Description

The AMIS-14935 (former MSC-LX1792) offers a patent pending, low-voltage, low-power and high efficiency amplifier for driving a high impedance speaker such as a hearing aid receiver or a headset. The AMIS-14935 consists of a pre-amplifier followed by a fixed gain class D amplifier.

Key Features

- Low Operating Current: 120µA Typical
- Low Operating Voltage: 0.9V minimum
- Gain Set by External Resistors

AMIS-14935 making it possible to set the gain arbitrarily, up to approximately 40dB. The feedback resistor can also be potentiometer to facilitate volume control.

The input resistor and feedback resistor is external in the

- 3 output switch resistance settings: 48, 24 & 16Ω
- 5µVrms Input Referred Noise

- Applications
- Hearing aid applications
- High impedance speaker/transducer applications

Important: For the most current data, consult AMI Semiconductor's website: http://www.amis.com.

Product Highlight

Package Order Info

T_J (°C): **10...15** J: Ceramic Dip 14-Pin NQFP: Plastic MLPM 8-Pin BD: Bare Die

Note for hearing aid applications are covered by Knowles patents numbers US 4,592,087 & 4,689,819: AMI Semiconductor policy is not to sell the AMIS-14935 into hearing aid applications unless a patent license exist between customer and Knowles Corporation. Please contact AMIS for assistance with this.

AMI Semiconductor

www.amis.com

Downloaded from Elcodis.com electronic components distributor

Absolute Maxium Ratings

Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal.

Package Pin Out

Settings

Pin	IMP _{SEL} =V _{SS}	IMP _{SEL} =V _{DD}	IMP _{SEL} =Floating
IMP _{SEL}	16Ω	24Ω	48Ω

Functional Pin Description

Pin Name	Pin No 14 Pin J (Evaluation Samples)	Pin No 8 Pin	Description
V _{DD}	13	8	Supply Voltage
V _{SS}	2	1	Ground
IN	8	5	Analog Audio Input
OUTP	14	7	Positive Output Voltage
OUT _N	1	2	Negative Output Voltage
PREOUT	9	6	Pre-Amplifier Output
IMP _{SEL}	6	3	Output Resistance Select. See Settings table below for selections.

www.amis.com

Recommended Operating Conditions

Parameter	Symbol	Test Conditions		AMIS	6-14935		Units
	-)		N	/lin ⁻	Гур	Max	
OPERATING CONDITIONS							
Supply Voltage	V _{DD}		0	.9		1.5	V
Ground	V _{SS}				0		V

Electrical Characteristics

Unless otherwise specified, the following specifications apply over the operating ambient temperature $T_A=25^{\circ}C$ except where otherwise noted. Test conditions: $V_{DD}=1.3V$,

 $\rm V_{SS}{=}0V,$ Circuit connected as application schematic on page 5, Output loaded with 2000hm in series with 60mH.

Parameter	Symbol	Test Conditions	AMIS-14935			Units
Cuitale Outrant Desistant			Min	Гур	Max	
@ Low Drive	R _{OUT-L}			48		
Switch Output Resistance @ Med Drive	R _{OUT-M}			24		Ω
Switch Output Resistance @ High Drive	R _{OUT-HI}			16	19	
Quiescent Current @ Low Drive	IDDQ			110		
Quiescent Current @ Med Drive	IDDQ _M	No load		120		μA
Quiescent Current @ High Drive	IDDQ _H			130		
3dB Bandwidth – Min Frequency	F _{MIN}	P1_F04 P2_10004 Ein_1447		40	100	Hz
3dB Bandwidth – Max Frequency	F _{MAX}	R I=50K, RZ=1000K, FIN=1KHZ	10			kHz
Output Switching Frequency		F _{CLK}		200		kHz
Gain1	A ₁	R1=50k, R2=500k R1=25k, R2=500k		32 37		dB
Power Supply Rejection Ratio	PSRR	Input Reference R1=50k, R2=500k		45		dB
Total Harmonic Distortion	THD1	R1=50k, R2=500k, Vin=5mVrms, Fin=1kH: R1=25k, R2=500k, Vin=5mVrms, Fin=1kH:	z z	0.3 0.5		%
	N/	R1=50k, R2=500k, 100Hz-10kHz, No weighting		4		V
Input Referred Noise	V _{N-20}	R1=25k, R2=500k, 100Hz-10kHz, No weighting		3		µvrms
Output Clock Frequency	F _{CLK}		140	200	300	kHz
Max Absolute DC Offset OutN-OutP	V _{OFF-NP}	No input signal	0	0.5	5	mV

AMI Semiconductor

www.amis.com

Charts

Note: Graphs show distortion with no load outputs.

AMI Semiconductor

www.amis.com

Downloaded from Elcodis.com electronic components distributor

Mechanicals - 8 Pin MLPQ Package Outline

A K B C C C Internally Connected together, but isolated from all other terminals

LM	Q Din	Plactic	MI D Micro	Exposed	Dad
EIVI .	0-1 111	Tastic		Lybosed	i au

Dim	Millimeters		Inc	hes
	Min	Max	Min	Max
A	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
С	0.65	0.75	0.025	0.029
D	0.15	0.25	0.005	0.009
E	1.84	1 BSC	0.075	5 BSC
F	0.27	0.43	0.010	0.016
G	0.65	5 BSC	0.025 BSC	
Н	1.22	BSC	0.048 BSC	
1	0	0.10	0	0.003
J	0.21	0.37	0.008	0.014
К	0	0.10	0	0.003

J 14-Pin Ceramic Dip

Dim	Millin	Millimeters		nes
	Min	Max	Min	Max
А	19.30	19.94	0.760	0.785
В	5.59	7.11	0.220	0.280
С	-	5.08	-	0.200
D	0.38	0.51	0.015	0.020
F	1.02	1.77	0.040	0.070
G	2.54	BSC	0.100) BSC
Н	-	2.03	-	0.080
J	0.20	0.38	0.008	0.015
K	3.18	5.08	0.125	0.200
L	7.37	7.87	0.290	0.310
М	-	15°	-	15°

Note:

1. Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

AMI Semiconductor

www.amis.com

Downloaded from Elcodis.com electronic components distributor

Mechanicals - 7 Pin Bare Die

_	
(100,952)	VSS
1.15mm	OUT _N
(100,279) IN	OUT _P
(0,0) PRE _{out}	Pad Locations Are (X MIN, Y MIN) and are in µm

Dim	Millimeters		Inches	
	Min	Max	Min	Max
Х		1.15		0.045
Y		1.78		0.070

Note:

1. Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm (.006") on any side. Lead dimension shall not include solder coverage.

Using AMIS-14935 in Hearing Assist Applications

Notes:

1. When using volume control potentiometer, keep input resistor between 25kOhm to 50kOhm for optimum performance. Using lower than 25k may cause higher distortion and using higher than 50k may cause output noise to increase.

2. Input coupling capacitor (C2) must be present. Forms a high pass filter together with resistor R1 with an approximate corner frequency of 1/(2*3.14*R1*C2).

3. R2 and C3 facilitate supply filtering for microphone. The

suggested values are indications only and are dependent on microphone characteristic, quality of supply and supply rejection needed.

4. Bypass capacitor may or may not be needed. Shall be kept low (less than 1µF) since a high value capacitance supply to ground may cause audible noise at power down.

5. IMPSel pin (Impedance select) should generally be tied to ground for minimum switch impedance and maximum drive capability.

AMI Semiconductor

Using AMIS-14935 as Receiver Driver in H-aid Ultra Low Power Audio System

Notes:

1. For optimum noise and distortion performance a 50k input resistor is recommended.

2. Input coupling capacitor (C2) must be present. Forms a high pass filter together with resistor R1 with an approximate corner frequency of $1/(2^*3.14^*R1^*C2)$.

3. Bypass capacitor (C1) may or may not be needed dependent on the supply quality. This capacitor shall have a

low value (less than 1μ F) since a high value capacitance supply to ground may cause audible noise at power down. If other parts of the system requires a higher capacitor value this capacitor can be placed on the battery side of the switch making the total stored charge on the supply line small when system is powered down (switch is opened).

AMI Semiconductor

www.amis.com

AMI

© Copyright 2003 AMI Semiconductor - All rights reserved. Information furnished is balewed to be accurate and reliable. However, AMI Semiconductor assumes no responsibility for errors or omissions in the information and for the consequences of use of auch information. AMI Semiconductor reserves the right to change the information contained herein at any time without toroice. This information is provided "AS IS" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement of intellectual property rights including, without limitation, copyrights, trademarks, in and to this information and products are owned by AMI Semiconductor, and are protected by applicable laws. No license under any patent or or their intellectual property rights including, without limitation, copyrights, trademarks, in and to this information and products are owned by AMI Semiconductor, and are protected by applicable laws. No license under any patent or or their intellectual property rights including.