DUAL LOW POWER OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM022 is a dual low-power operational amplifier which was designed to replace higher-power devices in many applications without sacrificing system performance. High input impedance, low supply currents, and low equivalent input noise voltage over a wide range of operating supply voltages result in an extremely versatile operational amplifier for use in a variety of analog applications including battery-operated circuit. Internal frequency compensation, absence of latch-up, high slew rate, and short-circuit protection assure ease of use.

FEATURES

Operating Voltage

 $(\pm 2V \sim \pm 18V)$

Low Operating Current

(130 μ Atyp.)

Slew Rate

 $(0.5V/ \mu s \text{ typ.})$

• Short-Circuit Protection

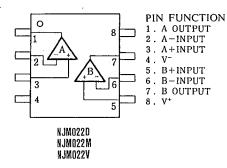
Package Outline

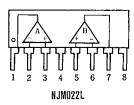
DIP8, DMP8, SSOP8, SIP8

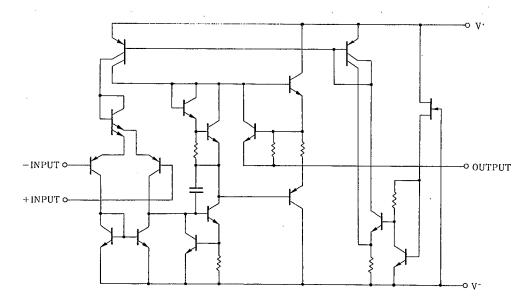
Bipolar Technology

■ PACKAGE OUTLINE

NJM022D


NJM022M




NJM022V

PIN CONFIGURATION

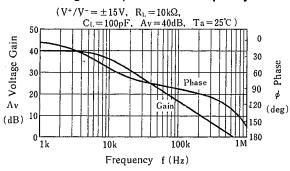
■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

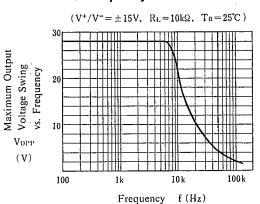
(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*/V-	±18	V	
Input Voltage	Vic	±15	V	
Differential Input Voltage	V _{ID}	±30	V	
	Po	(DIP8) 500	mW	
n ni i i		(DMP8) 300	mW	
Power Dissipation		(SSOP8) 300	mW	
		(SIP8) 800	mW	
Operating Temperature Range	Торг	-40~+85	r	
Storage Temperature Range	Tstg	-40~+125	C	

(note) For supply voltage less than ± 15 V. the absolute maximum input voltage is equal to the supply voltage.

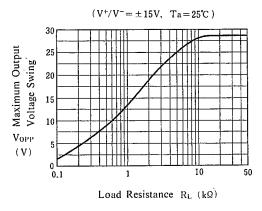

■ ELECTRICAL CHARACTERISTICS

 $(Ta = +25^{\circ}C, V^{\dagger}/V^{-} = \pm 15V)$

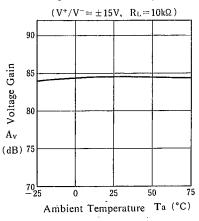

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	$R_{S} \leq 10 k\Omega$	_	1	5	mV
Input Offset Current	I _{IO}		_	1	80	nA
Input Bias Current	I _{IB}		_	15	250	nA
Large Signal Voltage Gain	A _V	$R_L \ge 10k\Omega$, $V_O = \pm 10V$	- 60	88	—	dB
Common Mode Rejection Ratio	CMR	R _S ≦10kΩ	60	90		dB
Response Time (Rise Time)	t _R	$V_{IN} = 20 \text{mV}, R_L = 10 \text{k}\Omega, C_L = 100 \text{pF}$	_	0.3	—	μs
Slew Rate	SR	$V_{IN} = 10V, R_L = 10k\Omega, C_L = 100pF$	l —	0.5	_	V/μs
Input Common Mode Voltage Range	V _{ICM}		±12	±13	_	V
Supply Voltage Rejection Ratio	SVR	R _s ≦10kΩ	74	110	_	dB
Equivalent Input Noise Voltage	V _{NI}	$A_V=20$ dB, $f=1$ kHz	_	50	_	nV/√Hz
Short-circuit Output Current	los			±6		mA
Operating Current	I _{cc}		_	130	250	μΑ
Maximum Peak-to-peak Output Voltage Swing	V _{ОМ}	$R_L = 10k\Omega$	±10	±14	į	V

TYPICAL CHARACTERISTICS

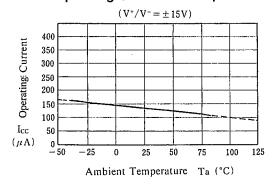
Voltage Gaim, Phase vs. Frequency

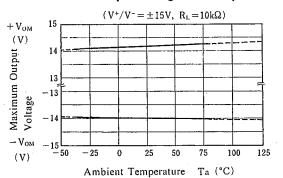


Maximum Output Voltage Swing vs. Frequency

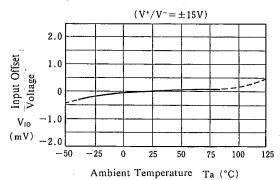


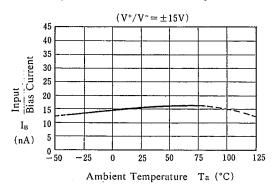
4


Maximum Output Voltage Swing vs. Load Resistance

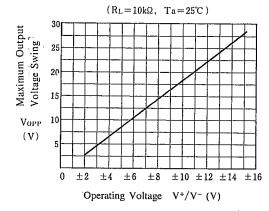

Voltage Gain vs. Temperature

Operating Current vs. Temperature

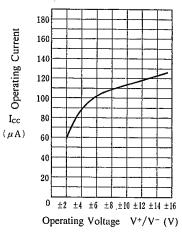

Maximum Output Voltage vs. Temperature


4

■ TYPICAL CHARACTERISTICS


Input Offset Voltage vs. Temperatare

Input Bias Current vs. Temperature



Maximum Output Voltage Swing vs. Operating Voltage

Operating Current vs. Operating Voltage

(No Input Signal R_L =∞, Ta=25°C)

N		M	10	2	2
	•		v		_

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.