

PRELIMINARY

16-SEGMENT X 14-Digit VFD CONTROLLER / DRIVER

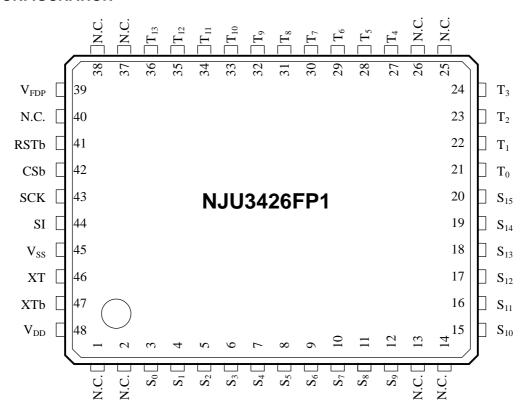
■ GENERAL DESCRIPTION

The **NJU3426** is a VFD (Vacuum Fluorescent Display) controller/driver to dynamically drive up to 16 segments x 14 digits. It consists of display data RAM, an address counter, command registers, a serial interface and high voltage drivers. The direct control from the MPU and high voltage drivers of 45V make the **NJU3426** well suited for various VFD displays.

■ PACKAGE OUTLINE

NJU3426FP1

■ FEATURES


- Directly Drives 16-segment x 14-digit
- High VFD Driving Voltage $: |V_{DD}-V_{FDP}| \le 45V$
- Display Shift Function
- Programmable Duty Ratio for Timing Signal

:2/16, 4/16, 6/16, 8/16, 10/16, 12/16, 14/16, 15/16 duty

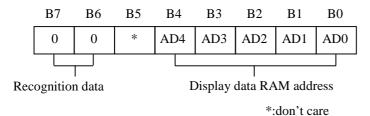
- Display ON/OFF Control Function
- Display Data RAM : 30 x 8-bit
- Built-in Oscillator (Formed by Connecting an External Ceramic Resonator)
- 8-bit Serial Interface
- Power-ON Reset Function
- Operating Voltage :3.0V to 5.5V
- C-MOS Technology
- Package Outline :QFP48-P1

BLOCK DIAGRAM S_0 to S_{15} T_0 to T_{13} V_{DD} High Voltage Driver High Voltage Driver V_{SS} V_{FDP} Segment Data Latch **Timing Counter** Duty Address Counter Counter Address Counter Initial Character Address Counter Display RAM Character 30 x8-bit **Timing** Counter \bigcirc XT **OSC** Ċ XTb Instruction Decoder **REST RSTb SCK** Serial Buffer **CSb**

■ PIN CONFIGURATION

■ TERMINAL DISCRIPTION

PAD No.	SYMBOL	FUNCTION
48	V_{DD}	Power Supply For Logic Voltage $V_{\rm DD}{=}3.0$ to $5.5{\rm V}$
45	V_{SS}	$\begin{array}{c} \text{Ground} \\ \text{V_{SS}=}0\text{V} \end{array}$
39	V_{FDP}	Power Supply For VFD Driving Voltage
46 47	XT XTb	Ceramic Resonator Connection, or External Clock Input The internal oscillator is formed by connecting an external ceramic resonator to these pins. When an external oscillator is used instead of the internal oscillator, the external clock is input to the XT and the XTb must be open.
3 to 12, 15 to 20	S_0 to S_{15}	Segment output terminals (Pulled down)
21 to 24, 27 to 36	T_0 to T_{13}	Timing output terminals (Pulled down)
41	RSTb	Reset terminal (Pulled up) Active "L": Reset is executed when this pin is "L".
42	CSb	Chip Select Active "L": Data transmission is enable when this pin is "L".
43	SCK	Serial Clock Input
44	SI	Serial Data Input (8 bits = 1 word)
1, 2, 13, 14, 25, 26, 37, 38, 40	N.C.	Non connections These pins must be open.


■ FUNCTION DESCRIPTION

(1) ADDRESS COUNTER

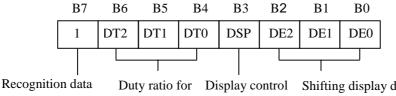
The address counter indicates the "Display data RAM address", in which the display data will be transferred and stored. For the data transmission, once an initial RAM address is determined, the display data can be continuously transmitted without setting the RAM address each time. When the upper 2 bits (B7 and B6) of the 1st word are "0,0", the lower 5 bits (B4 to B0) are recognized as RAM address data. And, the 2nd word is recognized as display data, which will be stored in the RAM address designated by the 1st word, and simultaneously the RAM address is counted up by an auto-increment operation.

The "Display data RAM address", which can be specified by the 1^{st} word, ranges from "0,0,0,0,0" (00_H) to "1,1,1,0,1" ($1D_H$). However, the auto-increment keeps counting up to "1,1,1,1,1" ($1F_H$) every display data transmission because of the 5-bit address counter, and finally the RAM address wraps to "0,0,0,0,0" (00_H) and begins counting up. Note that the display data, stored in the RAM address of "1,1,1,1,0" ($1E_H$) and "1,1,1,1,1" ($1F_H$), is ignored in this sequence.

DISPLAY DATA RAM ADDRESS

	aracter dress	В7	В6	В5	B4	В3	B2	B1	В0	RAM Address	В7	В6	В5	B4	В3	B2	B1	В0	RAM Address
	C_0									$01_{\rm H}$									$00_{\rm H}$
T_0	\mathbf{C}_1									$03_{\rm H}$									$02_{\rm H}$
T_1	C_2									$05_{\rm H}$									$04_{\rm H}$
T_2	C_3									$07_{\rm H}$									$06_{\rm H}$
T_3	C_4									$09_{\rm H}$									$08_{\rm H}$
T_4	C_5									$0B_{H}$									$0A_{H}$
T_5	C_6									$0D_{H}$									$0C_{H}$
T_6	\mathbf{C}_7									$0F_{H}$									$0E_{H}$
T_7	C_8									$11_{\rm H}$									$10_{\rm H}$
T_8	C_9									$13_{\rm H}$									$12_{\rm H}$
T_9	C_{10}									$15_{\rm H}$									$14_{\rm H}$
T_{10}	C_{11}									$17_{\rm H}$									$16_{\rm H}$
T_{11}	C_{12}									19 _H									18 _H
T_{12}	C_{13}									$1B_{H}$									$1A_{\rm H}$
T_{13}	C_{14}									$1D_{H}$									$1C_{\rm H}$
		\times	\times	\times	\geq	\times	\geq	X	\times	$1F_{\rm H}$	\geq	$\geq \!$	\times	\geq	\times	\times	X	\times	$1E_{\rm H}$
		S_{15}	S_{14}	S_{13}	S_{12}	S_{11}	S_{10}	S_9	S_8		S_7	S_6	S_5	S_4	S_3	S_2	S_1	S_0	

: These display data is ignored.


DISPLAY DATA RAM MAPPING

(2) COMMAND REGISTER 1

The "Command register 1" is used for setting "Duty ratio for timing signal", "Display control ON/OFF" and "Shifting display digits". When the upper 1 bit (B7) of the 1st word is "1", the lower 7 bits (B6 to B0) are recognized as command data, and stored in the "Command register 1". Note that changing the "Duty ratio" or "Shifting display digits" must be executed under the "Display control OFF", otherwise it may cause flickering. The contents of the "Command register 1" is initially set up at power-ON reset or reset signal, as shown below.

DEFAULT VALUES OF COMMAND REGISTER 1

• Duty ratio for timing signal : 2/16 • Display control ON/OFF : OFF • Shifting display digits : 7

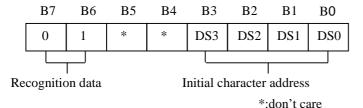
Shifting display digits timing signal ON / OFF

MD2	MD1	MD0	Duty ratio for timing signal
0	0	0	2/16
0	0	1	4/16
0	1	0	6/16
0	1	1	8/16
1	0	0	10/16
1	0	1	12/16
1	1	0	14/16
1	1	1	15/16

Note.) The output wave forms of timing signal are shown in "TIMING SIGNAL/DUTY-CHANGE WAVEFORM".

DSP	Display control
0	OFF
1	ON

When the "Display control is OFF" is set, all output pins become in display OFF state. Note.)


DE2	DE1	DE0	Shifting display digits
0	0	0	7
0	0	1	8
0	1	0	9
0	1	1	10
1	0	0	11
1	0	1	12
1	1	0	13
1	1	1	14

(3) COMMAND REGISTER 2

The "Command register 2" is used for setting the "Initial character address", which corresponds to the T_0 pin. When the upper 2 bits (B7 and B6) of the 1st word is "0,1", the lower 4 bits (B3 to B0) are recognized as command data, and stored in the "Command register 2". The contents of the "Command register 2" is initially set up at power-ON reset or reset signal, as shown below.

DEFAULT VALUES OF COMMAND REGISTER 2

• Initial character address : C1 (0,0,0,1)

	1			
DS3	DS2	DS1	DS0	Initial character address
0	0	0	0	C_0
0	0	0	1	C_1
0	0	1	0	C_2
0	0	1	1	C_3
0	1	0	0	C_4
0	1	0	1	C_5
0	1	1	0	C_6
0	1	1	1	C_7
1	0	0	0	C_8
1	0	0	1	C ₉
1	0	1	0	C_{10}
1	0	1	1	C_{11}
1	1	0	0	C_{12}
1	1	0	1	C_{13}
1	1	1	0	C_{14}
1	1	1	1	Prohibited

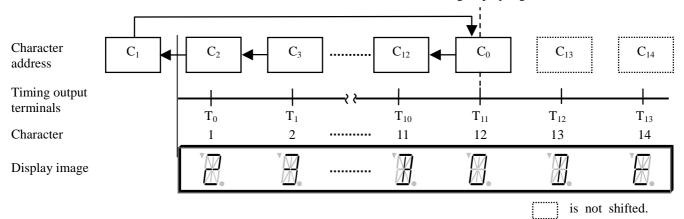
(4) DISPLAY SHIFT OPERATION

The display shift operation can be performed by changing the "Initial character address" of the "Command register 2". And, the number of digits for the display shift in the loop is determined by the "Shifting display digits" of the "Command register 1". In other words, shifting display area ranges from the "Initial character address" specified by the "Command register 2" to the last address designated by the "Command register 1".

The default value of the "Initial character address" is C_1 (0,0,0,1), as shown in the table of "Display data RAM". In addition, supposing that the value of the "Shifting display digits" is "N", the "Initial character address" must be set in the range between C_0 and C_N in order not to exceed the digit "N". Because the display shift operation doesn't apply to the addresses beyond the range of the digit "N", the display images, initially set, appear on these addresses. Just for reference, one character of display image is composed of 16 segments.

HOW TO SET LEFT DISPLAY SHIFT

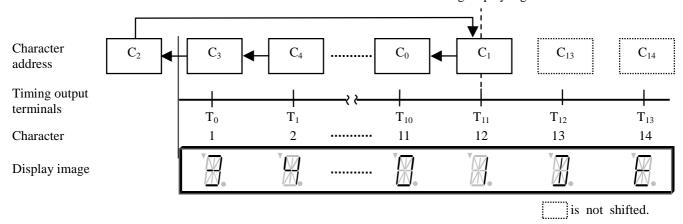
The left display shift is carried out by incrementing the "Initial character address" gradually like C_2 , C_3 , C_4 , --- C_N . To the contrary, decrementing the address performs right display shift. The following description provides the example on how to set the left display shift, using alphanumeric display images such as "0", "1", "2", ---, "9", "A", "B", ---, and "E".

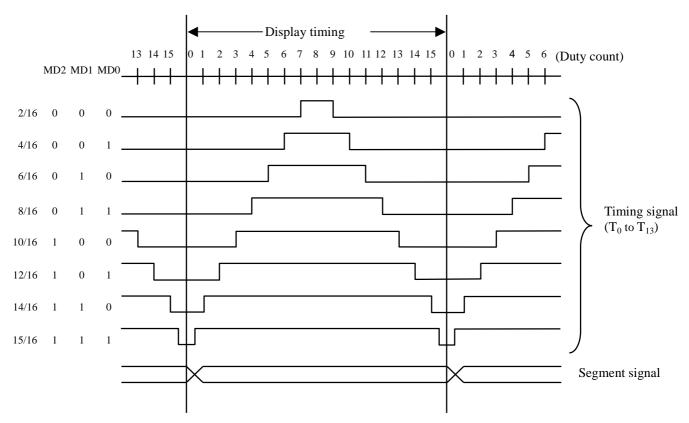

STEP1) Setting display images in the display data RAM

· Display RAM data

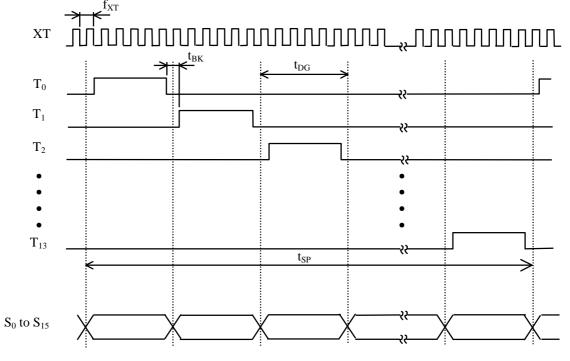
Character address	C_0	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	C_9	C_{10}	C_{11}	C_{12}	C_{13}	C_{14}
Display image	0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е

SETP2) Setting the "Initial character address" to C₂ and the "Shifting display digits N" to 12 (T₁₁).


Shifting display digits


In this setting, the display images of "2", "3",- - appear on the T_0 , T_1 , T_2 , - - - T_{10} pins respectively, and the image "0" is on the T_{11} pin, which is assigned to the 12^{th} character address. The display images "D" and "E" don't shift but remain on the T_{12} and T_{13} pins, assigned to the 13^{th} and 14^{th} characters respectively, because their character addresses are outside of the digit "N".

STEP3) Changing the "Initial character address" to C_3 , and leaving the "Shifting display digits N" as 12 (T_{11}).


Shifting display digits

TIMING SIGNAL / DUTY-CHANGE WAVEFORM

DISPLAY TIMING CHART

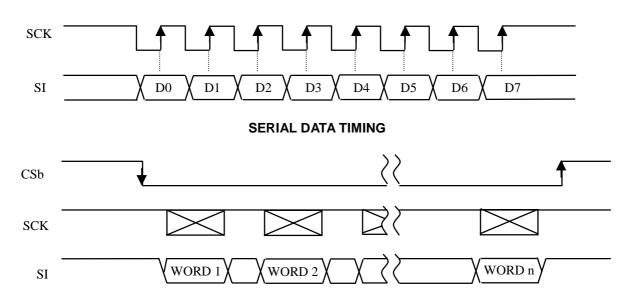
Oscillation frequency Minimum blanking time : $t_{BK}=(1/f_{XT}) \times 16 \times 2$

:800kHz to 3.5MHz

(duty15/16)

:40μs to 9.2μs

1-character display time $: t_{DG} = t_{BK} x 16$ 1-cycle display time


: $t_{SP}=t_{DG} \times 14$

:640μs to 147.2μs :20.608ms to 8.96ms

(5) SERIAL DATA TRANSMISSION

Communication between the NJU3426 and MPU uses the serial data transmission with synchronous clock, and 8 bits serial data constitutes 1 word. Each bit on the SI pin is fetched at the rising edge of the serial clock (SCK), and the entire 8 bits are loaded as 1 word at the rising edge of the chip select (CSb).

During one communication, multiple words can be transferred continuously. The 1st word must be either "Display data RAM address", "Command register 1" or "Command register 2". When the 1st word is RAM address data, the 2nd and ascending words must be display data. When it's the "Command register 1 or 2", the 2nd and ascending words are ignored.

SERIAL DATA TRANSMISSION FORMAT

• Serial input data

DATA FORMAT FOR THE 1ST WORD

DISPLAY DATA RAM ADRESS

	DU	DЭ	D4	DO	DΔ	DI	DU
0	0	*	AD4	AD3	AD2	AD1	AD0

*:don't care

COMMAND DATA 1

B7	B6	B5	B4	В3	B2	B1	B0
1	DT2	DT1	DT0	DSP	DE2	DE1	DE0

*:don't care

COMMAND DATA 2

B7	B6	B5	B4	В3	B2	B1	В0
0	1	*	*	DS3	DS2	DS1	DS0

*:don't care

SERIAL DATA FOR THE 2^{ND} AND ASCENDING WORDS When the 1^{st} word is the "Display data RAM address", the 2^{nd} and ascending words must be display data. When the 1st word is the "Command register 1 or 2", the 2nd and ascending words are ignored.

■ ABSOLUTE MAXIMAM RATINGS

 $(V_{SS}=0V, Ta=25^{\circ}C)$

				(88 / /
PARAMETER	SYMBOL	RATINGS	UNIT	CONDITIONS
Operation voltage	$V_{ m DD}$	-0.3 to +7.0	V	
Input voltage	$V_{\rm IN}$	-0.3 to $V_{DD} + 0.3$	V	
VFD driving voltage	V_{FDP}	V_{DD} -45 to V_{DD} +0.3	V	Relative to V _{DD} .
"H" level output current	I_{OH1}	-15	mA	1 pin out of S_0 to S_{15} pins
11 level output current	I_{OH2}	-35	mA	1 pin out of T_0 to T_{13} pins
"H" level Total output current	$\Sigma I_{ m OH}$	-100	mA	All output pins
"L" level output current	I_{OL}	20	mA	
"L" level Total output current	ΣI_{OL}	100	mA	All output pins
Operating temperature	Topr	-40 to 85	°C	
Storage temperature	Tstg	-55 to 125	°C	
Power dissipation	PD	1500	mW	On two-layer board of based on the JEDEC.

- Note 1): The LSI must be used inside of the "Absolute maximum ratings". Otherwise, an electrical or physical stress may cause permanent damage to the LSI.
- Note 2): De-coupling capacitors for V_{DD} and V_{SS} and V_{FDP} and V_{SS} must be connected for stabble operation.
- Note 3): The following voltage relation must be maintained; $V_{DD} > V_{SS} \ge V_{FDP}$, $V_{SS} = 0$.

■ ELECTRICAL CHARACTERISTICS

• DC characteristics 1

 $(V_{DD}=5.0V, V_{SS}=0V, Ta=-40 \text{ to } 85^{\circ}C)$

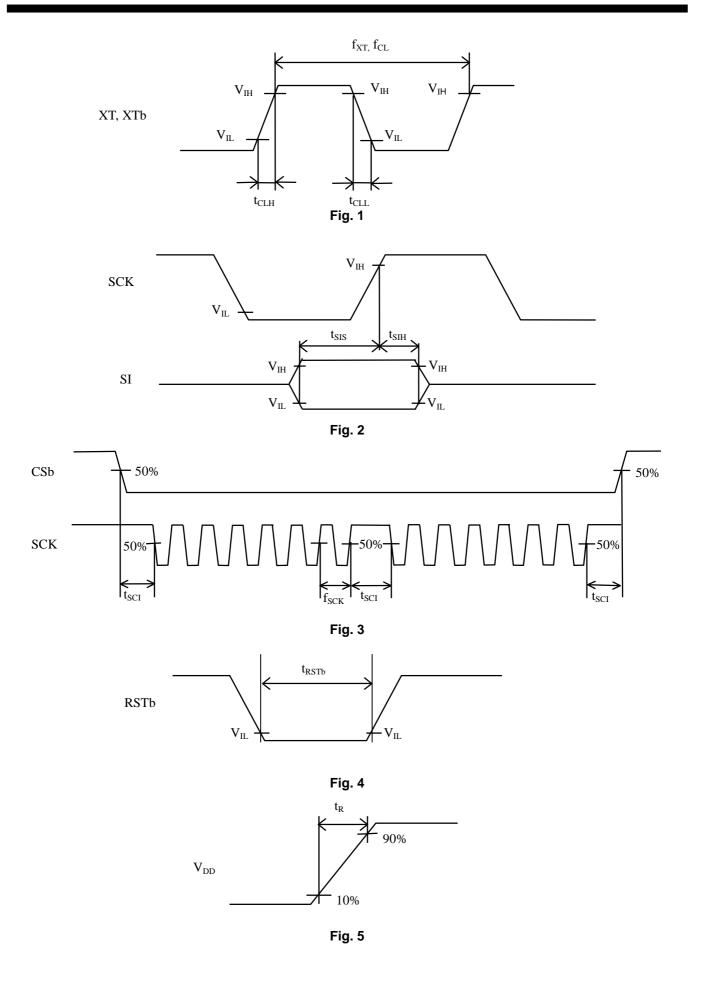
			, DD 2.01,	. 33 ,	14 10 10	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating voltage	V_{DD}	V _{DD} terminal	4.5		5.5	V
"H" level input voltage	V_{IH}	XT, RSTb, CSb, SCK, SI terminals	$0.8V_{\mathrm{DD}}$			V
"L" level input voltage	$V_{\rm IL}$				$0.2V_{\mathrm{DD}}$	V
Input off leak current	${ m I}_{ m IZ}$	CSb, SCK, SI terminals V_{DD} =5.5V, V_I =0 or 5.5V			±1	μΑ
Display output current	I_{OH}	$ \begin{array}{ccc} S_O \text{ to } S_{15} & & V_{DD} = 4.5 \text{V}, \\ \text{terminals} & & V_{FDP} = V_{DD} - 40 \text{V}, \end{array} $	T.B.D.	-9		mA
Display output current	TOH	T_{O} to T_{13} $V_{OH}=V_{DD}$ -2.5V terminals	T.B.D.	-21		mA
Pull-up resistance	R_{UR}	RSTb terminal, Ta=25°C, V _I =V _{SS}	105	165	225	$k\Omega$
Pull-down resistance	R_{DST}	S_0 to S_{15} , T_0 to T_{13} terminals, Ta=25°C V_1 = V_{DD} , V_{FDP} = V_{DD} -40V	65	100	140	kΩ
Logic operating current	I_{SS}	V _{SS} terminal, All Segment/Timing output terminals open, RSTb terminal open, Ceramic resonator:1MHz, All Segment output OFF and All Timing output OFF		1	2	mA
Display operating current	I_{FDP}	V _{FDP} terminal, V _{FDP} =V _{DD} -40V, Ceramic resonator:1MHz, All Segment/Timing output ON		10	15	mA

• DC characteristics 1

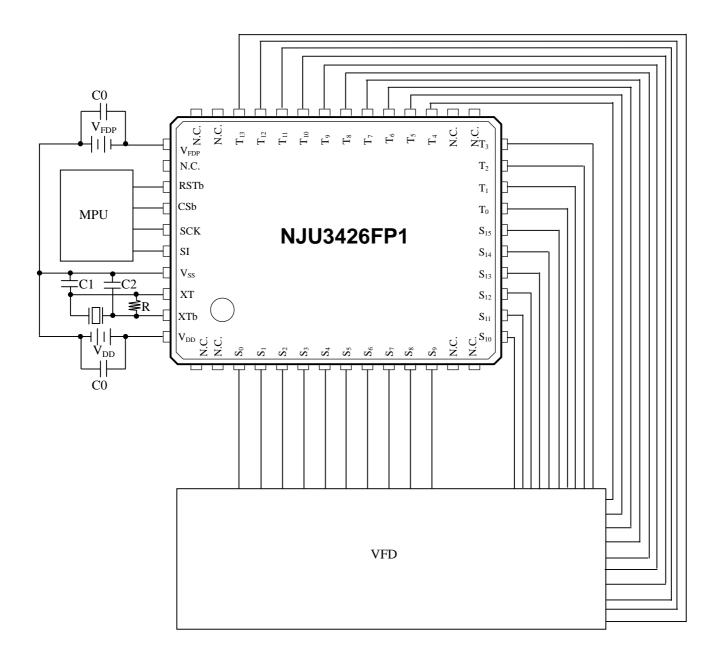
 $(V_{DD}=5.0V, V_{SS}=0V, Ta=-40 \text{ to } 85^{\circ}C)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating oscillation frequency, External clock Input	$f_{ ext{XT,}} \ f_{ ext{CL}}$	Fig. 1	0.8		3.5	MH_Z
External clock Input Rise time, Fall time	t _{CLH} , t _{CLL}	Fig. 1			20	ns
Serial input data setup time	t_{SIS}	Fig. 2	60			ns
Serial input data hold time	$t_{\rm SIH}$	Fig. 2	10			ns
Serial clock frequency	f_{SCK}	Fig. 3			1.5	MH_Z
Serial clock interval time	t _{SCI}	Fig. 3	10			μs
Reset palse width	t _{RSTb}	Fig. 4	10			μs
Power rise time	t_R	Fig. 5	0.05		10	ms

• DC characteristics 2


 $(V_{DD}=3.3V, V_{SS}=0V, Ta=-40 \text{ to } 85^{\circ}C)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating voltage	V_{DD}	V _{DD} terminal	3.0		3.6	V
"H" level input voltage	V_{IH}	XT, RSTb, CSb, SCK, SI terminals	$0.8V_{\mathrm{DD}}$			V
"L" level input voltage	$V_{\rm IL}$				$0.2V_{DD}$	
Input off leak current	I_{IZ}	CSb, SCK, SI terminals V _{DD} =3.6V, V _I =0 or 3.6V			±1	μΑ
Display output current	I _{OH}	$ \begin{array}{ccc} S_0 \text{ to } S_{15} & & V_{DD} = 3.0 \text{V}, \\ \text{terminals} & & V_{FDP} = V_{DD} - 40 \text{V}, \end{array} $	T.B.D.	-4		mA
		T_0 to T_{13} terminals $V_{OH}=V_{DD}-1.5V$	T.B.D.	-9		mA
Pull-up resistance	R_{UR}	RSTb terminal, Ta=25°C, V _I =V _{SS}	105	165	225	$k\Omega$
Pull-down resistance	R_{DST}	S_0 to S_{15} , T_0 to T_{13} terminals, Ta=25°C V_1 = V_{DD} , V_{FDP} = V_{DD} -40V	60	100	140	kΩ
Logic operating current	I _{SS}	V _{SS} terminal, All Segment/Timing output terminals open, RSTb terminal open, Ceramic resonator:1MHz, All Segment output OFF and All Timing output OFF		0.8	1.5	mA
Display operating current	I_{FDP}	V _{FDP} terminal, V _{FDP} =V _{DD} -40V, Ceramic resonator:1MHz, All Segment/Timing output ON		10	15	mA


• AC characteristics 2

 $(V_{DD}=3.3V, V_{SS}=0V, Ta=-40 \text{ to } 85^{\circ}C)$

			(DD	, 55		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Operating oscillation frequency,	$f_{XT,}$	Fig. 1	0.8		2	MH_Z
External clock Input	f_{CL}	rig. i	0.8		2	MITZ
External clock Input		Fig. 1			20	na
Rise time, Fall time	$t_{\rm CLH},t_{\rm CLL}$	Fig. 1			20	ns
Serial input data setup time	t_{SIS}	Fig. 2	120			ns
Serial input data hold time	t_{SIH}	Fig. 2	20			ns
Serial clock frequency	f_{SCK}	Fig. 3			0.8	MH_Z
Serial clock interval time	t_{SCI}	Fig. 3	10			μs
Reset palse width	t _{RSTb}	Fig. 4	20			μs
Power rise time	t_R	Fig. 5	0.05		5	ms

■ APPLICATION CIRCUIT

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.