SINGLE-SUPPLY QUAD OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

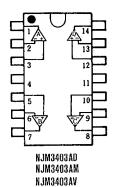
The NJM3403A is high performance ground sensing quad operational amplifier featuring the high slew rate and no cross-over distor-


The NJM3403A is improved version of the NJM2902.

FEATURES

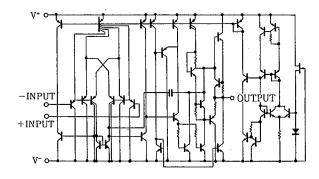
- Single Supply
- Operating Voltage
- Low Operating Current
- Slew Rate
- Package Outline
- (+4V~+36V)
- (3mA typ.)
- $(1.2V/ \mu s typ.)$
- DIP14, DMP14, SSOP14
- Bipolar Technology

■ PACKAGE OUTLINE


NJM3403AD

NJM3403AM

NJM3403AV


PIN CONFIGURATION

PIN FUNCTION

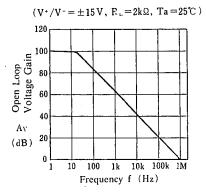
- 1.A OUTPUT 2.A-INPUT 8.C OUTPUT 9.C-INPUT
- 3.A+INPUT 4.V+
- 10.C+INPUT 11. V-
- 5.B+INPUT
- 12.D+INPUT 13.D-INPUT
- 6.B-INPUT 7.B OUTPUT
 - 14.D OUTPUT

■ EQUIVALENT CIRCUIT (1/4 Shown)

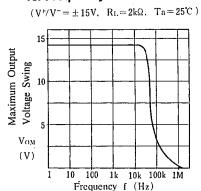
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V+(V+/V-)	36(or ±18)		
Differential Input Voltage	ViD	36	V	
Input Voltage	V _{IC}	-0.3~+36	V	
Power Dissipation		(DIP14) 500	mW	
	P _D	(DMP14) 300	mW	
		(SSOP14) 300	mW	
Operating Temperature Range	Topr	-40~+85	${\mathfrak C}$	
Storage Temperature Range	Tstg	-40~+125	°C	

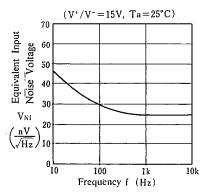

■ ELECTRICAL CHARACTERISTICS

 $(Ta=25^{\circ}C, V^{+}/V^{-}=\pm 15V)$

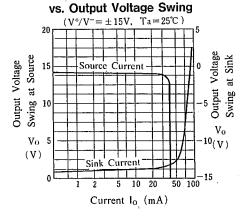

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT`
Input Offset Voltage	Vio	$R_S=0\Omega$		2	5	mV
Input Offset Current	I _{IO}	·	-	5	. 50	nΑ
Input Bias Current	I _B		_	70	200	nA
Large Signal Voltage Gain	Av	$R_L > 2k\Omega$	88	100	<u> </u>	d₿
Maximum Output Voltage Swing	V _{OM}	$R_L=2k\Omega$	±13	±14	. —	\mathbf{v}
Input Common Mode Voltage Range	V _{ICM}		- 15 ~ + 13	_	_	v
Common Mode Rejection Ratio	CMR	DC	70	90		dB
Supply Voltage Rejection Ratio	SVR		-80	. 94	l —	dB
Output Source Current	ISOURCE	$V_{IN}^{+} = IV, V_{IN}^{-} = 0V$	20	30		mA
Output Sink Current	I _{SINK}	$V_{1N}^{+} = 0V, V_{1N}^{-} = 1V$	10	20		mA
Channel Separation	CS	f=1k~20kHz Input Referred	_	120		dB
Operating Current	I _{CC}	R ₁ =∞	_	3	5	mA
Slew Rate	SR		_	1.2		V/µS
	f _T		_	1.2	1	MHz
Unity Gain Bandwidth Total Harmonic Distortion	THD	$f=20kHz$, $V_O=10V_{PP}$	-	1	_	%

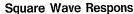
■ TYPICAL CHARACTERISTICS

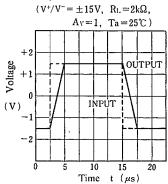
Open Loop Voltage Gain vs. Frequency

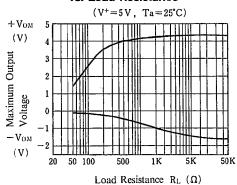


Maximum Output Voltage Swing vs. Frequency

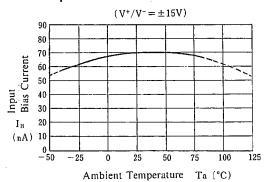



4

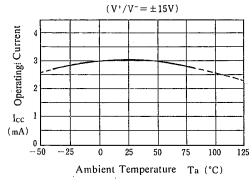

Equivalent Input Noise Voltage vs. Frequency

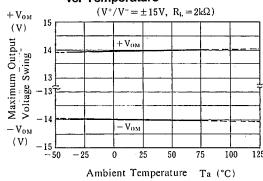

Output Source Current Output Sink Current

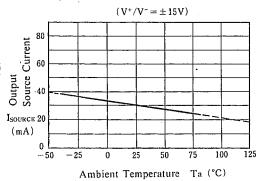

Maximum Output Voltage vs. Load Resistance

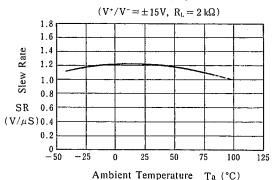

4

■ TYPICAL CHARACTERISTICS

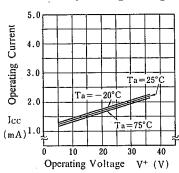

Input offset Voltage vs. Temperature


Input Bias Current vs. Temperature

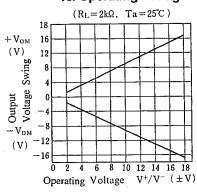

Operating Current vs. Temperature


Maximum Output Voltage Swing vs. Temperature

Output Source Current vs. Temperature

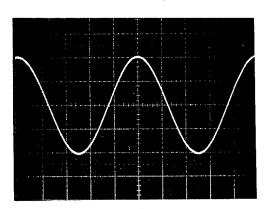


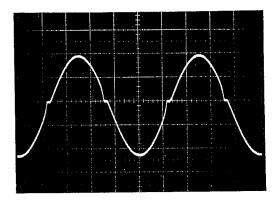
Slew Rate vs. Temperatute



■ TYPICAL CHARACTERISTICS

Operating Current vs. Operating Voltage


Output Voltage Swing vs. Operating Voltage


4

■ Crossover Distortion

Photos (1) and (2) show the output waveforms of NJM3403A and operational amplifier having crossover distortion. The NJM3403A eliminates the crossover distortion through the A, B class output stage as shown in the photo. NJM3403A IC has realized a wide band and a high slew rate in addition to the low distortion.

(1) NJM3403A Output Waveform

(2) Crossover Distortion Example

f=1kHz, $R_L=2k\Omega$, Vertical Axis: 2V/div

NJM3403A

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.