

Preliminary Technical Data

FEATURES

Extremely low harmonic distortion -108 dBc HD2 @ 10 MHz -79 dBc HD2 @ 70 MHz -125 dBc HD3 @ 10 MHz -87 dBc HD3 @ 70 MHz Low input voltage noise: 2.2 nV/√Hz **High speed** -3 dB bandwidth of 1.5 GHz, G = 1 Slew rate: 4700 V/µs 0.1 dB gain flatness to 125 MHz Fast settling to 0.01% in 8.5 ns Fast overdrive recovery of 4 ns 1 mV typical offset voltage **Externally adjustable gain** Differential to differential or single-ended to differential operation Adjustable output common-mode voltage Wide Supply Voltage Range: +5 V & ± 5 V Pb-free 3 mm x 3 mm LFCSP package

Ultra-Low Distortion Differential ADC Driver

ADA4938-1

FUNCTIONAL BLOCK DIAGRAM

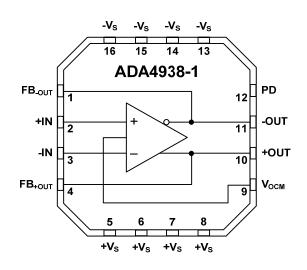


Figure 1.

APPLICATIONS

ADC drivers Single-ended-to-differential converters IF and baseband gain blocks Differential buffers Line drivers

GENERAL DESCRIPTION

The ADA4938-1 is a low noise, ultra-low distortion, high speed differential amplifier. It is an ideal choice for driving high performance ADCs with resolutions up to 16 bits from dc to 70 MHz. The output common mode voltage is adjustable over a wide range, allowing the ADA4938-1 to match the input of the ADC. The internal common mode feedback loop also provides exceptional output balance as well as suppression of even-order harmonic distortion products.

Full differential and single-ended to differential gain configurations are easily realized with the ADA4938-1. A simple external feedback network of four resistors determines the amplifier's closed-loop gain. The ADA4938-1 is fabricated using ADI's proprietary third generation high-voltage XFCB process, enabling it to achieve very low levels of distortion with input voltage noise of only 2.2 nV/ \sqrt{Hz} . The low dc offset and excellent dynamic performance of the ADA4938-1 make it well suited for a wide variety of data acquisition and signal processing and applications.

The ADA4938-1 is available in a Pb-free, 3 mm x 3mm lead frame chip scale package (LFCSP). It is specified to operate over the extended industrial temperature range of -40° C to $+85^{\circ}$ C.

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1	
Applications 1	
Functional Block Diagram 1	
General Description 1	
Revision History 2	2
Specifications	,
Dual Supply Operation	,

Single Supply Operation	5
Absolute Maximum Ratings	7
Thermal Resistance	7
ESD Caution	7
Pin Configuration and Function Descriptions	8
Outline Dimensions	9
Ordering Guide	9

REVISION HISTORY

12/06—Revision PrA: Initial Version

SPECIFICATIONS

DUAL SUPPLY OPERATION

At 25 °C, $+V_S = 5 V$, $-V_S = -5 V$, $V_{OCM} = 0 V$, $R_G = R_F = 200 \Omega$, G = +1, $R_{L, dm} = 1 k\Omega$, unless otherwise noted. All specifications refer to single-ended input and differential outputs, unless otherwise noted.

Parameter	Conditions	Min Typ	Max	Unit
±D _{IN} TO ±OUT PERFORMANCE				
DYNAMIC PERFORMANCE				
–3 dB Small Signal Bandwidth	$V_{OUT} = 0.5 V p-p$, Differential Input	1500		MHz
Bandwidth for 0.1 dB Flatness	$V_{OUT} = 2 V p-p$, Differential Input	125		MHz
Large Signal Bandwidth	$V_{OUT} = 2 V p-p$, Differential Input	1300		MHz
	$V_{OUT} = 4 V p-p$, Differential Input	800		MHz
Slew Rate	$V_{OUT} = 2 V p - p$	4700		V/µs
Settling Time	0.01%, V _{OUT} = 2 Vp-p	8.5		ns
Overdrive Recovery Time	$V_{IN} = 5 V \text{ to } 0 V \text{ step}, G = +2$	4		ns
NOISE/HARMONIC PERFORMANCE ¹				
Second Harmonic	V _{оит} = 2 V p-p, 10 MHz	-108		dBc
Scella Hamonic	$V_{OUT} = 2 V p - p, 70 MHz$	-79		dBc
Third Harmonic	$V_{OUT} = 2 V p - p, 10 MHz$	-125		dBc
mild hamonic	$V_{OUT} = 2 V p - p$, 70 MHz	-87		dBc
IMD	70 MHz	-67		dBc
IP3	70 MHz			dBm
Voltage Noise (RTI)	70 MHZ	2.2		nV/√Hz
-	C 13	12		dB
Noise Figure	G = +2			
Input Current Noise		2		pA/√Hz
INPUT CHARACTERISTICS				
Offset Voltage	$V_{OS, dm} = V_{OUT, dm}/2; V_{DIN+} = V_{DIN-} = 0 V$	1		mV
	T _{MIN} to T _{MAX} variation	±4		μV/°C
Input Bias Current		3.5		μΑ
	T _{MIN} to T _{MAX} variation	-0.01		µA/°C
Input Resistance	Differential	6		MΩ
	Common mode	3		MΩ
Input Capacitance		1		pF
Input Common-Mode Voltage		-4.7 to	3.4	V
CMRR	$\Delta V_{OUT, dm} / \Delta V_{IN, cm}$; $\Delta V_{IN, cm} = \pm 1 V$	-77		dB
OUTPUT CHARACTERISTICS				
Output Voltage Swing	Maximum ΔV_{OUT} ; single-ended output	1	4	V
Output Current		95		mA
Output Balance Error	$\Delta V_{OUT, cm}/\Delta V_{OUT, dm}$; $\Delta V_{OUT, dm} = 1 V$; 10 MHz	-66		dB
V_{OCM} to ±OUT PERFORMANCE				
VOCM DYNAMIC PERFORMANCE				
–3 dB Bandwidth		400		MHz
Slew Rate		1700		V/µs
INPUT VOLTAGE NOISE (RTI)		7.5		nV/√Hz
Input Voltage Range		-3.8	3.8	v
Input Resistance		200		kΩ
Input Offset Voltage	$V_{OS, cm} = V_{OUT, cm}; V_{DIN+} = V_{DIN-} = 0 V$	1	3.5	mV
Input Bias Current		0.5	5.5	μA
V _{OCM} CMRR	$\Delta V_{OUT, dm} / \Delta V_{OCM}; \Delta V_{OCM} = \pm 1 V$	-75		dB
Gain	$\Delta V_{OUT, cm}/\Delta V_{OCM}$; $\Delta V_{OCM} = \pm 1 V$	1		V/V
POWER SUPPLY				V/V

ADA4938-1

Preliminary Technical Data

Parameter	Conditions	Min	Тур	Max	Unit
Operating Range		4.5		12	V
Quiescent Current			40		mA
	T _{MIN} to T _{MAX} variation		40		µA/°C
	Powered down		< 1		mA
Power Supply Rejection Ratio	$\Delta V_{OUT, dm}/\Delta V_s; \Delta V_s = \pm 1 V$		-90		dB
POWER DOWN (PD)					
PD Input Voltage	Powered down		≤1		V
	Enabled		≥ 2		V
Turn-Off Time			1		μs
Turn-On Time			200		ns
PD Bias Current					
Enabled	$\overline{PD} = 5 V$		40		μA
Disabled	$\overline{PD} = 0 V$		200		μΑ
OPERATING TEMPERATURE RANGE		-40		+85	°C

SINGLE SUPPLY OPERATION

At 25 °C, $+V_S = 5$ V, $-V_S = 0$ V, $V_{OCM} = 2.5$ V, $R_G = R_F = 200 \Omega$, G = +1, R_L , $dm = 1 k\Omega$, unless otherwise noted. All specifications refer to single-ended input and differential output, unless otherwise noted.

Table 2.

Bandwidth for 0.1 dB Flatness Large Signal Bandwidth Slew Rate Settling Time Overdrive Recovery Time NOISE/HARMONIC PERFORMANCE Second Harmonic Third Harmonic IMD	$V_{OUT} = 0.5 V p-p, Differential Input$ $V_{OUT} = 2 V p-p, Differential Input$ $V_{OUT} = 2 V p-p, Differential Input$ $V_{OUT} = 2 V p-p$ $0.01\%, V_{OUT} = 2 V p-p$ $V_{IN} = 2.5 V to 0 V step, G = +2$ $V_{OUT} = 2 V p-p, 10 MHz$ $V_{OUT} = 2 V p-p, 10 MHz$ $V_{OUT} = 2 V p-p, 10 MHz$ $V_{OUT} = 2 V p-p, 70 MHz$	1500 125 1100 3900 8.1 4 -115 -87 -110		MHz MHz MHz V/µs ns ns dBc dBc
-3 dB Small Signal Bandwidth Bandwidth for 0.1 dB Flatness Large Signal Bandwidth Slew Rate Settling Time Overdrive Recovery Time NOISE/HARMONIC PERFORMANCE Second Harmonic Third Harmonic IMD	$V_{OUT} = 2 V p-p, Differential Input$ $V_{OUT} = 2 V p-p, Differential Input$ $V_{OUT} = 2 V p-p$ $0.01\%, V_{OUT} = 2 V p-p$ $V_{IN} = 2.5 V to 0 V step, G = +2$ $V_{OUT} = 2 V p-p, 10 MHz$ $V_{OUT} = 2 V p-p, 70 MHz$ $V_{OUT} = 2 V p-p, 10 MHz$	125 1100 3900 8.1 4 -115 -87		MHz MHz V/μs ns ns dBc
Bandwidth for 0.1 dB Flatness Large Signal Bandwidth Slew Rate Settling Time Overdrive Recovery Time NOISE/HARMONIC PERFORMANCE Second Harmonic Third Harmonic IMD	$V_{OUT} = 2 V p-p, Differential Input$ $V_{OUT} = 2 V p-p, Differential Input$ $V_{OUT} = 2 V p-p$ $0.01\%, V_{OUT} = 2 V p-p$ $V_{IN} = 2.5 V to 0 V step, G = +2$ $V_{OUT} = 2 V p-p, 10 MHz$ $V_{OUT} = 2 V p-p, 70 MHz$ $V_{OUT} = 2 V p-p, 10 MHz$	125 1100 3900 8.1 4 -115 -87		MHz MHz V/μs ns ns dBc
Large Signal Bandwidth Slew Rate Settling Time Overdrive Recovery Time NOISE/HARMONIC PERFORMANCE Second Harmonic Third Harmonic IMD	$V_{OUT} = 2 V p-p, Differential Input V_{OUT} = 2 V p-p 0.01%, V_{OUT} = 2 V p-p V_{IN} = 2.5 V to 0 V step, G = +2 V_{OUT} = 2 V p-p, 10 MHz V_{OUT} = 2 V p-p, 70 MHz V_{OUT} = 2 V p-p, 10 MHz V P_{OU} $	1100 3900 8.1 4 -115 -87		MHz V/μs ns ns dBc
Slew Rate Settling Time Overdrive Recovery Time NOISE/HARMONIC PERFORMANCE Second Harmonic Third Harmonic IMD	$V_{OUT} = 2 V p-p$ $0.01\%, V_{OUT} = 2 V p-p$ $V_{IN} = 2.5 V to 0 V step, G = +2$ $V_{OUT} = 2 V p-p, 10 MHz$ $V_{OUT} = 2 V p-p, 70 MHz$ $V_{OUT} = 2 V p-p, 10 MHz$	3900 8.1 4 -115 -87		V/µs ns ns dBc
Settling Time Overdrive Recovery Time NOISE/HARMONIC PERFORMANCE Second Harmonic Third Harmonic IMD	0.01%, V _{OUT} = 2 V p-p V _{IN} = 2.5 V to 0 V step, G = +2 V _{OUT} = 2 V p-p, 10 MHz V _{OUT} = 2 V p-p, 70 MHz V _{OUT} = 2 V p-p, 10 MHz	8.1 4 -115 -87		ns ns dBc
Overdrive Recovery Time NOISE/HARMONIC PERFORMANCE Second Harmonic Third Harmonic IMD	$V_{IN} = 2.5 V \text{ to } 0 V \text{ step, } G = +2$ $V_{OUT} = 2 V p-p, 10 \text{ MHz}$ $V_{OUT} = 2 V p-p, 70 \text{ MHz}$ $V_{OUT} = 2 V p-p, 10 \text{ MHz}$	4 -115 -87		ns dBc
Overdrive Recovery Time NOISE/HARMONIC PERFORMANCE Second Harmonic Third Harmonic IMD	V _{OUT} = 2 V p-p, 10 MHz V _{OUT} = 2 V p-p, 70 MHz V _{OUT} = 2 V p-p, 10 MHz	-115 -87		dBc
NOISE/HARMONIC PERFORMANCE Second Harmonic Third Harmonic IMD	V _{OUT} = 2 V p-p, 10 MHz V _{OUT} = 2 V p-p, 70 MHz V _{OUT} = 2 V p-p, 10 MHz	-87		
Third Harmonic IMD	V _{OUT} = 2 V p-p, 70 MHz V _{OUT} = 2 V p-p, 10 MHz	-87		
Third Harmonic	V _{OUT} = 2 V p-p, 70 MHz V _{OUT} = 2 V p-p, 10 MHz	-		
Third Harmonic IMD	V _{OUT} = 2 V p-p, 10 MHz	-110		
IMD				dBc
IMD		-79		dBc
	70 MHz			dBc
	70 MHz			dBm
Voltage Noise (RTI)		2.2		nV/√H
-	G = +2	12		dB
Input Current Noise	5 - 12	2		рА/√⊦
INPUT CHARACTERISTICS		<u> </u>		
	$V_{OS, dm} = V_{OUT, dm}/2; V_{DIN+} = V_{DIN-} = V_{OCM} = 2.5 V$	1		mV
-	T_{MIN} to T_{MAX} variation	±4		μV/°C
		±4 3.5		
Input Bias Current				μA
	T _{MIN} to T _{MAX} variation Differential	-0.01		μA/°C
Input Resistance		6		MΩ
	Common mode	3		MΩ
Input Capacitance		1		pF
Input Common-Mode Voltage		0.3 to 3.4		V
	$\Delta V_{OUT, dm} / \Delta V_{IN, cm}; \Delta V_{IN, cm} = \pm 1 V$	-77		dB
OUTPUT CHARACTERISTICS				
	Maximum ΔV_{OUT} ; single-ended output	1.1	3.9	V
Output Current		95		mA
	$\Delta V_{OUT, cm} / \Delta V_{OUT, dm}$; $\Delta V_{OUT, dm} = 1 V$	-66		dB
V _{OCM} TO ±OUT PERFORMANCE				
VOCM DYNAMIC PERFORMANCE				
–3 dB Bandwidth		400		MHz
Slew Rate	V = 0.5 V	1700		V/µs
INPUT VOLTAGE NOISE (RTI)				nV/√H
V _{OCM} INPUT CHARACTERISTICS				
Input Voltage Range		1.2	3.8	v
Input Resistance		200		kΩ
	$V_{OS, cm} = V_{OUT, cm}$; $V_{DIN+} = V_{DIN-} = V_{OCM} = 2.5 V$	1		mV
Input Bias Current		0.5		μA
	$\Delta V_{OUT, dm} / \Delta V_{OCM}; \Delta V_{OCM} = \pm 1 V$	-75		dB
	$\Delta V_{OUT, cm}/\Delta V_{OCM}; \Delta V_{OCM} = \pm 1 V$	1		V/V
POWER SUPPLY		· · ·		
Operating Range		4.5	12	v
Quiescent Current		36	12	mA
	T _{MIN} to T _{MAX} variation	40		μA/°C

Rev. PrA | Page 5 of 9

Preliminary Technical Data

ADA4938-1

Parameter	Conditions	Min	Тур	Max	Unit
	Powered down		< 1		mA
Power Supply Rejection Ratio	$\Delta V_{OUT, dm} / \Delta V_s; \Delta V_s = \pm 1 V$		-90		dB
POWER DOWN (PD)					
PD Input Voltage	Powered down		≤1		V
	Enabled		≥ 2		V
Turn-Off Time			1		μs
Turn-On Time			200		ns
PD Bias Current					
Enabled	$\overline{PD} = 5 V$		20		μA
Disabled	$\overline{PD} = 0 V$		-120		μA
OPERATING TEMPERATURE RANGE		-40		+85	°C

ABSOLUTE MAXIMUM RATINGS

Table 3.

1 4010 01	
Parameter	Rating
Supply Voltage	TBD
Power Dissipation	See Figure 2
Storage Temperature Range	–65°C to +125°C
Operating Temperature Range	–40°C to +85°C
Lead Temperature (Soldering, 10 sec)	300°C
Junction Temperature	150°C

Stresses above those listed under Absolute Maximum Rating may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions; that is, θ_{JA} is specified for a device (including exposed pad) soldered to the circuit board.

Table 4. Thermal Resistance

Package Type	Αιθ	Unit
16-Lead LFCSP (Exposed Pad)	TBD	°C/W

Maximum Power Dissipation

The maximum safe power dissipation in the ADA4938-1 package is limited by the associated rise in junction temperature (T_J) on the die. At approximately 150°C, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance of the ADA4938-1. Exceeding a junction temperature of 150°C for an extended period can result in changes in the silicon devices, potentially causing failure.

The power dissipated in the package (P_D) is the sum of the quiescent power dissipation and the power dissipated in the package due to the load drive. The quiescent power is the voltage between the supply pins (V_S) times the quiescent current (I_S). The power dissipated due to the load drive depends upon the particular application. The power due to load drive is calculated by multiplying the load current by the associated voltage drop across the device. RMS voltages and currents must be used in these calculations.

Airflow increases heat dissipation, effectively reducing θ_{IA} . In addition, more metal directly in contact with the package leads/exposed pad from metal traces, through-holes, ground, and power planes reduces the θ_{IA} .

Figure 2 shows the maximum safe power dissipation in the package vs. the ambient temperature for the 16-lead LFCSP (TBD °C/W) on a JEDEC standard 4-layer board.

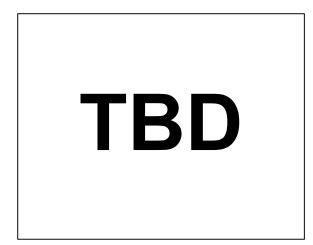


Figure 2. Maximum Power Dissipation vs. Temperature for a 4-Layer Board

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADA4938-1

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

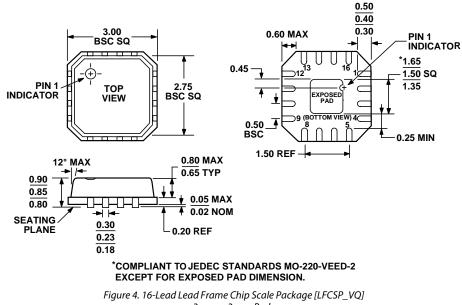


Figure 3. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	FB-out	Negative output feedback pin
2	+IN	Positive input summing node
3	-IN	Negative input summing node
4	FB _{+OUT}	Positive output feedback pin
5 to 8	+Vs	Positive supply voltage
9	V _{OCM}	Output common mode voltage
10	+OUT	Positive output
11	–OUT	Negative output
12	PD	Power-down pin
13 to 16	-Vs	Negative supply voltage

OUTLINE DIMENSIONS

3 mm × 3 mm Body (CP-16-3) Dimensions shown in millimeters

ORDERING GUIDE

Model	Ordering Quantity	Temperature Range	Package Description	Package Option	Branding
ADA4938-1YCPZ-R2	5,000	-40°C to +85°C	16-Lead 3 mm × 3 mm LFCSP	CP-16-3	
ADA4938-1YCPZ-RL	1,500	-40°C to +85°C	16-Lead 3 mm × 3 mm LFCSP	CP-16-3	
ADA4938-1YCPZ-R7	250	–40°C to +85°C	16-Lead 3 mm × 3 mm LFCSP	CP-16-3	

©2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR06592-0-12/06(PrA)

Rev. PrA | Page 9 of 9

www.analog.com