$\mu ext{-} ext{POWER}$ OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM4250 is extremely versatile programmable monolithic operational amplifiers. A single external master bias current setting resistor programs the input bias current, input offset current, quiescent power consumption, slew rate, input noise, and the gain-bandwidth product. The device is a truly general purpose operational amplifier.

■ FEATURES

Operating Voltage

 $(\pm 1 V \sim \pm 18 V)$

• Low Operating Current

(0.1mA max.)

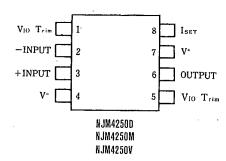
• Programable monolithic OP-Amp

Very Low Power ConsumptionPackage Outline

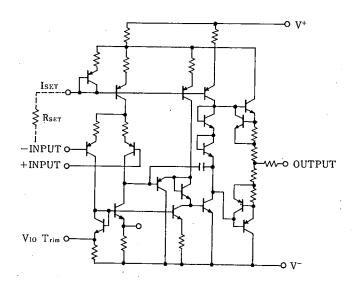
DIP8, DMP8, SSOP8

Bipolar Technology

■ PACKAGE OUTLINE


N.IM42509

NJM4250M



NJM4250 V

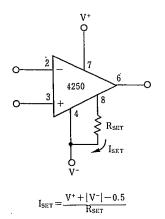
■ PIN CONFIGURATION

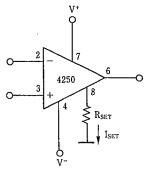
■ EQUIVALENT CIRCUIT (1/2 shown)

■ ABSOLUTE MAXIMUM RATINGS

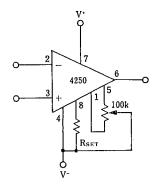
(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*/V-	±18	V
Differential Input Voltage	V _{ID}	±30	V
Input Voltage	Vic	±15 (note)	V
		(DIP8) 500	mW
Power Dissipation	PD	(DMP8) 300	mW
		(SSOP8) 250	mW
I _{SET} Current	Iser	150	μΑ
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	r

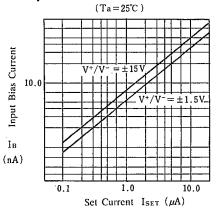

(note) For supply voltage less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

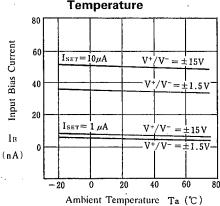

■ ELECTRICAL CHARACTERISTICS

 $(Ta=25^{\circ}C, V^{+}/V^{-}=\pm 15V)$

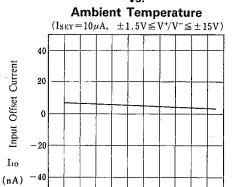

D. D. C.		TEST CONDITION	ISET=1 μA		ISET=10 μA		
PARAMETER	SYMBOL	TEST CONDITION	MIN.	MAX.	MIN.	MAX.	UNIT
Input Offset Voltage !	V _{IO} 1	R _s ≦100kΩ	_	5	_	6	mV
Input Offset Voltage 2	V _{1O} 2	$V^{+}/V^{-} = \pm 1.5V, R_{S} \le 100 k\Omega$		5	_	6	mV
Input Offset Current	Ito		_	6	_	20	nA
Input Bias Current 1	IB 1	·	l —	10	<u> </u>	75	nA .
Input Bias Current 2	I _B 2	$V^{+}/V^{-} = \pm 1.5V$	_	10	-	75	nA
Large Signal Voltage Gain 1	Av 1	$V_o = \pm 10V, R_L \ge 100k\Omega$	96	_	—		, dB
Large Signal Voltage Gain 2	Av 2	$V_o = \pm 10V, R_L \ge 10k\Omega$	-	l —	96		dB
Operating Current 1	I _{CC} 1			11		100	μΑ
Operating Current 2	I _{cc} 2	$V^{+}/V^{-} = \pm 1.5V$	—	8	—	90	μΑ
Input Common Mode Voltage Range 1	V _{ICM} 1		±13.5	<u> </u>	±13.5	<u> </u>	v
Input Common Mode Voltage Range 2	V _{ICM} 2	$V^{+}/V^{-} = \pm 1.5V$	±0.6	—	±0.6	-	v
Maximum Output Voltage Swing I	V _{OM} 1	R _L ≥100kΩ	±12		l —	_	V
Maximum Output Voltage Swing 2	V _{OM} 2	$V^{+}/V^{-} = \pm 1.5V, R_{L} \ge 100k\Omega$	±0.6	-	—	-	V
Maximum Output Voltage Swing 3	V _{OM} 3	R _L ≥10kΩ	_	_	±12	-	V
Maximum Output Voltage Swing 4	V _{OM} 4	$V^+/V^- = \pm 1.5V$, $R_L \ge 10$ k Ω	 	—	±0.6	\ 	v
Common Mode Rejection Ratio	CMR	R _S ≤10kΩ	70	-	70	_	dB
Supply Voltage Rejection Ratio	SVR	$R_s \leq 10 k\Omega$	74	-	74		dB
	i			1	I		1

■ TYPICAL APPLICATION (Iser, Vio Adjustment)

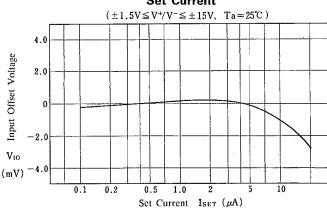

$$I_{SET} = \frac{V^+ - 0.5}{R_{SET}}$$


Offset Adjustment

■ TYPICAL CHARACTERISTICS

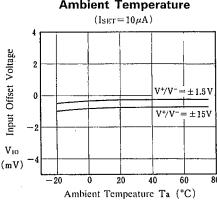

Input Bias Current vs. Set Current

Input Bias Current vs. **Temperature**


Input Offset Current

60

Input Offset Voltage VS.



Input Offset Voltage VS.

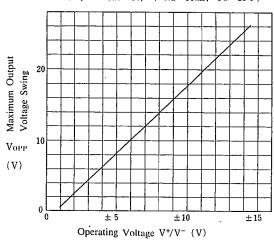
-20

Ambient Temperature

Ambient Temperature Ta (℃)

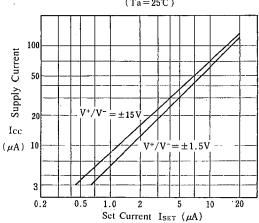
Maximum Output Voltage Swing

VS. **Output Current**

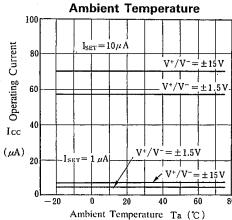

4-198

-New Japan Radio Co., Ltd.

■ TYPICAL CHARACTERISTICS

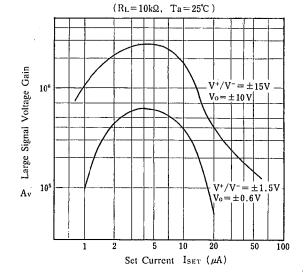

Maximum Output Voltage Swing . vs. Operating Voltage

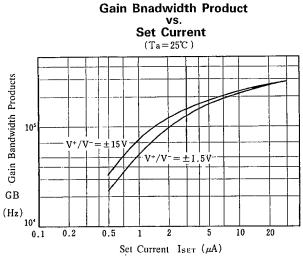
($1 \mu A \le I_{SET} \le 10 \mu A$, $R_L = 10 k\Omega$, $T_a = 25^{\circ}C$)

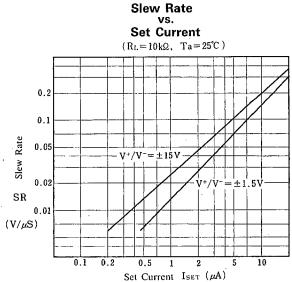


Operating Current vs. Set Current

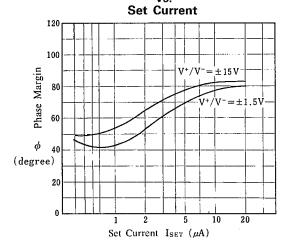
 $(Ta = 25^{\circ}C)$

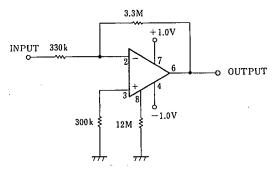



Operating Current vs.



Open Loop Voltage Gain VS.


Set Current



Phase Margin vs.

. TYPICAL APPLICATIONS

500nW: 10times Inverting Amplifier

N		П	N	П	4	7	F	0
n	•	J	IV	4	4	Z	IJ	U

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.