
Monolithic Ceramic Capacitors GR_R6/R7/F5/E4 (X5R/X7R/Y5V/Z5U)

High Dielectric Constant Type 6.3/16/25/50V

Part Number		Dir	nensions (n	nm)		
Part Number	L	W	T	е	g min.	
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4	
GRM188*	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5	
GRM216			0.6 ±0.1		0.7	
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7		
GRM21B			1.25 ±0.1			
GRM319	2 2 10 15	1 4 10 15	0.85 ±0.1		1.5	
GRM31M	3.2 ±0.15	1.0 ±0.15	1.15 ±0.1	0.3 to 0.8		
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2			

^{*} Bulk Case : $1.6 \pm 0.07(L) \times 0.8 \pm 0.07(W) \times 0.8 \pm 0.07(T)$

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM155R61A683KA01	X5R (EIA)	10	68000pF±10%	1.0	0.5	0.50
GRM155R61A104KA01	X5R (EIA)	10	0.1μF±10%	1.0	0.5	0.50
GRM188R61A334KA61	X5R (EIA)	10	0.33 μF±10%	1.6	0.8	0.80
GRM188R61A474KA61	X5R (EIA)	10	0.47μF±10%	1.6	0.8	0.80
GRM188R61A684KA61	X5R (EIA)	10	0.68μF±10%	1.6	0.8	0.80
GRM188R61A105KA61	X5R (EIA)	10	1μF ±10%	1.6	0.8	0.80
GRM188R60J105KA01	X5R (EIA)	6.3	1μF ±10%	1.6	0.8	0.80
GRM219R61A105KC01	X5R (EIA)	10	1μF ±10%	2.0	1.25	0.90
GRM21BR61A225KA01	X5R (EIA)	10	2.2μF ±10%	2.0	1.25	1.25
GRM219R60J155KC01	X5R (EIA)	6.3	1.5μF ±10%	2.0	1.25	0.90
GRM21BR60J225KA01	X5R (EIA)	6.3	2.2μF ±10%	2.0	1.25	1.25
GRM21BR60J335KA11	X5R (EIA)	6.3	3.3μF ±10%	2.0	1.25	1.25
GRM21BR60J475KA11	X5R (EIA)	6.3	4.7μF ±10%	2.0	1.25	1.25
GRM319R61A225KC01	X5R (EIA)	10	2.2μF ±10%	3.2	1.6	0.90
GRM31XR61A335KC12	X5R (EIA)	10	3.3μF ±10%	3.2	1.6	1.30
GRM31CR61A475KA01	X5R (EIA)	10	4.7μF ±10%	3.2	1.6	1.60
GRM31MR60J475KC11	X5R (EIA)	6.3	4.7μF ±10%	3.2	1.6	1.15
GRM31CR61A106KA01	X5R (EIA)	10	10μF ±10%	3.2	1.6	1.60
GRM31CR60J106KA01	X5R (EIA)	6.3	10μF ±10%	3.2	1.6	1.60
GRM31CR60J226ME20	X5R (EIA)	6.3	22μF ±20%	3.2	1.6	1.60
GRM32ER61A106KC01	X5R (EIA)	10	10μF ±10%	3.2	2.5	2.50
GRM55DR61H106KA01	X5R (EIA)	50	10μF ±10%	5.7	5.0	2.00
GRM15XR71H221KA86	X7R (EIA)	50	220pF±10%	1.0	0.5	0.25
GRM155R71H221KA01	X7R (EIA)	50	220pF±10%	1.0	0.5	0.50
GRM15XR71H331KA86	X7R (EIA)	50	330pF±10%	1.0	0.5	0.25
GRM155R71H331KA01	X7R (EIA)	50	330pF±10%	1.0	0.5	0.50
GRM15XR71H471KA86	X7R (EIA)	50	470pF±10%	1.0	0.5	0.25
GRM155R71H471KA01	X7R (EIA)	50	470pF±10%	1.0	0.5	0.50
GRM15XR71H681KA86	X7R (EIA)	50	680pF±10%	1.0	0.5	0.25
GRM155R71H681KA01	X7R (EIA)	50	680pF±10%	1.0	0.5	0.50
GRM15XR71H102KA86	X7R (EIA)	50	1000pF±10%	1.0	0.5	0.25
GRM155R71H102KA01	X7R (EIA)	50	1000pF±10%	1.0	0.5	0.50
GRM15XR71H152KA86	X7R (EIA)	50	1500pF±10%	1.0	0.5	0.25
GRM155R71H152KA01	X7R (EIA)	50	1500pF±10%	1.0	0.5	0.50
GRM155R71H222KA01	X7R (EIA)	50	2200pF±10%	1.0	0.5	0.50

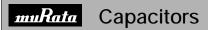
Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickness T (mm)	
GRM155R71H332KA01	X7R (EIA)	50	3300pF±10%	1.0	0.5	0.50	
GRM155R71H472KA01	X7R (EIA)	50	4700pF±10%	1.0	0.5	0.50	
GRM15XR71E182KA86	X7R (EIA)	25	1800pF±10%	1.0	0.5	0.25	
RM15XR71E222KA86	X7R (EIA)	25	2200pF±10%	1.0	0.5	0.25	
RM155R71E682KA01	X7R (EIA)	25	6800pF±10%	1.0	0.5	0.50	
RM155R71E103KA01	X7R (EIA)	25	10000pF±10%	1.0	0.5	0.50	
RM15XR71C332KA86	X7R (EIA)	16	3300pF±10%	1.0	0.5	0.25	
RM15XR71C472KA86	X7R (EIA)	16	4700pF±10%	1.0	0.5	0.25	
RM15XR71C682KA86	X7R (EIA)	16	6800pF±10%	1.0	0.5	0.25	
RM155R71C153KA01	X7R (EIA)	16	15000pF±10%	1.0	0.5	0.50	
RM155R71C223KA01	X7R (EIA)	16	22000pF±10%	1.0	0.5	0.50	
RM155R71A333KA01	X7R (EIA)	10	33000pF±10%	1.0	0.5	0.50	
RM155R71A473KA01	X7R (EIA)	10	47000pF±10%	1.0	0.5	0.50	
RM188R71H221KA01	X7R (EIA)	50	220pF±10%	1.6	0.8	0.80	
RM188R71H331KA01	X7R (EIA)	50	330pF±10%	1.6	0.8	0.80	
RM188R71H471KA01	X7R (EIA)	50	470pF±10%	1.6	0.8	0.80	
RM188R71H681KA01	X7R (EIA)	50	680pF±10%	1.6	0.8	0.80	
RM188R71H102KA01	X7R (EIA)	50	1000pF±10%	1.6	0.8	0.80	
RM188R71H152KA01	X7R (EIA)	50	1500pF±10%	1.6	0.8	0.80	
RM188R71H222KA01	X7R (EIA)	50	2200pF±10%	1.6	0.8	0.80	
GRM188R71H332KA01	X7R (EIA)	50	3300pF±10%	1.6	0.8	0.80	
GRM188R71H472KA01	X7R (EIA)	50	4700pF±10%	1.6	0.8	0.80	
GRM188R71H682KA01	X7R (EIA)	50	6800pF±10%	1.6	0.8	0.80	
RM188R71H103KA01	X7R (EIA)	50	10000pF±10%	1.6	0.8	0.80	
RM188R71H153KA01	X7R (EIA)	50	15000pF±10%	1.6	0.8	0.80	
RM188R71H223KA01	X7R (EIA)	50	22000pF±10%	1.6	0.8	0.80	
RM188R71E333KA01	X7R (EIA)	25	33000pF±10%	1.6	0.8	0.80	
RM188R71E473KA01	X7R (EIA)	25	47000pF±10%	1.6	0.8	0.80	
RM188R71E683KA01	X7R (EIA)	25	68000pF±10%	1.6	0.8	0.80	
RM188R71E104KA01	X7R (EIA)	25	0.1μF±10%	1.6	0.8	0.80	
RM188R71C104KA01	X7R (EIA)	16	0.1μF±10%	1.6	0.8	0.80	
RM188R71A154KA01	X7R (EIA)	10	0.15μF±10%	1.6	0.8	0.80	
GRM188R71A224KA01	X7R (EIA)	10	22000pF±10%	1.6	0.8	0.80	
GRM219R71H333KA01	X7R (EIA)	50	33000pF±10%	2.0	1.25	0.90	
GRM21BR71H473KA01	X7R (EIA)	50	47000pF±10%	2.0	1.25	1.25	
		50	•	2.0		1.25	
RM21BR71H683KA01	X7R (EIA)	50	68000pF±10%		1.25		
GRM21BR71H104KA01	X7R (EIA) X7R (EIA)		0.1μF±10%	2.0	1.25	1.25 1.25	
RM21BR71H154KA01	, ,	50	0.15μF±10%	2.0	1.25		
RM21BR71H224KA01	X7R (EIA)	50	22000pF±10%	2.0	1.25	1.25	
RM21BR71E104KA01	X7R (EIA)	25	0.1μF±10%	2.0	1.25	1.25	
RM21BR71E154KA01	X7R (EIA)	25	0.15μF±10%	2.0	1.25	1.25	
RM219R71E224KC01	X7R (EIA)	25	22000pF±10%	2.0	1.25	0.90	
RM21BR71E334KC01	X7R (EIA)	25	0.33 μF±10%	2.0	1.25	1.25	
RM21BR71E474KC01	X7R (EIA)	25	0.47μF±10%	2.0	1.25	1.25	
RM219R71C474KC01	X7R (EIA)	16	0.47μF±10%	2.0	1.25	0.90	
RM219R71C684KC01	X7R (EIA)	16	0.68μF±10%	2.0	1.25	0.90	
RM21BR71C105KA01	X7R (EIA)	16	1μF ±10%	2.0	1.25	1.25	
RM319R71H334KA01	X7R (EIA)	50	0.33 μF±10%	3.2	1.6	0.90	
RM31MR71H474KA01	X7R (EIA)	50	0.47μF±10%	3.2	1.6	1.15	
RM319R71E684KC01	X7R (EIA)	25	0.68μF±10%	3.2	1.6	0.90	
RM31MR71E105KC01	X7R (EIA)	25	1μF ±10%	3.2	1.6	1.15	
RM319R71C105KC11	X7R (EIA)	16	1μF ±10%	3.2	1.6	0.90	
GRM31MR71C155KC11	X7R (EIA)	16	1.5μF ±10%	3.2	1.6	1.15	
GRM31MR71C225KA35	X7R (EIA)	16	2.2μF ±10%	3.2	1.6	1.15	
GRM319R71A105KC01	X7R (EIA)	10	1μF ±10%	3.2	1.6	0.90	

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM319R71A225KA01	X7R (EIA)	10	2.2μF ±10%	3.2	1.6	0.90
GRM32NR71H684KA01	X7R (EIA)	50	0.68μF±10%	3.2	2.5	1.35
GRM32RR71H105KA01	X7R (EIA)	50	1μF ±10%	3.2	2.5	1.80
GRM32RR71E225KC01	X7R (EIA)	25	2.2μF ±10%	3.2	2.5	1.80
GRM32MR71C225KC01	X7R (EIA)	16	2.2μF ±10%	3.2	2.5	1.15
GRM32NR71C335KC01	X7R (EIA)	16	3.3μF ±10%	3.2	2.5	1.35
RM32RR71C475KC01	X7R (EIA)	16	4.7μF ±10%	3.2	2.5	1.80
RM43ER71H225KA01	X7R (EIA)	50	2.2μF ±10%	4.5	3.2	2.50
RM55RR71H105KA01	X7R (EIA)	50	1μF ±10%	5.7	5.0	1.80
RM55RR71H155KA01	X7R (EIA)	50	1.5μF ±10%	5.7	5.0	1.80
RM155F51H222ZA01	Y5V (EIA)	50	2200pF +80%, -20%	1.0	0.5	0.50
RM155F51H472ZA01	Y5V (EIA)	50	4700pF +80%, -20%	1.0	0.5	0.50
RM155F51H103ZA01	Y5V (EIA)	50	10000pF +80%, -20%	1.0	0.5	0.50
RM155F51E223ZA01	Y5V (EIA)	25	22000pF +80%, -20%	1.0	0.5	0.50
RM155F51C473ZA01	Y5V (EIA)	16	47000pF +80%, -20%	1.0	0.5	0.50
RM155F51C104ZA01	Y5V (EIA)	16	10000pF +80%, -20%	1.0	0.5	0.50
RM188F51H103ZA01	Y5V (EIA)	50	10000pF +80%, -20%	1.6	0.8	0.80
RM188F51H223ZA01	Y5V (EIA)	50	22000pF +80%, -20%	1.6	0.8	0.80
RM188F51H473ZA01	Y5V (EIA)	50	47000pF +80%, -20%	1.6	0.8	0.80
RM188F51H104ZA01	Y5V (EIA)	50	10000pF +80%, -20%	1.6	0.8	0.80
RM188F51E104ZA01	Y5V (EIA)	25	10000pF +80%, -20%	1.6	0.8	0.80
RM188F51C224ZA01	Y5V (EIA)	16	22000pF +80%, -20%	1.6	0.8	0.80
RM188F51C474ZA01	Y5V (EIA)	16	0.47µF +80%, -20%	1.6	0.8	0.80
RM188F51A474ZC01	, ,	10		1.6	0.8	0.80
	Y5V (EIA)		0.47μF +80%, -20%		0.8	0.80
RM188F51A105ZA01	Y5V (EIA)	10	1μF +80%, -20%	1.6		
RM219F51H104ZA01	Y5V (EIA)	50	10000pF +80%, -20%	2.0	1.25	0.90
RM21BF51H224ZA01	Y5V (EIA)	50	22000pF +80%, -20%	2.0	1.25	1.25
RM219F51E224ZA01	Y5V (EIA)	25	22000pF +80%, -20%	2.0	1.25	0.90
RM21BF51E474ZA01	Y5V (EIA)	25	0.47μF +80%, -20%	2.0	1.25	1.25
RM219F51E105ZA01	Y5V (EIA)	25	1μF +80%, -20%	2.0	1.25	0.90
RM21BF51E225ZA01	Y5V (EIA)	25	2.2μF +80%, -20%	2.0	1.25	1.25
RM219F51C105ZA01	Y5V (EIA)	16	1μF +80%, -20%	2.0	1.25	0.90
RM21BF51C225ZA01	Y5V (EIA)	16	2.2μF +80%, -20%	2.0	1.25	1.25
RM219F51A105ZA01	Y5V (EIA)	10	1μF +80%, -20%	2.0	1.25	0.90
RM21BF51A225ZA01	Y5V (EIA)	10	2.2μF +80%, -20%	2.0	1.25	1.25
RM21BF51A475ZA01	Y5V (EIA)	10	4.7μF +80%, -20%	2.0	1.25	1.25
RM31MF51H474ZA01	Y5V (EIA)	50	0.47μF +80%, -20%	3.2	1.6	1.15
RM31MF51E105ZA01	Y5V (EIA)	25	1μF +80%, -20%	3.2	1.6	1.15
RM31MF51E475ZA01	Y5V (EIA)	25	4.7μF +80%, -20%	3.2	1.6	1.15
RM319F51C105ZA01	Y5V (EIA)	16	1μF +80%, -20%	3.2	1.6	0.90
RM31MF51C225ZA01	Y5V (EIA)	16	2.2μF +80%, -20%	3.2	1.6	1.15
RM31MF51C475ZA12	Y5V (EIA)	16	4.7μF +80%, -20%	3.2	1.6	1.15
RM319F51A225ZA01	Y5V (EIA)	10	2.2μF +80%, -20%	3.2	1.6	0.90
RM31MF51A475ZA01	Y5V (EIA)	10	4.7μF +80%, -20%	3.2	1.6	1.15
RM31MF51A106ZA01	Y5V (EIA)	10	10μF +80%, -20%	3.2	1.6	1.15
RM31MF50J106ZA01	Y5V (EIA)	6.3	10μF +80%, -20%	3.2	1.6	1.15
RM32RF51H105ZA01	Y5V (EIA)	50	1μF +80%, -20%	3.2	2.5	1.80
RM329F51E475ZA01	Y5V (EIA)	25	4.7μF +80%, -20%	3.2	2.5	0.90
RM32NF51E106ZA01	Y5V (EIA)	25	10μF +80%, -20%	3.2	2.5	1.35
RM32NF51C106ZA01	Y5V (EIA)	16	10μF +80%, -20%	3.2	2.5	1.35
RM188E41H103MA01	Z5U (EIA)	50	10000pF±20%	1.6	0.8	0.80
RM188E41H223MA01	Z5U (EIA)	50	22000pF±20%	1.6	0.8	0.80
RM216E41H473MA01	Z5U (EIA)	50	47000pF±20%	2.0	1.25	0.60
RM219E41H104MA01	Z5U (EIA)	50	10000pF±20%	2.0	1.25	0.90
RM319E41H224MA01	Z5U (EIA)	50	22000pF±20%	3.2	1.6	0.90

■ Specifications and Test Methods

		Specifi	cations				
No.	Item	Temperature Compensating Type	High Dielectric Type	Test Method			
1	Operating Temperature Range	–55 to +125℃	B1, B3, F1: -25°C to +85°C R1, R7: -55°C to +125°C E4: +10°C to +85°C F5: -30°C to +85°C	Reference Temperature : 25°C (2 Δ , 3 Δ , 4 Δ , B1, B3, F1, R1 : 20°C)			
2	Rated Voltage	See the previous pages		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, VP-P or VO-P, whichever is larger, should be maintained within the rated voltage range.			
3	Appearance	No defects or abnormalities		Visual inspection			
4	Dimensions	Within the specified dimensions	1	Using calipers			
5	Dielectric Strength	No defects or abnormalities		No failure should be observed when 300% of the rated voltage (temperature compensating type) or 250% of the rated voltage (high dielectric constant type) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.			
6	Insulation Resistance	C≦0.047μF : More than 10,0000 C>0.047μF : 500Ω • F	MΩ C : Nominal Capacitance	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20°C/25°C and 75%RH max. and within 2 minutes of charging, provided the charge/discharge current is less than 50mA.			
7	Capacitance	Within the specified tolerance		The capacitance/D.F. should be measured at 20°C/25°C at the			
8	Q/ Dissipation Factor (D.F.)	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V/4V : 0.05max. (C<3.3μF) : 0.1max. (C≧3.3μF) [F1, F5] W.V.: 25Vmin. : 0.05max. (C<0.1μF) : 0.09max. (C≥0.1μF) W.V.: 16V/10V: 0.125max. W.V.: 6.3V: 0.15max.	Char. ΔC to ΔU, 1X (more than 1000pF) E4 E4 E7 E7 E7 E7 E7 E7			

		om the prec		ications			
No.	lt∈	em	Temperature Compensating Type	High Dielectric Type		Test Method	
		No bias	Within the specified tolerance (Table A-1)	B1, B3 : Within±10% (-25°C to +85°C) R1, R7 : Within±15% (-55°C to +125°C) R6 : Within±15% (-55°C to +85°C) E4 : Within ±22/-56% (+10°C to +85°C) F1 : Within +30/-80% (-25°C to +85°C) F5 : Within +22/-82% (-30°C to +85°C)	each speci (1)Temper The temper measured When cycliffs (5C: +2) coeffs: +2 should be coefficient The capac	itance change should be meified temp. stage. ature Compensating Type trature coefficient is determined in step 3 as a reference. So to +125°C/AC: +20°C to 25°C to +85°C/+20°C to +85°C/+40°C to +85°C to +80°C	and using the capacitance it is it
					· ·	nd 5 by the cap. value in ste	-
		50% of the Rated		B1 : Within +10/-30% R1 : Within +15/-40%			erature (℃) Femperature±2
		Voltage		F1 : Within +30/–95%			-25±3 (for other TC)
						Reference	Temperature±2
				/			85±3 (for other TC)
						5 Reference	Temperature±2
9	Capacitance Temperature Characteristics				The ranges value over be within the In case of measured	ielectric Constant Type s of capacitance change con the temperature ranges sho ne specified ranges.* applying voltage, the capacit after 1 more min. with apply on of each temp. stage.	wn in the table should tance change should be
					Step	Temperature (°C)	Applying Voltage (V)
		Capacitance Drift	within ±0.2% or ±0.05pF (Whichever is larger.) *Not apply to 1X/25V	*Initial measurement for high	2 3	Reference Tempereture± -55±3 (for R1, R7, R6) -25±3 (for B1, B3, F1) -30±3 (for F5)/10±3 (for E Reference Tempereture±	4) No bias
				dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour	4	125±3 (for R1, R7)/ 85±3 (for B1, B3, R6 F1, F5, E4)	
				and then set for 48±4 hours	5	Reference Tempereture±	2
				at room temperature. Perform the initial measurement.	6	-55±3 (for R1)/ -25±3 (for B1, F1)	50% of the rated
				measurement.	7	Reference Tempereture±	-
					8	125±3 (for R1)/ 85±3 (for B1, F1)	
			No removal of the terminations	or other defect should occur	Fig. 1a using parallel with The solder reflow methes soldering is	capacitor to the test jig (glasing an eutectic solder. Then is the test jig for 10±1 sec. ing should be done either withod and should be conductes uniform and free of defects 103), 5N (GR□15, GRM18)	apply 10N* force in th an iron or using the d with care so that the
							(in mm)
10	Adhesive of Termin	Strength			Ту		b c
	or remin	เสเเปไ			_GR□03 GR□15		0.9 0.3 1.5 0.5
				Solder resist	GR∐18		3.0 1.2
				Baked electrode or	GRM21	1 1.2	4.0 1.65
				copper foil	GRM31		5.0 2.0
			Fig. 1a		GRM32 GRM43		5.0 2.9 7.0 3.7
					GRIVI43	J.U.U	0.1
					GRM55		8.0 5.6


$\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$ Continued from the preceding page.

		om the prec		cations				
No.	lte	em	Temperature Compensating Type	High Dielectric Type	-	Test Me	thod	
		Appearance Capacitance	No defects or abnormalities Within the specified tolerance	[B1, B3, R1, R6, R7, E4]	Solder the capa	citor on the test jig	ı (glass epo	xy board) in the
11	Vibration Resistance	Q/D.F.	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V/4V : 0.05max. (C<3.3μF) : 0.1max. (C≥3.3μF) [F1, F5] W.V.: 25Vmin. : 0.05max. (C<0.1μF) : 0.09max. (C≥0.1μF) W.V.: 16V/10V: 0.125max. W.V.: 6.3V: 0.15max.	The capacitor should be subjected to a simple harmonic m having a total amplitude of 1.5mm, the frequency being vai uniformly between the approximate limits of 10 and 55Hz. frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should applied for a period of 2 hours in each 3 mutually perpendidirections (total of 6 hours). Solder the capacitor on the test jig (glass epoxy board) should be a subject to the capacitor on the test jig (glass epoxy board) should be a subject to the capacitor on the test jig (glass epoxy board) should be a subject to the capacitor on the test jig (glass epoxy board) should be a subject to the capacitor on the test jig (glass epoxy board) should be a subject to the capacitor on the test jig (glass epoxy board) should be a subject to the capacitor on the test jig (glass epoxy board) should be a subject to the capacitor on the test jig (glass epoxy board) should be a subject to the capacitor on the test jig (glass epoxy board) should be a subject to the capacitor of the test jig (glass epoxy board) should be a subject to the capacitor of the test jig (glass epoxy board) should be a subject to the capacitor of the test jig (glass epoxy board) should be a subject to the capacitor of the test jig (glass epoxy board) should be a subject to the capacitor of the capacitor of the test jig (glass epoxy board) should be a subject to the capacitor of the c			
			No crack or marked defect shou	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2a using an eutectic solder. Then apply a force in the direction shown in Fig. 3a for 5±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free			y a force in the oldering should be ethod and should	
12	12 Deflection		20 50 Pressurizing speed: 1.0mm/sec. Pressurize Pressurize Flexure: ≤1 Capacitance meter 45 Fig. 3a		Type GR□03 GR□15 GRM18 GRM21 GRM31 GRM32 GRM43 GRM55	a 0.3 0.4 1.0 1.2 2.2 2.2 3.5 4.5		□03/15:t:0.8mm)
13	Solderab Terminati		75% of the terminations are to be continuously The measured and observed ch	ŕ	rosin (JIS-K-590 Preheat at 80 to	02) (25% rosin in w 0 120°C for 10 to 30 1, immerse in an e	veight propo) seconds.	
			specifications in the following ta	-				
		Appearance	No defects or abnormalities					
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±7.5% F1, F5, E4 : Within ±20%	Immerse the ca	acitor at 120 to 15 pacitor in an euted ands. Set at room t	tic solder so	olution at 270±5℃
14	Resistance to Soldering Heat	Q/D.F.	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V/4V : 0.05max. (C<3.3µF) : 0.1max. (C≥3.3µF) [F1, F5] W.V.: 25Vmin. : 0.05max. (C<0.1µF) : 0.09max. (C≥0.1µF) W.V.: 16V/10V: 0.125max. W.V.: 6.3V: 0.15max.	(temperature or constant type), Initial measure Perform a heat then set at room Perform the initial temperature.	1 100℃ to 120℃ 1 min.		
		I.R.	More than $10,000 \mathrm{M}\Omega$ or 500Ω	F (Whichever is smaller)				
		Dielectric Strength	No defects					

		Specifi	ications					
No. Ite	m	Temperature Compensating Type	High Dielectric Type		Tes	t Method	t	
		The measured and observed chapecifications in the following ta	•					
	Appearance	No defects or abnormalities						
	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±7.5% F1, F5, E4 : Within ±20%	Fix the capacitor manner and un Perform the five shown in the fo	der the same e cycles accor	condition	ns as (10).	atments
			[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max.	Set for 24±2 ho hours (high die measure.	ours (temperat lectric constan	it type) a	t room tempera	iture, ther
15 Temperature		30pF and over : Q≧1000	W.V.: 6.3V/4V	Step	1	2	3	4
Cycle	Q/D.F.	30pF and below : Q≧400+20C	: 0.05max. (C<3.3µF) : 0.1max. (C≥3.3µF)	Temp. (℃)	Min. Operating Temp.+0/-3	Room Temp.	Max. Operating Temp.+3/-0	Room Temp.
		C : Nominal Capacitance (pF)	W.V. : 25Vmin.	Time (min.)	30±3	2 to 3	30±3	2 to 3
ī	LP More than		: 0.05max. (C<0.1µF) : 0.09max. (C≧0.1µF) W.V.: 16V/10V: 0.125max. W.V.: 6.3V: 0.15max.	Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/−10°C for one hour and then set at room temperature for 48±4 hours. Perform the initial measurement.				
	I.R.	More than $10,000M\Omega$ or 500Ω						
	Dielectric Strength	No defects						
		The measured and observed chapecifications in the following ta						
	Appearance	No defects or abnormalities						
	Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5 : Within ±30%					
Humidity 16 (Steady State)	Q/D.F.	30pF and over : Q≧350 10pF and over 30pF and below : Q≥275+2.5C 10pF and below : Q≥200+10C	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.05max. W.V.: 16/10V: 0.05max. W.V.: 6.3V/4V : 0.075max. (C≤3.3µF) : 0.125max. (C≧3.3µF) [F1, F5] W.V.: 25Vmin.	Set the capacitor at 40±2℃ and in 90 to 95% humiduty for 500±12 hours. Remove and set for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure.				
		C : Nominal Capacitance (pF)	: 0.075max. (C<0.1µF) : 0.125max. (C≧0.1µF) W.V. : 16V/10V : 0.15max. W.V. : 6.3V : 0.2max.					

 $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$ Continued from the preceding page.

		Specifi	ications				
No.	Item	Temperature Compensating Type	High Dielectric Type	Test Method			
		The measured and observed chapecifications in the following ta	-				
	Appearance	No defects or abnormalities					
	Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±12.5% F1, F5, E4: Within ±30% [W.V.: 10Vmax.] F1, F5: Within +30/-40%	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant			
17 Humidi Load	Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3 C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.05max. W.V.: 16/10V: 0.05max. W.V.: 6.3V : 0.075max. (C<3.3μF) : 0.125max. (C≧3.3μF) [F1, F5] W.V.: 25Vmin. : 0.075max. (C<0.1μF) : 0.125max. (C≥0.1μF) W.V.: 16V/10V: 0.15max. W.V.: 6.3V: 0.2max.	type) at room temprature, then muasure. The charge/disch current is less than 50mA. •Initial measurement for F1, F5/10V max. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and set for 48±4 hours at room temperature. Perform initial measurement.			
	I.R.	More than 500MΩ or 25Ω • F (V	Vhichever is smaller)				
		The measured and observed chapecifications in the following ta	-				
	Appearance	No defects or abnormalities					
	Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±12.5% F1, F5, E4: Within ±30% [Exept 10Vmax. and. C≥1.0µF] F1, F5: Within +30/-40% [10Vmax. and. C≥1.0µF]	Apply 200% of the rated voltage at the maximum operating temperature ±3°c for 1000±12 hours. Set for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure.			
High 18 Temperatu Load	Q/D.F.	30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+2.5C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.04max. W.V.: 16/10V: 0.05max. W.V.: 6.3V : 0.075max.(C≤3.3μF) : 0.125max.(C≥3.3μF) [F1, F6] W.V.: 25Vmin. : 0.075max.(C<0.1μF) : 0.125max.(C≥0.1μF) W.V.: 16V/10V: 0.15max. W.V.: 6.3V: 0.2max.	The charge/discharge current is less than 50mA. •Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage at the maximun operating temperature ±3°C for one hour. Remove and set for 48±4 hours at room temperature. Perform initial measurement.			
	I.R.	More than 1,000M Ω or 50 Ω •F (Whichever is smaller)				

Table A-1

(1)

		Capacitance Change from 25℃ (%)						
Char.	Nominal Values (ppm/°C)*1	_	-55		-30		-10	
		Max.	Min.	Max.	Min.	Max.	Min.	
5C	0± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11	
6C	0± 60	0.87	-0.48	0.59	-0.33	0.38	-0.21	
6P	-150± 60	2.33	0.72	1.61	0.50	1.02	0.32	
6R	-220± 60	3.02	1.28	2.08	0.88	1.32	0.56	
6S	-330± 60	4.09	2.16	2.81	1.49	1.79	0.95	
6T	-470± 60	5.46	3.28	3.75	2.26	2.39	1.44	
7U	-750±120	8.78	5.04	6.04	3.47	3.84	2.21	
1X	+350 to -1000	_	_	_	_	_	_	

^{*1}Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for Δ C)/85°C (for other TC).

(2)

(2)									
		Capacitance Change from 20℃ (%)							
Char.	Nominal Values (ppm/℃)*2	-	-55		-2 5		-10		
	-	Max.	Min.	Max.	Min.	Max.	Min.		
2C	0± 60	0.82	-0.45	0.49	-0.27	0.33	-0.18		
3C	0±120	1.37	-0.90	0.82	-0.54	0.55	-0.36		
4C	0±250	2.56	-1.88	1.54	-1.13	1.02	-0.75		
2P	-150 ± 60	_	_	1.32	0.41	0.88	0.27		
3P	-150±120	_	_	1.65	0.14	1.10	0.09		
4P	-150±250	_	_	2.36	-0.45	1.57	-0.30		
2R	-220 ± 60	_	_	1.70	0.72	1.13	0.48		
3R	-220±120	_	_	2.03	0.45	1.35	0.30		
4R	-220±250	_	_	2.74	-0.14	1.83	-0.09		
2S	-330 ± 60	_	_	2.30	1.22	1.54	0.81		
3S	-330±120	_	_	2.63	0.95	1.76	0.63		
4S	-330±250	_	_	3.35	0.36	2.23	0.24		
2T	-470 ± 60	_	_	3.07	1.85	2.05	1.23		
3T	-470±120	_	_	3.40	1.58	2.27	1.05		
4T	-470±250	_	-	4.12	0.99	2.74	0.66		
3U	-750±120	_	_	4.94	2.84	3.29	1.89		
4U	-750±250	_	_	5.65	2.25	3.77	1.50		

^{*2}Nominal values denote the temperature coefficient within a range of 20°C to 125°C (for Δ C)/85°C (for other TC).

Monolithic Ceramic Capacitors GR_R6/R7/F5/E4 (X5R/X7R/Y5V/Z5U)

High Dielectric Constant Type 100V

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM188R72A222KD01	X7R (EIA)	100	2200pF±10%	1.6	0.8	0.80
GRM188R72A332KD01	X7R (EIA)	100	3300pF±10%	1.6	0.8	0.80
GRM219R72A472KA01	X7R (EIA)	100	4700pF±10%	2.0	1.25	0.90
GRM219R72A682KA01	X7R (EIA)	100	6800pF±10%	2.0	1.25	0.90
GRM21BR72A103KA01	X7R (EIA)	100	10000pF±10%	2.0	1.25	1.25
GRM31MR72A333KA01	X7R (EIA)	100	33000pF±10%	3.2	1.6	1.15
GRM31MR72A473KA01	X7R (EIA)	100	47000pF±10%	3.2	1.6	1.15
GRM32NR72A683KA01	X7R (EIA)	100	68000pF±10%	3.2	2.5	1.35
GRM32NR72A104KA01	X7R (EIA)	100	0.1μF±10%	3.2	2.5	1.35
GRM43RR72A154KA01	X7R (EIA)	100	0.15μF±10%	4.5	3.2	1.80
GRM43RR72A224KA01	X7R (EIA)	100	22000pF±10%	4.5	3.2	1.80
GRM43DR72A474KA01	X7R (EIA)	100	0.47μF±10%	4.5	3.2	2.00
GRM55DR72A105KA01	X7R (EIA)	100	1μF ±10%	5.7	5.0	2.00
GRM188F52A472ZD01	Y5V (EIA)	100	4700pF +80%, -20%	1.6	0.8	0.80
GRM32NF52A104ZA01	Y5V (EIA)	100	10000pF +80%, -20%	3.2	2.5	1.35
GRM55RF52A474ZA01	Y5V (EIA)	100	0.47μF +80%, -20%	5.7	5.0	1.80

Monolithic Ceramic Capacitors GR_R6/R7/F5/E4 (X5R/X7R/Y5V/Z5U)

Thin Layer Large-Capacitance type

Part Number		Dime	nsions (mi	m)		
rait ivuilibei	L	W	T	e min.	g min.	-
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2	S
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4	2 5 2 5
GRM185	1.6 ±0.1	0.8 ±0.1	0.5 +0/-0.2	0.2 to 0.5	0.5	20202
GRM188	1.6 ±0.1	0.8 ±0.1	0.8 ± 0.1	0.2 to 0.5	0.5	
GRM216			0.6 ±0.1			
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7	
GRM21B			1.25 ±0.1			
GRM316			0.6 ±0.1			
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 to 0.8	1.5	e g e
GRM31M]		1.15 ±0.1	0.3 10 0.6	1.5	 -
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2			
GRM32D	3.2 ±0.3	2.5 +0.2	2.0 ±0.2	0.3	1.0	
GRM32E	3.2 ±0.3	2.5 ±0.2	2.5 ±0.2	0.3	1.0	
GRM43D			2.0 ±0.2			T T
GRM43E	4.5 ±0.4	3.2 ±0.3	2.5 ±0.2	0.3	2.0	<u> </u>
GRM43S			2.8 ±0.2			L W
GRM55F	5.7 ±0.4	5.0 ±0.4	3.2 ±0.2	0.3	2.0	

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM155R60J154KE01	X5R (EIA)	6.3	0.15μF±10%	1.0	0.5	0.50
GRM155R60J224KE01	X5R (EIA)	6.3	22000pF±10%	1.0	0.5	0.50
GRM155R60J334KE01	X5R (EIA)	6.3	0.33 μF±10%	1.0	0.5	0.50
GRM155R60J474KE19	X5R (EIA)	6.3	0.47μF±10%	1.0	0.5	0.50
GRM188R60J225KE01	X5R (EIA)	6.3	2.2μF ±10%	1.6	0.8	0.80
GRM219R60J475KE01	X5R (EIA)	6.3	4.7μF ±10%	2.0	1.25	0.90
GRM21BR60J106KE01	X5R (EIA)	6.3	10μF ±10%	2.0	1.25	1.25
GRM21BR60J106ME01	X5R (EIA)	6.3	10μF ±20%	2.0	1.25	1.25
GRM32DR60J226KA01	X5R (EIA)	6.3	22μF ±10%	3.2	2.5	2.00
GRM32ER60J476ME20	X5R (EIA)	6.3	47μF ±20%	3.2	2.5	2.50
GRM43SR60J107ME20	X5R (EIA)	6.3	100μF ±20%	4.5	3.2	2.80
GRM55FR60J107KA01	X5R (EIA)	6.3	100μF ±10%	5.7	5.0	3.20
GRM55FR60J107MA01	X5R (EIA)	6.3	100μF ±20%	5.7	5.0	3.20
GRM21BF50J106ZE01	Y5V (EIA)	6.3	10μF +80%, -20%	2.0	1.25	1.25

No.	Ite	em	Specifications			Test Method				
1	Operating Temperat Range		B1, B3, F1: -25°C to +85°C R6: -55°C to +85°C F5: -30°C to +85°C C8: -55°C to +105°C, C7: -55°C to +125°C			Reference Temperature : 25℃ (B1, B3, F1 : 20℃)				
2	Rated Vo	ltage	See the previous pages		may be ap When AC whichever	The rated voltage is defined as the maximum voltage which nay be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{o,p} , whichever is larger, should be maintained within the rated roltage range.				
3	Appearan	nce	No defects or abnormaliti	ies	Visual insp	Visual inspection				
4	Dimensio	ns	Within the specified dime	ensions	Using calip	pers				
5	Dielectric	Strength	No defects or abnormaliti	ies	is applied b	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.				
6	Insulation Resistance		More than 50Ω • F		not exceed 75%RH ma	The insulation resistance should be measured with a DC not exceeding the rated voltage at Reference Temperatur 75%RH max. and within 1 minutes of charging, provided charge/discharge current is less than 50mA.				
7	Capacitance		Within the specified tolers	*Table 1 GRM155 B3/R6 1A 124 to 224 GRM185 B3/R6 1A 105 GRM188 B3/R6 1C/1A 225 GRM219 B3/R6 1A 475 GRM21B B3/R6 1C/1A 106	Temperatu C≤10 C≤10 C>10 *1 Hov	apacitance µF (10V min.)*1 µF (6.3V max.) µF	rand voltage Frequency 1±0.1kHz 1±0.1kHz 120±24Hz	shown in the table.		
8	Dissipation Factor (D.F.)		B1, B3, R6, C7, C8 : 0.1 F1, F5 : 0.2 max.	*Table 1 GRM155 B3/R6 1A 124 to 224 GRM185 B3/R6 1A 105 GRM188 B3/R6 1C/1A 225 GRM219 B3/R6 1A 475 GRM21B B3/R6 1C/1A 106	frequency	and voltage shown apacitance µF (10V min.)*1 µF (6.3V max.) µF	in the table. Frequency 1±0.1kHz 1±0.1kHz 1±0.24Hz	Voltage 1.0±0.2Vrms 0.5±0.1Vrms 0.5±0.1Vrms Vrms about Table 1		
		No bias B1, B3: Within +/-10% (-25°C to +85°C) F1: Within +30/-80% (-25°C to +85°C) R6: Within +/-15% (-55°C to +85°C) F5: Within +22/-82% (-30°C to +85°C) C7: Within +/-22% (-55°C to +125°C) C8: Within +/-22% (-55°C to +105°C)			The capacitance change should be measu each specified temp. stage. The ranges of capacitance change compar Reference Temperature value over the tem shown in the table should be within the spe In case of applying voltage, the capacitance measured after 1 more min. with applying vequilibration of each temp. stage. *GRM43 B1/R6 0J/1A 336/476 only: 1.0±			ared with the mperature ranges ecified ranges.* ce change should be voltage in		
9	Capacitance Temperature Characteristics				2 3	Temperature Reference Temp -55±3 (for R6, -25±3 (for B1, -30±3 (for Reference Temp	C7, C8)/ B3, F1) F5) ereture±2	Applying Voltage (V) No bias		
		50% of the Rated Voltage	B1: Within +10/-30% F1: Within +30/-95%			85±3 (for B1, B3, 125±3 (for 105±3 (for 20±2	C7)/			
		3-		6	−25±3 (for B	31, F1)	50% of the rated			
					7	20±2		voltage		
				8	85±3 (for B1	7				

Continued on the following page.

Perform the initial measurement.

No.	Item	Specifications	Test Method				
		No removal of the terminations or other defects should occur	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 1a using an eutectic solder. Then apply 10N* force in parallel with the test jig for 10+/−1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. *5N: GR□15/GRM18, 2N: GR□33				
10	Adhesive Strength		Type GR□03	a 0.3	b 0.9	0.3	
	of Termination		GR□15	0.4	1.5	0.5	
		VA VA VA VA VA Solder resist	GRM18	1.0	3.0	1.2	
		Baked electrode or	GRM21	1.2	4.0	1.65	
		copper foil	GRM31	2.2	5.0	2.0	
		• • • • • • • • • • • • • • • • • • • •	GRM32	2.2	5.0	2.9	
		Fig. 1a	GRM43	3.5	7.0	3.7	
				4.5	8.0	5.6	
			GRM55	4.5	0.0	5.0	
	Appearance	No defects or abnormalities	Solder the capacito	or on the test ii	a (alass epoxy	board) in the	
11	Capacitance Vibration D.F.	Within the specified tolerance B1, B3, R6, C7, C8: 0.1 max. F1, F5: 0.2 max.	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmon having a total amplitude of 1.5mm, the frequency being uniformly between the approximate limits of 10 and 5 frequency range, from 10 to 55Hz and return to 10Hz be traversed in approximately 1 minute. This motion applied for a period of 2 hours in each 3 mutually perdirections (total of 6 hours).			s (10). sarmonic motion by being varied and 55Hz. The 10Hz, should btion should be	
		No cracking or marking defects should occur	Solder the capacito	or on the test ji	g (glass epoxy	board) shown	
12	Deflection	20 50 Pressunzing speed: 1.0mm/sec. Pressunze R230 Flexure: ≤1 Capacitance meter	in Fig. 2a using an direction shown in be done either with should be conduct and free of defects	Fig. 3a for 5+/ an an iron or usined with care so	1 sec. The sing the reflow no that the solde shock.	oldering should nethod and	
		45 45		1 lg. 2		□45 . t . 0.0mm)	
			_			□15 : t : 0.8mm)	
		Fig.3a	Type	a	b	С	
		ı ıy.sa	_GR□03	0.3	0.9	0.3	
			GR□15	0.4	1.5	0.5	
			GRM18	1.0	3.0	1.2	
			GRM21	1.2	4.0	1.65	
			GRM31	2.2	5.0	2.0	
			GRM32	2.2	5.0	2.9	
			GRM43	3.5	7.0	3.7	
			GRM55	4.5	8.0	5.6	
						(in mm)	
13	Solderability of Termination	75% of the terminations is to be soldered evenly and continuously	Immerse the capacitor in a solution of ethanol (JIS-K-8101) a rosin (JIS-K-5902) (25% rosin in weight propotion) . Preheat at 80 to 120℃ for 10 to 30 seconds. After preheating, immerse in an eutectic solder solution for 2+/−0.5 seconds at 230+/−5℃.				

No.	Ite	em	Specifications	Test Method						
	Resistance to Soldering Heat	Appearance Capacitance Change Q/D.F. I.R.	No defects or abnormalities B1, B3, R6, C7, C8: Within ±7.5% F1, F5: Within ±20% B1, B3, R6, C7, C8: 0.1 max. F1, F5: 0.2 max. More than 50Ω • F	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in an eutectic solder solution at 270+/−5°C for 10+/−0.5 seconds. Set at room temperature fo 24+/−2 hours (temperature compensating tyoe) or 48+/−4 hours (high dielectric constant type), then measure. •Initial measurement for high dielectric constant type						
14		Dielectric Strength	No defects	then set at roo Perform the in	 Perform a heat treatment at 150+0/-10°C for one hour and then set at room temperature for 48+/-4 hours. Perform the initial measurement. *Preheating for GRM32/43/55 					
				Step 1	•	erature to 120°C		me min		
				2		to 200℃		min. min.		
\dashv		Appearance	No defects or abnormalities				in the same m			
					ne conditions a		in the came in	armor arm		
		Capacitance Change	B1, B3, R6, C7, C8 : Within ±7.5% F1, F5 : Within ±20%		ve cycles according to the four heat treatments					
		onungo	,		shown in the following table.					
		D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.	Set for 24+/-2 hours (temperature compensating type) or 48+/-4 hours (high dielectric constant type) at room						
		I.R.	More than 50Ω • F		temperature, then measure.		1, 60, 41.00	•		
	Temperature		Wore than 3022 - 1	Cton	1	1 2	2	1		
5	Sudden	Dielectric Strength	No defects	Step	Min.	2	3 Max.	4		
	High Temperature High Humidity (Steady)	3.		Temp. (°C)	Operating Temp. +0/-3	Room Temp.	Operating Temp. +3/-0	Room Temp.		
				Time (min.)	30±3	2 to 3	30±3	2 to 3		
		Appearance Capacitance Change	No defects or abnormalities B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%	Perform a hea then set at roc Perform the in Apply the rate	ement for high dielectric constant type t treatment at 150+0/-10°C for one hour a m temperature for 48+/-4 hours. itial measurement. d voltage at 40+/-2°C and 90 to 95% hum irs. The charge/discharge currentis less the					
16		D.F.	B1, B3, R6, C7, C8 : 0.2 max. F1, F5 : 0.4 max. More than 12.5Ω • F	Perform a hea then let sit for	 Initial measurement Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 48+/-4 hours at room temperature. Perform the initial measurement. Measurement after test Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 48+/-4 hours at room temperature, then measure. 					
				Perform a hea then let sit for						
		Appearance	No defects or abnormalities			•	000 + /–12 hou			
	Durability	Capacitance Change	B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%	hours at room	temperature, t	then mea		18+/-4		
		D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.4 max.	-	The charge/ discharge current is less than 50mA. Initial measurement					
7		I.R.	More than 25Ω • F		48+/-4 hours		10℃ for one ho temperature. P			
					it treatment at		10℃ for one ho temperature, th			