
DBL 567

TONE DECODER

The DBL567 is general purpose tone decoders designed to provide a saturated transistor switch to ground when an input signal is present within the passband.

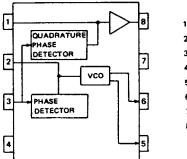
FEATURES

- Logic compatible output with 100mA current sinking capability
- O 20 to 1 frequency range with an external resistor
- O Bandwidth adjustable from 0 to 14%
- O High rejection of out of band signals and noise
- O Immunity to false signals.
- O Highly stable center frequency
- O Center frequency adjustable from 0.01Hz to 500KHz

\$

□ APPLICATIONS

- O Touch tone decoding
- O Precision oscillator
- O Frequency monitoring and control
- Wide band FSK demodulation
- O Ultrasonic controls
- O Carrier current remote controls
- O Communications paging decoders

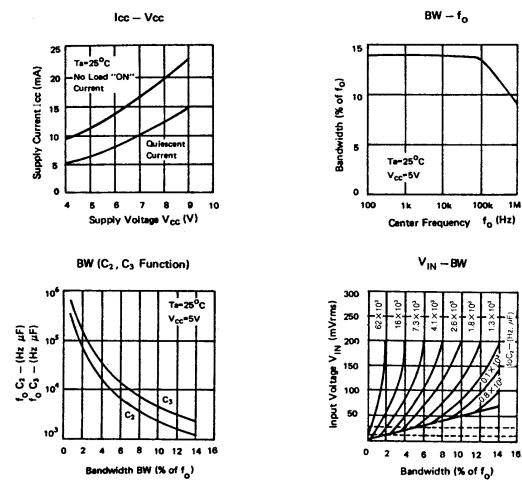

□ MAXIMUM RATINGS

Characteristic	Rating	Unit V mW V V V V	
Supply Voltage	10		
Power Dissipation*	300		
V ₈	15		
V ₃	-10		
V ₃	V ₈ +0.5		
Storage Temperature	-55~+150		

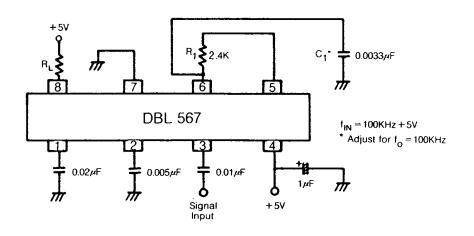
* The maximum junction temperature is 150°C. The device must be derated based on a thermal resistance of 187°C/W, junction to ambient.

DBL 567

BLOCK DIAGRAM


OUTPUT FILTER
LOOP FILTER
INPUT
V_{CC}
TIMING RESISTOR
TIMING CAPACITOR
GND
OUTPUT

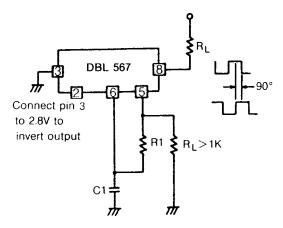
 \square ELECTRICAL CHARACTERISTICS (AC Test Circuit, Ta = 25°C, V_{CC} = 5V)

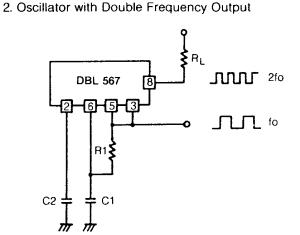

Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Power Supply Voltage Range	Vcc		4.75	5	9	V
Power Supply Current Quiescent	I _{CCO}	$R_L = 20K \Omega$	_	6	8	mA
Power Supply Current Activated	Icc	$R_L = 20K \Omega$	_	11	13	mA
Input Resistance	R _{IN}		15	20	25	KΩ
Smallest Detectable Input Voltage	$V_{IN} - 1$	$I_{L} = 100 \text{mA}, f = fo$	_	20	25	mV _{rms}
Largest No Output Input Voltage	$V_{IN} - 2$	$I_{C} = 100 \text{mA}, f = fo$	10	15		mV _{rms}
Largest Simultaneous Outband Signal to Inband Signal Ratio	S _I /S _O	_		6	_	dB
Minimum Input Signal to Wideband Noise Ratio	S/N	B _n = 140KHz		-6		dB
Largest Detection Bandwidth	B.W	—	10	14	18	%of fo
Largest Detection Bandwidth Skew	B.Ws	_		2	3	%of fo
Largest Detection Bandwidth Variation with Temperature	B.W _T			±0.1	0.25	%1°C
Largest Detection Bandwidth Varjation with Supply voltage	B.W _V	4.75V~6.75V		±1	±2	%/V
Highest Center Frequency	f _{О-Н}		100	500		KHz
Center Frequency Stability	f _{O-S}	0°C <ta<70°c -55°C<ta<+125°c< td=""><td></td><td>35±60 35±140</td><td></td><td>ppm/°C ppm/°C</td></ta<+125°c<></ta<70°c 		35±60 35±140		ppm/°C ppm/°C
Center Frequency shift with supply voltage	f _{O-V}	4.75V~6.75V	_	0.5	2	%/V
Fastest ON-OFF Cycling Rate	CR _{ON-OFF}	_	_	fo/20	-	-
Output Leakage Current	ILEAK	V ₈ = 15V		0.01	25	μA
Output Saturation Voltage	Vara	$V_{IN} = 25 m V_{rms}, I_8 = 30 m A$	-	0.2	0.4	V
		V _{IN} = 25mV _{rms} , I ₈ = 100mA	_	0.6	1	V
Output Fall Time	t _F		<u> </u>	30	_	nS
Output Rise Time	t _R	-		150	-	nS

DBL 567

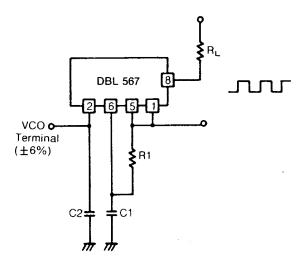
TYPICAL PERFORMANCE CHARACTERISTICS

TEST CIRCUIT




١

•


□ APPLICATIONS

1. Oscillator with Quadrature Output

3. Precision Oscillator to switch 100mA Loads

* The center frequency of the tone decoder is equal to the free running frequency of the VCO. This is given by

$$fo \simeq \frac{1}{1.1 R_1 C_1}$$

The bandwidth of the filter may be found from the approximation

B.W =
$$1070 \sqrt{\frac{V_{JN}}{f_0 C_2}}$$
 in % of fo

where

V_{IN} = Input voltage(volts rms), V_{IN} ≤200mV_{rms}

 $C_2 = Capacitance at Pin 2(\mu F)$