QUAD OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2060 integrated circuit is a high-gain, wide-bandwidth, quad operational amplifier capable of driving 20V peak-to-peak into 400 Ω loads. The NJM2060 combines many of the features of the NJM2058 as well as providing the capability of wider bandwidth, and higher slew rate make the NJM2060 ideal for active filters, data and telecommunications, and many instrumentation applications. The availability of the NJM2060 in the surface mounted micro-package allows the NJM2060 to be used in critical applications requiring very high packing densities. Each amplifier of the NJM2060 has the same electrical characteristic of the NJM4560.

■ FEATURES

Operating Voltage

 $(\pm 4V \sim \pm 18V)$

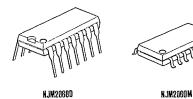
Low Noise Voltage

(RIAA 1.2 μ Vrms typ.)

Slew Rate

 $(4V/\mu s typ.)$

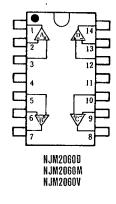
Unity Gain BandwidthHigh Output Current


(10MHz typ.) (25mA)

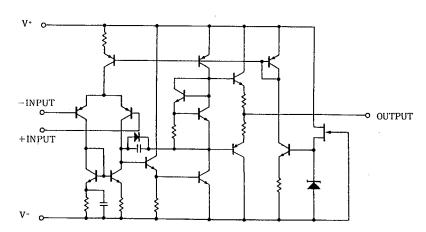
Package Outline

DIP14, DMP14, SSOP14

Bipolar Technology


■ PACKAGE OUTLINE

NJM2060V


■ PIN CONFIGURATION

PIN FUNCITON

- 1. A OUTPUT 8. C OUTPUT
 2. A-INPUT 9. C-INPUT
 3. A+INPUT 10. C+INPUT
 4. V* 11. V5. B+INPUT 12. D+INPUT
 - 5. B+INPUT 12. D+INPUT 6. B-INPUT 13. D-INPUT 7. B.OUTPUT 14. D OUTPUT

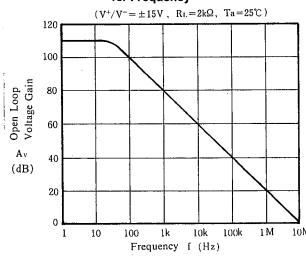
■ EQUIVALENT CIRCUIT (1/4 Shown)

PARAMETER SYMBOL RATINGS Symbol RATINGS

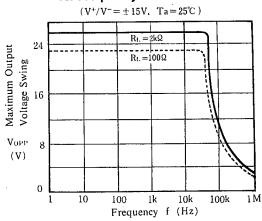
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*/V~	±18	V
Differential Input Voltage	V _{ID}	±30	٧
Input Voltage	V _{IC}	± 15 (note 1)	V
	Pp	(DIP14) 700	mW
Power Dissipation		(DIM14) 700 (note 2)	mW
		(SSOP14) 300	mW
Operating Temperature Range	Topr	−20∼+75	${\mathfrak C}$
Storage Temperature Range	T _{stg}	−40∼+125	r

(note 1) For supply voltage less than ± 15 V. the absolute maximum input voltage is equal to the supply voltage. (note 2) At on PC board

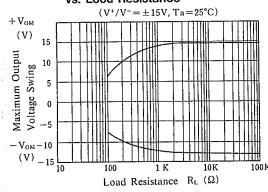
■ ELECTRICAL CHARACTERISTICS

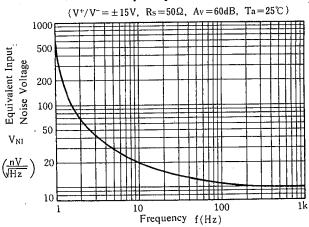

 $(Ta = 25^{\circ}C, V^{\dagger} = 15V, V^{-} = -15V)$

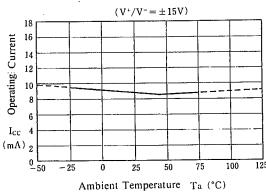
(Ta=25°C)

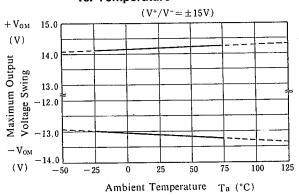

PARAMETER	SYMBOL	TEST CONDITION		TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _s ≤10kΩ	_	0.5	6	mV
Input Offset Current	IIO		—	5	200	nΑ
Input Bias Current	l_{B}		_	40	500	nA
Input Resistance	R _{IN}		100	500		kΩ
Large Signal Voltage Gain	A_{V}	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	86	100	_	dB
Maximum Output Voltage Swing 1	V _{OM}	$R_{L} \ge 2k\Omega$	±12	±14	l —	v
Maximum Output Voltage Swing 2	V _{OM2}	I _O =25mA	±10	±11.5	_	v
Input Common Mode Voltage Range	V _{ICM}		±12	±14		v
Common Mode Rejection Ratio	CMR	R _S ≦10kΩ	70	90	_	dB
Supply Voltage Rejection Ratio	SVR	R _S ≦10kΩ	76	90	_	dB
Operating Current	Icc		—	. 9	14	mA
Slew Rate	SR			4	_	V/μs
Gain Bandwidth Product	GB			10		MHz
Equivalent Input Noise Voltage	V _{NI}	RIAA Rs = $2.2k\Omega$, $30kHz$ L.P.F.	-	1.2	· — ·	μVrms

■ TYPICAL CHARACTERISTICS

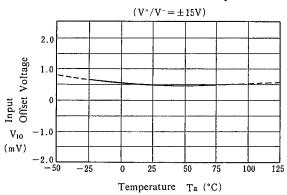

Open Loop Voltage Gain vs. Frequency


Maximum Output Voltage Swing vs. Frequency

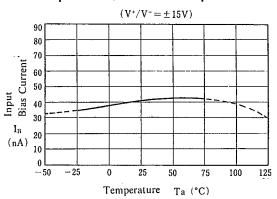

Maximum Output Voltage Swing vs. Lood Resistance


Equivalent Input Noise Voltage vs. Frequency

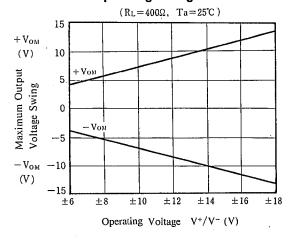
Operating Current vs. Temperature

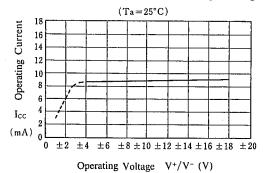


Maximum Output Voltage Swing vs. Temperature



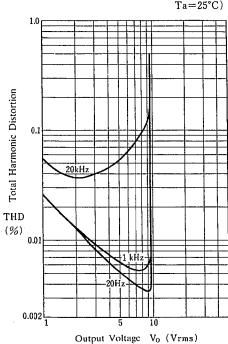
■ TYPICAL CHARACTERISTICS


Input Offset Voltage vs. Temperature


Input Bias Current vs. Temperature

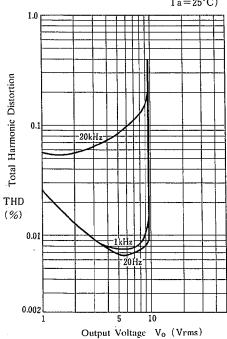
Maximum Output Voltage Swing vs. Operating Voltage

Operating Current vs. Operating Voltage



4

TYPICAL CHARACTERISTICS


Total Harmonic Distortion

$$(\,V^+/V^-\,{=}\pm 15\,V\,\,,\ \ \, \mbox{Gain}\,{=}\,40\mbox{dB},\ \, R_L\,{=}\,10\mbox{k}\Omega\,\,,$$

$$T\,a\,{=}\,25^\circ\mbox{C}\,)$$

Total Harmonic Distortion

$$(V^{+}/V^{-}=\pm 15V, Gain = 40dB, R_{L} = 2k\Omega, Ta = 25^{\circ}C)$$

N		N/	12	U	C	Λ
IN	U	IV	ıZ	U	U	U

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.