity	V _O = 5 to 55 V	-	2	5	%
A _V	DC voltage gain	50 Ω source; note 4	11.2	12.4	13.2	
V _G	insertion gain	50 Ω source; note 5	160	180	200	

Notes

- 1. Input signal is a 100 kHz square wave of 3.25 V (p-p), with 1.5 V (DC) offset (50 Ω source).
- 2. Input signal is a 100 kHz square wave of 3.4 V (p-p), with 1.65 V (DC) offset (50 Ω source).
- 3. Sine wave output signal: 1 V (p-p).
- 4. Measured V_0/V_1 (Figs 2 and 6) at input test circuit (see Fig.10).
- 5. Measured V_O/V_I (Figs 3 and 7) at input module (see Fig.10).

CR2424S

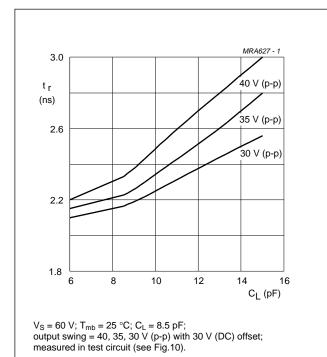
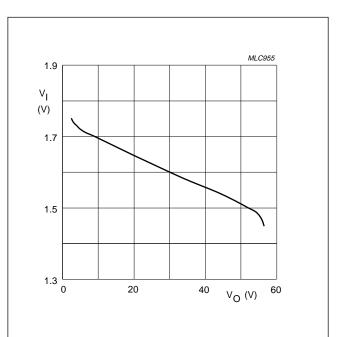



Fig.4 Rise time transient response as a function of load capacitance; typical values.

 V_S = 60 V; T_{mb} = 25 °C; C_L = 8.5 pF; output swing = 40 V (p-p) with 30 V (DC) offset; measured in test circuit (see Fig.10).

Fig.3 Input voltage at input module as a function of output voltage; typical values.

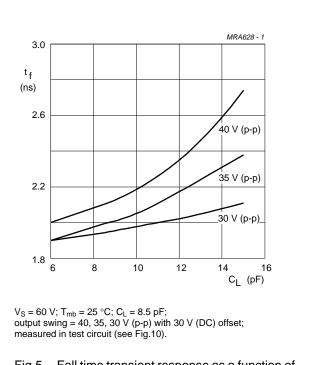
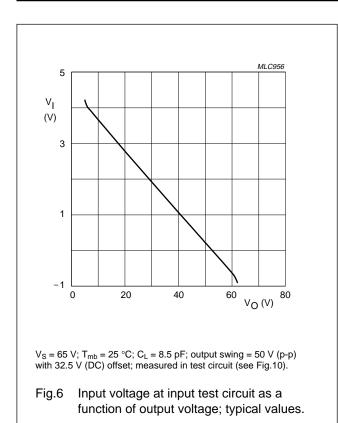
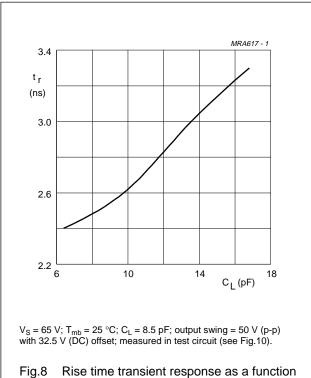




Fig.5 Fall time transient response as a function of load capacitance; typical values.

CR2424S

of load capacitance; typical values.

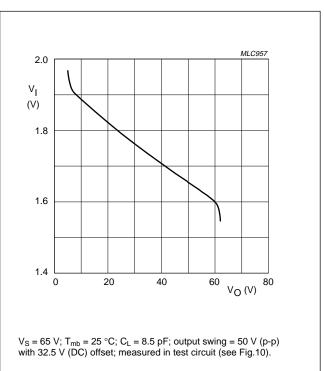
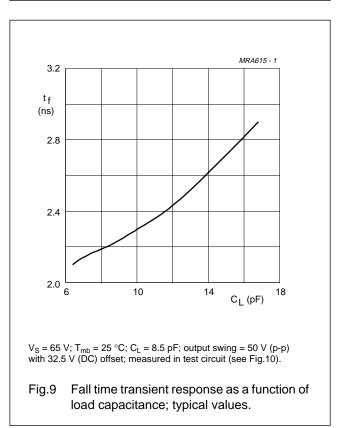
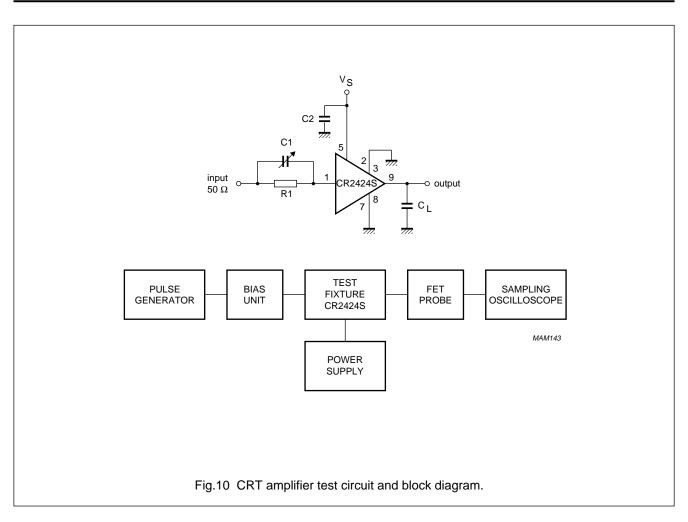
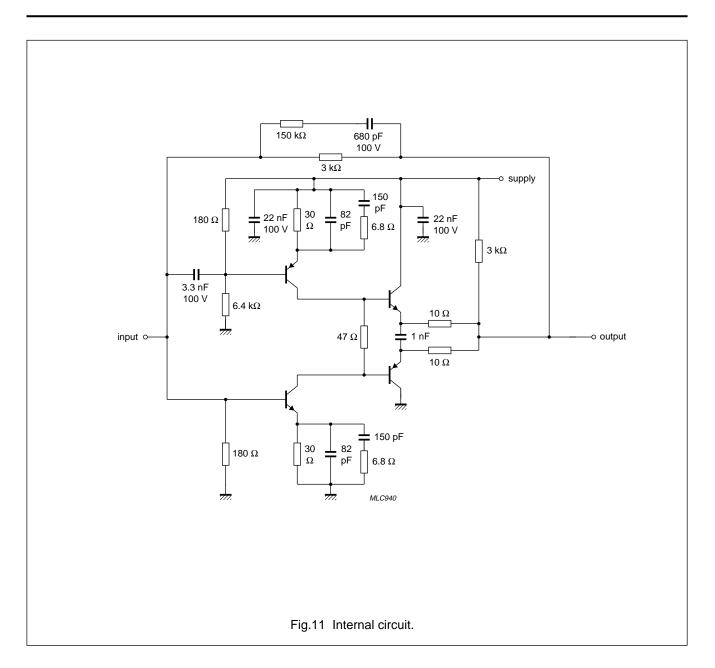




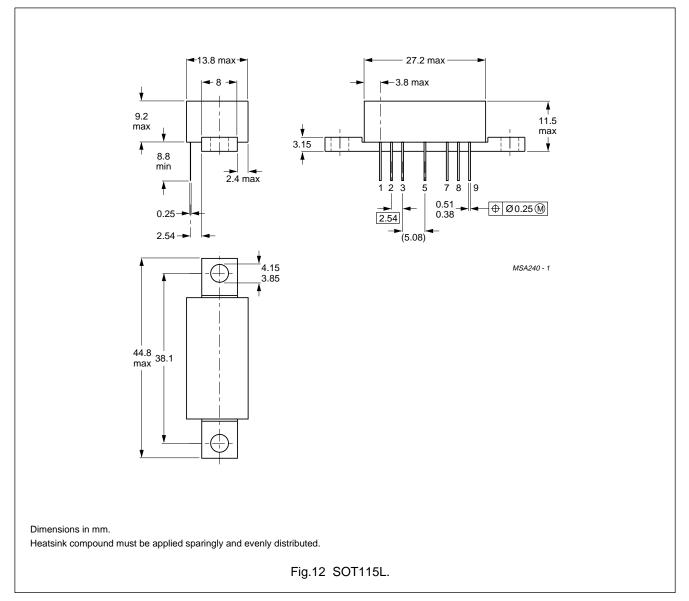
Fig.7 Input voltage at input module as a function of output voltage; typical values.

CR2424S


Components used in test circuit (see Fig.10)

DESIGNATION	DESCRIPTION	VALUE
C ₁	variable capacitor	10 to 120 pF (typ. 50 pF)
C ₂	chip capacitor	10 nF
R1	resistor	typ. 215 Ω

Equipment used in test circuit (see Fig.10)


EQUIPMENT	TYPE DESCRIPTION
Pulse generator	Pico Second; Model 2600B
Bias unit	Pico Second; Model 5555
Power supply	Philips; Model PE1541, 80 V
FET probe	Philips; Model PM8943, attenuation 100 : 1
Sampling oscilloscope	Tektronix; Model 11803, sampling head SD24

CR2424S

CR2424S

PACKAGE OUTLINE

CR2424S

DEFINITIONS

Data sheet status		
Objective specification	This data sheet contains target or goal specifications for product development.	
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.	
Product specification	This data sheet contains final product specifications.	
Limiting values		
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.		
Application information		

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.