1:2 Single-Ended, Low Cost, Active RF Splitter

FEATURES

Ideal for CATV and terrestrial applications
Excellent frequency response
$1.6 \mathrm{GHz},-3 \mathrm{~dB}$ bandwidth
1 dB flatness to 1.0 GHz
Low noise figure: 4.0 dB
Low distortion
Composite second order (CSO): -62 dBc
Composite triple beat (CTB): -72 dBc
1 dB compression point of $\mathbf{8 . 2 5} \mathbf{~ d B m}$
2.8 dB of gain per output channel
$\mathbf{2 5 ~ d B}$ output-to-output isolation, $50 \mathbf{~ M H z}$ to $1000 \mathbf{~ M H z}$
75Ω input and outputs
Integrated output resistors
Small package size: 16 -lead, $\mathbf{3} \mathbf{m m} \times 3 \mathrm{~mm}$ LFCSP

APPLICATIONS

Set-top boxes

Residential gateways

CATV distribution systems

Splitter modules

Digital cable ready (DCR) TVs

GENERAL DESCRIPTION

The ADA4304-2 is a 75Ω active splitter for use in applications where a lossless signal split is required. Typical applications include multituner digital set-top boxes, cable splitter modules, multituner/digital cable ready (DCR) televisions, and home gateways where traditional solutions require discrete passive splitter modules with separate fixed gain amplifiers.
The ADA4304-2 is fabricated using Analog Devices, Inc. proprietary silicon-germanium (SiGe), complementary bipolar process, enabling it to achieve very low levels of distortion with a noise figure of 4 dB . The part provides a low cost alternative that simplifies designs and improves system performance by integrating a signal splitter element and a gain block into a single IC. The ADA4304-2 is available in a 16 -lead LFCSP and operates in the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Rev. 0

ADA4304-2

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
Thermal Resistance 4
ESD Caution 4
Pin Configuration and Function Descriptions 5
Typical Performance Characteristics 6
Test Circuits 8
Applications 9
Circuit Description 9
Evaluation Boards 9
RF Layout Considerations 9
Power Supply 9
Outline Dimensions 11
Ordering Guide 11

REVISION HISTORY

5/07-Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, 75 \Omega$ system, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE Bandwidth (-3 dB) Specified Frequency Range Gain ($\mathrm{S}_{21}, \mathrm{~S}_{31}$) 1 dB Gain Flatness	$\mathrm{f}=100 \mathrm{MHz}$; see Figure 17 and Figure 18	54	$\begin{aligned} & 1600 \\ & 2.8 \\ & 1000 \end{aligned}$	865	MHz MHz dB MHz
NOISE/DISTORTION PERFORMANCE Noise Figure ${ }^{1}$ Output IP3 Output IP2 Composite Triple Beat (CTB) Composite Second Order (CSO) Cross Modulation (CXM)	@ 54 MHz @ 550 MHz @ 865 MHz $\begin{aligned} & f_{1}=97.25 \mathrm{MHz}, \mathrm{f}_{2}=103.25 \mathrm{MHz} \\ & \mathrm{f}_{1}=97.25 \mathrm{MHz}, \mathrm{f}_{2}=103.25 \mathrm{MHz} \end{aligned}$ 135 channels, $15 \mathrm{dBmV} /$ channel, $\mathrm{f}=865 \mathrm{MHz}$ 135 channels, $15 \mathrm{dBmV} /$ channel, $\mathrm{f}=865 \mathrm{MHz}$ 135 channels, $15 \mathrm{dBmV} /$ channel, 100% modulation @ $15.75 \mathrm{kHz}, \mathrm{f}=865 \mathrm{MHz}$		$\begin{aligned} & 4.0 \\ & 4.5 \\ & 4.6 \\ & 26 \\ & 44.5 \\ & -72 \\ & -62 \\ & -69 \end{aligned}$		dB dB dB dBm dBm dBc dBc dBc
INPUT CHARACTERISTICS Input Return Loss (S_{11}) Output-to-Input Isolation ($\mathrm{S}_{12}, \mathrm{~S}_{13}$)	See Figure 17, Figure 18, and Figure 19 @ 54 MHz @ 550 MHz @ 865 MHz Either output, 54 MHz to 865 MHz @ 54 MHz @ 550 MHz @ 865 MHz		$\begin{aligned} & -15 \\ & -35.5 \\ & -13.3 \\ & -32 \\ & -32 \\ & -33 \end{aligned}$	$\begin{aligned} & -11 \\ & -22 \\ & -8 \\ & -30 \\ & -29 \\ & -31 \end{aligned}$	dB dB dB dB dB dB
OUTPUT CHARACTERISTICS Output Return Loss ($\mathrm{S}_{22}, \mathrm{~S}_{33}$) Output-to-Output Isolation $\left(\mathrm{S}_{23}, \mathrm{~S}_{32}\right)$ 1 dB Compression ($\mathrm{P}_{1 \mathrm{~dB}}$)	See Figure 17, Figure 18, and Figure 19 Either output, 54 MHz to 865 MHz @ 54 MHz @ 550 MHz @ 865 MHz Either output, 54 MHz to 865 MHz @ 54 MHz @ 550 MHz @ 865 MHz Output referred, $\mathrm{f}=100 \mathrm{MHz}$		$\begin{aligned} & -26.7 \\ & -22 \\ & -20 \\ & -26.7 \\ & -25.1 \\ & -25 \\ & 8.25 \end{aligned}$	$\begin{aligned} & -21 \\ & -15 \\ & -12 \end{aligned}$	dB dBm
POWER SUPPLY Nominal Supply Voltage Quiescent Supply Current		4.75	$\begin{aligned} & 5.0 \\ & 88 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 105 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$

[^0]
ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	5.5 V
Power Dissipation	See Figure 3
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θ_{IA} is specified for the device (including exposed pad) soldered to a high thermal conductivity 2 s 2 p circuit board, as described in EIA/JESD 51-7.

Table 3. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
16-Lead LFCSP (Exposed Pad)	98	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Maximum Power Dissipation

The maximum safe power dissipation in the ADA4304-2 package is limited by the associated rise in junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ on the die. At approximately $150^{\circ} \mathrm{C}$, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance of the ADA4304-2. Exceeding a junction temperature of $150^{\circ} \mathrm{C}$ for an extended period can result in changes in the silicon devices, potentially causing failure.

The power dissipated in the package $\left(\mathrm{P}_{\mathrm{D}}\right)$ is essentially equal to the quiescent power dissipation; the supply voltage $\left(\mathrm{V}_{\mathrm{S}}\right)$ times the quiescent current (I_{s}). In Table 1, the maximum power dissipation of the ADA4304-2 can be calculated as

$$
P_{D(M A X)}=5.25 \mathrm{~V} \times 105 \mathrm{~mA}=551 \mathrm{~mW}
$$

Airflow increases heat dissipation, effectively reducing θ_{JA}. In addition, more metal directly in contact with the package leads/exposed pad from metal traces, through-holes, ground, and power planes reduces the $\theta_{\text {JA }}$.
Figure 3 shows the maximum safe power dissipation in the package vs. the ambient temperature for the 16-lead LFCSP $\left(98^{\circ} \mathrm{C} / \mathrm{W}\right)$ on a JEDEC standard 4-layer board.

Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 4. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,2,15,16$	VCC	Supply Pin
3,5 to $7,9,11$	GND	Ground
4	VIN	Input
8,13	NC	No Connection
10	VOUT2	Output 2
12	VOUT1	Output 1
14	IL	Bias Pin

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, 75 \Omega$ system, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 5. Composite Second Order (CSO) vs. Frequency

Figure 6. Composite Triple Beat (CTB) vs. Frequency

Figure 7. Cross Modulation (CXM) vs. Frequency

Figure 8. Noise Figure vs. Frequency

Figure 9. Output IP2 vs. Frequency

Figure 10. Output IP3 vs. Frequency

Figure 11. Gain $\left(S_{21}, S_{31}\right)$ vs. Frequency

Figure 12. Output-to-Input Isolation $\left(S_{12}, S_{13}\right)$ vs. Frequency

`Figure 13. Output-to-Output Isolation $\left(S_{23}, S_{32}\right)$ vs. Frequency

Figure 14. Input Return Loss (S_{11}) vs. Frequency

Figure 15. Output Return Loss $\left(S_{22}, S_{33}\right)$ vs. Frequency

Figure 16. Quiescent Supply Current vs. Temperature

ADA4304-2

TEST CIRCUITS

Figure 17. Test Circuit for $S_{11}, S_{12}, S_{21}, S_{22}$ Measurements

Figure 18. Test Circuit for S_{13}, S_{31}, S_{33} Measurements

Figure 19. Test Circuit for S_{23}, S_{32} Measurements

APPLICATIONS

The ADA4304-2 active splitter is primarily intended for use in the downstream path of television set-top boxes (STBs) that contain multiple tuners. It is typically located directly after the diplexer in a bidirectional CATV customer premise unit. The ADA4304-2 provides a single-ended input and two singleended outputs that allow the delivery of the RF signal to two different signal paths. These paths can include, but are not limited to, a main picture tuner, the picture-in-picture (PIP) tuner, an out-of-band (OOB) tuner, a digital video recorder (DVR), and a cable modem (CM).
The ADA4304-2 exhibits composite second order (CSO) and composite triple beat (CTB) products that are -62 dBc and -72 dBc , respectively. The use of the SiGe bipolar process also allows the ADA4304-2 to achieve a noise figure (NF) of 4 dB .

CIRCUIT DESCRIPTION

The ADA4304-2 consists of a low noise buffer amplifier followed by a resistive power divider. This arrangement provides 2.8 dB of gain relative to the RF signal present at the input of the device. The input and each output must be properly matched to a 75Ω environment for distortion and noise performance to match the data sheet specifications. AC coupling capacitors of $0.01 \mu \mathrm{~F}$ are recommended for the input and outputs.
A $1 \mu \mathrm{H}$ RF choke (Coilcraft chip inductor 0805LS-102X) is required to correctly bias internal nodes of the ADA4304-2. It should be connected between the 5 V supply and the IL pin (Pin 14). The choke should be placed as close as possible to the ADA4304-2 to minimize parasitic capacitance on the IL pin, which is critical for achieving the specified bandwidth and flatness.

EVALUATION BOARDS

The ADA4304-2 evaluation board allows designers to assess the performance of the parts in their particular application. The board includes 75Ω coaxial connectors and 75Ω controlledimpedance signal traces that carry the input and output signals. Power (5 V) is applied to the red VCC loop connector, and ground is connected to the black GND loop connector. Figure 20 is a schematic of the ADA4304-2 evaluation board. On the ADA4304-2 evaluation board, connectors VO1 and VO4 are not populated.

RF LAYOUT CONSIDERATIONS

Appropriate impedance matching techniques are mandatory when designing circuit boards for the ADA4304-2. Improper characteristic impedances on traces can cause reflections that can lead to poor linearity. The characteristic impedance of the signal trace to the input and from each output should be 75Ω. Any ground metal on the top surface near signal lines should be stitched with vias to the internal ground plane, as shown in Figure 21.

POWER SUPPLY

The 5 V supply should be applied to each of the VCC pins and RF choke via a low impedance power bus. The power bus should be decoupled to ground using a $10 \mu \mathrm{~F}$ tantalum capacitor and a $0.1 \mu \mathrm{~F}$ ceramic chip capacitor located close to the ADA4304-2. In addition, the VCC pins should be decoupled to ground with a $0.1 \mu \mathrm{~F}$ ceramic chip capacitor located as close to each of the pins as possible.

Figure 20. Evaluation Board Schematic

Figure 21. ADA4304-2 Evaluation Board

Figure 22. Evaluation Board Component Layout

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Ordering Quantity	Branding
ADA4304-2ACPZ-RL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead LFCSP_VQ	CP-16-1	5,000	$\mathrm{H} 0 Z$
ADA4304-2ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16-$ Lead LFCSP_VQ	CP-16-1	1,500	H0Z
ADA4304-2ACPZ-R2 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead LFCSP_VQ	CP-16-1	250	H0Z

[^1]
ADA4304-2

NOTES

[^0]: ${ }^{1}$ Characterized with 50Ω noise figure analyzer.

[^1]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

