# High Speed, 200V, Full H-Bridge MOSFET Driver 

## Features

- HVCMOS ${ }^{\circledR}$ technology for high performance
- All N-MOSFET full-bridge driver
- Designed for 200 V bridge supply voltage
- Up to 1.0 MHz operation frequency
- Greater than $90 \%$ efficiency
- Designed for low total harmonic distortion
- Single voltage drive power supply +12 V
- Smart logic voltage threshold
- Resistor programmable OCP threshold
- UVP function built-in
- Accurate and adjustable dead time
- 32-Lead QFN package


## Applications

- Class-D audio amplifier
- High frequency PWM motor control
- High frequency switching power supply
- Ultrasound transducer drivers
- High voltage waveform generator


## General Description

The Supertex MD7120 is a high voltage, high speed, full-bridge driver. It is ideal for Class-D audio amplifier applications and other high frequency PWM driver applications, such as motor driving. This highvoltage and high-speed driver can also be used for other applications: as a piezo-electric transducer driver; as a MOSFET driver in a switched mode power supply; or as a two channel driver for half-bridge power stages.

The new IC topology is designed to drive dual N-MOSFETs as power switches for both the high side and low side. It consists of controller logic circuits, level translators, and a bootstrap floating powered gate driver and over current protection circuits without using current sensing resistors. The thresholds of the OCP for the high and low side are resistor-programmable.

The power MOSFET top drain can be connected to up to +200 V while the bottom N-channel MOSFET source is grounded. They are designed to provide 3.0A peak driving current with well-matched output impendence and propagation delay on the high and low sides, as well as from device-to-device.

The EN pin serves a dual purpose: the logic high level is used to compute the threshold voltage level of inputs; and the logic low level disables the outputs. The IC is in a low inductance and thermally enhanced package.

## Typical Application Circuit



Supertex inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: (408) $222-8888$ • FAX: (408) $222-4895 \cdot$ www.supertex.com

## Ordering Information

| Device | Package Option |
| :---: | :---: |
|  | 32-Lead QFN, |
| 7x7mm body, |  |
| 1.00 mm height (max.), |  |
| 0.65 pitch |  |
| MD7120 | MD7120K6-G |

-G indicates package is RoHS compliant ('Green')

## Absolute Maximum Ratings

| Parameter | Value |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{DD}},(\mathrm{BS} 1-\mathrm{S} 1),(\mathrm{BS} 3-\mathrm{S} 3)$ supply voltage | -0.5 V to 15 V |
| $\mathrm{~V}_{\mathrm{PP}}$, high voltage supply | 10 V to +220 V |
| $\mathrm{EN}, \mathrm{IN}, \mathrm{IN}_{\mathrm{B}}$ logic input voltage | -0.5 V to 7.5 V |
| OPF, open drain output voltage | -0.5 V to 15 V |
| Junction operating temperature range | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage temperature | $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |
| Thermal resistance $\left(\theta_{J A}\right)^{*}$ | $29.3^{\circ} \mathrm{C} / \mathrm{W}$ |

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

* 1oz, 4-layer, 4x3" PCB


Pin Configuration


## Product Marking



32-Lead QFN (K6)

DC Electrical Characteristics (Over operating conditions, unless otherwise specified. $V_{D D}=12 \mathrm{~V}, V_{P P}=200 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ )

| Sym | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{D D}$ | Positive drive supply voltage | 9.0 | 12 | 13 | V | --- |
| $V_{\text {PP }}$ | High supply voltage | - | 150 | 200 | V | --- |
| $V_{\text {EN }}$ | EN input voltage range | 1.8 | - | 5.0 | V | --- |
| $V_{\text {PT }}$ | Input positive threshold | - | - | 70 | \% | Percent of $\mathrm{V}_{\mathrm{EN}}$ voltage |
| $V_{\text {NT }}$ | Input negative threshold | 30 | - | - | \% | Percent of $\mathrm{V}_{\text {EN }}$ voltage |
| $\mathrm{V}_{\mathrm{HY}}$ | Input threshold hysteresis | 9.0 | - | 30 | \% | Percent of $\mathrm{V}_{\text {EN }}$ voltage |
| $\mathrm{I}_{\text {DDQ }}$ | $\mathrm{V}_{\mathrm{DD}}$ quiescent current, $\mathrm{EN}=0$ | - | 140 | - | $\mu \mathrm{A}$ | --- |
| $\mathrm{I}_{\text {diEN }}$ | $\mathrm{V}_{\mathrm{DD}}$ average current | - | 6.0 | - | mA | INA $=1 \mathrm{NB}=0$ (measured) |
| $\mathrm{I}_{\mathrm{DD}}$ | $\mathrm{V}_{\mathrm{DD}}$ average current at 500 KHz | - | 57 | - | mA | INA $=\mathrm{INB}=500 \mathrm{KHz} 50 \%$, G1~4 to S1~4 with four 1000 pF load capacitors |
| $\mathrm{R}_{\text {IN }}$ | Input logic impedance to GND | - | 250 | - | k $\Omega$ | --- |
| $\mathrm{C}_{\text {IN }}$ | Logic input capacitance | - | 5.0 | 10 | pF | --- |

## Gate Driver Outputs

| Sym | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :--- |
| $R_{\text {HSC }}$ | Sourcing output resistance | - | 5.0 | - | $\Omega$ | $\mathrm{I}_{\mathrm{DS}}=1.0 \mathrm{~A}$ |
| $\mathrm{R}_{\text {HSK }}$ | Sinking output resistance | - | 5.0 | - | $\Omega$ | $\mathrm{I}_{\mathrm{DS}}=1.0 \mathrm{~A}$ |
| $\mathrm{R}_{\mathrm{LSC}}$ | Sourcing output resistance | - | 5.0 | - | $\Omega$ | $\mathrm{I}_{\mathrm{DS}}=1.0 \mathrm{~A}$ |
| $\mathrm{R}_{\text {LSK }}$ | Sinking output resistance | - | 5.0 | - | $\Omega$ | $\mathrm{I}_{\mathrm{DS}}=1.0 \mathrm{~A}$ |

Supertex inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: (408) 222-8888 • FAX: (408) 222-4895 • www.supertex.com

## Under Voltage and Over Current / Temperature Protection

(Over operating conditions, unless otherwise specified. $V_{D D}=12 \mathrm{~V}, V_{P P}=200 \mathrm{~V}, T_{A}=0$ to $70^{\circ} \mathrm{C}$ )

| Sym | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :--- | :---: | :---: | :---: | :---: | :--- |
| $\mathrm{V}_{\text {OL_OPF }}$ | OPF flag output low voltage | - | - | 1.0 | V | OPF = low, $\mathrm{I}_{\text {PULL_UP }}=1.0 \mathrm{~mA}$ |
| $\mathrm{~V}_{\text {PULL_UP }}$ | Open drain pull-up voltage | - | - | 15 | V | $\mathrm{I}_{\text {OPF }}=1.0 \mathrm{~mA}$ |
| $\mathrm{I}_{\text {OPF }}$ | OPF sinking current limit | - | 1.0 | 1.5 | mA | --- |
| $\mathrm{V}_{\text {UVT }}$ | $\mathrm{V}_{\text {DD }}$ rising threshold | 6.8 | 7.8 | 8.8 | V | --- |
| $\mathrm{V}_{\text {UVH }}$ | $\mathrm{V}_{\text {DD }}$ UV hysteresis | - | 0.6 | - | V | --- |
| $\mathrm{I}_{\text {RP1 }}, \mathrm{I}_{\text {RP3 }}$ | High-side current reference | - | 55 | - | $\mu \mathrm{A}$ | --- |
| $\mathrm{I}_{\text {RP2 }}$ | Low-side current reference | - | 55 | - | $\mu \mathrm{A}$ | --- |
| $\mathrm{V}_{\text {GS1-4 }}$ | Gate sense voltage threshold | 4.5 | 6.0 | 7.5 | V | Reference to S1-4 |
| $\mathrm{T}_{\text {OTP }}$ | Over-temperature threshold | 95 | 110 | 120 | ${ }^{\circ} \mathrm{C}$ | If over temperature, OPF low and <br> $\mathrm{M} 1 \sim 4$ off |
| $\mathrm{T}_{\text {OTH }}$ | Over-temperature hysteresis | - | 7.0 | - | ${ }^{\circ} \mathrm{C}$ | --- |

AC Electrical Characteristics (Over operating conditions, unless otherwise specified. $V_{D D}=12 \mathrm{~V}, V_{P P}=200 \mathrm{~V}, T_{A}=0$ to $70^{\circ} \mathrm{C}$ )

| Sym | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :--- | :---: | :---: | :---: | :---: | :--- |
| $\mathrm{f}_{\mathrm{s}}$ | Switch frequency | - | - | 1.0 | MHz | --- |
| $\mathrm{t}_{\mathrm{dr}}$ | Switch on delay + dead time | - | 35 | - | ns | When $\mathrm{t}_{\mathrm{dt}}=\mathrm{min}$ |
| $\mathrm{t}_{\mathrm{df}}$ | Switch off delay time | - | 40 | - | ns | See timing diagram |
| $\mathrm{t}_{\mathrm{r}}$ | Output rise time | - | 28 | - | ns | With 1.0nF load |
| $\mathrm{t}_{\mathrm{f}}$ | Output fall time | - | 29 | - | ns | With 1.0nF load |
| $\mathrm{t}_{\mathrm{dm}}$ | Dead time matching | - | - | $\pm 5$ | ns | Channel to channel |
| $\Delta \mathrm{t}_{\mathrm{dr}}$ | Dead time adjustable range | 15 | - | 50 | ns | RDT =1.0k $\Omega$ to $200 \mathrm{k} \Omega$ |
| $\Delta \mathrm{t}_{\mathrm{dta}}$ | Dead time accuracy | - | $\pm 5.0$ | $\pm 10$ | $\%$ | 15 ns to 50 ns |
| THD | Total Harmonic Distortion | - | 0.0007 | - | $\%$ | Time jitter contribution, $\mathrm{f}_{\mathrm{j}}=10 \mathrm{~Hz}$, <br> $\mathrm{f}_{\mathrm{s}}=500 \mathrm{KHz}, \mathrm{f}_{\mathrm{A}}=1.0 \mathrm{KHz}$ |
| $\mathrm{t}_{\mathrm{EN}}$ | Enable ready time | - | - | 80 | ns | See timing diagram |
| $\mathrm{t}_{\text {PWR_UP }}$ | Power-up time | - | - | 200 | $\mu \mathrm{~s}$ | See timing diagram |

## Logic Table

| Logic Input |  |  | Power MOSFET Output |  |
| :---: | :---: | :---: | :---: | :---: |
| EN | INA | INB | A Bridge Output | B Bridge Output |
| 1 | 0 | 0 | L | L |
| 1 | 0 | 1 | L | H |
| 1 | 1 | 0 | H | L |
| 1 | 1 | 1 | H | H |
| 0 | X | X | $\mathrm{Hi}-\mathrm{Z}$ | $\mathrm{Hi}-\mathrm{Z}$ |

Supertex inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: (408) 222-8888 • FAX: (408) 222-4895 • www.supertex.com

OCP Threshold vs RP1, 2, 3


## Dead Time vs RDT



## Logic $\mathrm{V}_{\mathrm{PT} / \mathrm{NT}} / \mathrm{V}_{\mathrm{EN}}$ Curve



## Switch Timing Diagram



## Adjustable Delay Time Diagram



## Pin Description

| Pin \# | Name | Function |
| :---: | :---: | :---: |
| 1 | GND | Logic signal ground. |
| 2 | AVDD | Logic AVDD voltage supply (+12V). Not connected to VDD1 or VDD2 internally. |
| 3 | INA | Input logic control of the half-bridge A output. |
| 4 | EN | Chip power enable, EN = Hi chip enabled, EN = Lo disabled, EN resets the OPF flag latch. |
| 5 | INB | Input logic control of the half-bridge B output. |
| 6 | OPF | Open drain output of over/under voltage, over current or temperature flag, Active = Low. |
| 7 | VSS | Return of voltage supply. |
| 8 | NC | Not connected. |
| 9 | RDT | Dead time program resistor. |
| 10 | S4 | Low side MOSFET source. |
| 11 | G4 | Low side MOSFET gate. |
| 12 | GS4 | Low side MOSFET gate voltage sense. |
| 13 | VDD2 | Positive voltage supply (+12V). May not connected to VDD1 internally. |
| 14 | NC | Not connected. |
| 15 | S3 | High side MOSFET source. |
| 16 | G3 | High side MOSFET gate. |
| 17 | GS3 | High side MOSFET gate voltage sense. |
| 18 | BS3 | High side boost external capacitor. |
| 19 | D3 | High side MOSFET drain. |
| 20 | RP1 | High side program resistor OCP threshold for MOSFET M1. |
| 21 | RP3 | High side program resistor OCP threshold for MOSFET M3. |
| 22 | D1 | High side MOSFET drain. |
| 23 | BS1 | High side boost external capacitor. |
| 24 | GS1 | High side MOSFET gate voltage sense. |
| 25 | G1 | High side MOSFET gate. |
| 26 | S1 | High side MOSFET source. |
| 27 | NC | Not connected. |
| 28 | VDD1 | Positive voltage supply (+12V). May not connected to VDD2 internally. |
| 29 | GS2 | Low side MOSFET gate voltage sense. |
| 30 | G2 | Low side MOSFET gate. |
| 31 | S2 | Low side MOSFET source. |
| 32 | RP2 | Low side program resistor OCP threshold for MOSFET M2 and M4. |

## Note:

The thermal pad must be connected to VSS externally.

Supertex inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: (408) 222-8888 • FAX: (408) 222-4895 • www.supertex.com

## 32-Lead QFN Package Outline (K6) <br> $7 x 7 \mathrm{~mm}$ body, 1.00 mm height (max), 0.65 mm pitch



## Notes:

1. Details of Pin 1 identifier are optional, but must be located within the indicated area. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature.
2. Depending on the method of manufacturing, a maximum of 0.15 mm pullback (L1) may be present.
3. The inner tip of the lead may be either rounded or square.

| Symbol |  | A | A1 | A3 | b | D | D2 | E | E2 | e | L | L1 | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dimension (mm) | MIN | 0.80 | 0.00 | $\begin{aligned} & 0.20 \\ & \text { REF } \end{aligned}$ | 0.25 | 6.85 | 5.00* | 6.85 | 5.00* | $\begin{aligned} & 0.65 \\ & \text { BSC } \end{aligned}$ | 0.45* | 0.00 | $0^{\circ}$ |
|  | NOM | 0.90 | 0.02 |  | 0.30 | 7.00 | 5.51* | 7.00 | 5.15* |  | 0.55* | - | - |
|  | MAX | 1.00 | 0.05 |  | 0.35 | 7.15 | 5.25* | 7.15 | 5.25* |  | 0.65* | 0.15 | $14^{\circ}$ |

JEDEC Registration MO-220, Variation VKKC-1, Issue K, June 2006

* This dimension is not specified in the original JEDEC drawing. The value listed is for reference only. Drawings not to scale.
Supertex Doc. \#: DSPD-32QFNK67X7P065, Version A061808
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]:    
    
     product specifications, refer to the Supertex website: http//www.supertex.com.

