DATH SHEET

TEA1095
 Voice switched speakerphone IC

Product specification
File under Integrated Circuits, IC03

Voice switched speakerphone IC

FEATURES

- External power supply with power-down function
- Transmit channel with:
- externally adjustable gain
- transmit mute function
- Receive channel with:
- externally adjustable gain
- logarithmic volume control via a linear potentiometer
- receive mute function
- Duplex controller consisting of:
- signal envelope and noise envelope monitors for both channels with:
externally adjustable sensitivity
externally adjustable signal envelope time constant
externally adjustable noise envelope time constant
- decision logic with:
externally adjustable switch-over timing
externally adjustable idle mode timing
externally adjustable dial tone detector in receive channel
- voice switch control with:
adjustable switching range
constant sum of gain during switching
constant sum of gain at different volume settings.

APPLICATIONS

- Mains, battery or line-powered telephone sets
- Cordless telephones
- Answering machines
- Fax machines
- Hands-free car kits.

GENERAL DESCRIPTION

The TEA1095 is a bipolar circuit, that in conjunction with a member of the TEA106X, TEA111X families of transmission or TEA1096 transmission/listening-in circuits offers a hands-free function. It incorporates a transmit amplifier, a receiver channel amplifier and a duplex controller with signal and noise monitors on both channels.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TEA1095	DIP24	plastic dual in-line package; 24 leads (600 mil)	SOT101-1
TEA1095T	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1
TEA1095TS	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1

Voice switched speakerphone IC

QUICK REFERENCE DATA

$\mathrm{V}_{\mathrm{BB}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{MUTETX}=\mathrm{LOW} ; \mathrm{MUTERX}=\mathrm{LOW} ; \mathrm{PD}=\mathrm{LOW} ; \mathrm{R}_{\mathrm{VOL}}=0 \Omega$; measured in test circuit of Fig.11; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {BB }}$	supply voltage		2.9	-	12.0	V
$\mathrm{I}_{\text {BB }}$	current consumption from pin V_{BB}		-	2.7	3.8	mA
$\mathrm{G}_{\mathrm{vtx}}$	voltage gain from TXIN to TXOUT in transmit mode	$\begin{aligned} & \mathrm{V}_{\mathrm{TXIN}}=1 \mathrm{mV}(\mathrm{RMS}) ; \\ & \mathrm{R}_{\mathrm{GATX}}=30.1 \mathrm{k} \Omega \end{aligned}$	-	15.5	-	dB
$\Delta \mathrm{G}_{\mathrm{vtxr}}$	voltage gain adjustment with $\mathrm{R}_{\mathrm{GATX}}$		-15.5	-	+24.5	dB
$\mathrm{G}_{\mathrm{vrx}}$	voltage gain from RXIN to RXOUT in receive mode	$\begin{aligned} & \mathrm{V}_{\mathrm{RXIN}}=20 \mathrm{mV}(\mathrm{RMS}) ; \\ & \mathrm{R}_{\mathrm{GARX}}=16.5 \mathrm{k} \Omega \\ & \hline \end{aligned}$	-	6.5	-	dB
$\Delta \mathrm{G}_{\text {vrxr }}$	voltage gain adjustment with $\mathrm{R}_{\mathrm{GARX}}$		-20.5	-	+19.5	dB
SWRA	switching range		-	40	-	dB
Δ SWRA	switching range adjustment	with RSWR referenced to $\mathrm{R}_{\mathrm{SWR}}=365 \mathrm{k} \Omega$	-40	-	+12	dB
$\mathrm{T}_{\text {amb }}$	operating ambient temperature		-25	-	+75	${ }^{\circ} \mathrm{C}$

Voice switched speakerphone IC

BLOCK DIAGRAM

Fig. 1 Block diagram.

Voice switched speakerphone IC

PINNING

SYMBOL	PIN	DESCRIPTION
MUTERX	1	receiver channel mute input
RXIN	2	receiver amplifier input
n.c.	3	not connected
GARX	4	receiver gain adjustment
RXOUT	5	receiver amplifier output
GND	6	ground reference
V $_{\text {BB }}$	7	supply voltage input
VOL	8	receiver volume adjustment
SWR	9	switching range adjustment
STAB	10	reference current adjustment
SWT	11	switch-over timing adjustment
IDT	12	idle mode timing adjustment
PD	13	power-down input
TXGND	14	ground reference for the transmit channel
MUTETX	15	transmit channel mute input
TXOUT	16	transmit amplifier output
GATX	17	transmit gain adjustment
TXIN	18	transmit amplifier input
RNOI	19	receive noise envelope timing adjustment
RENV	20	receive signal envelope timing adjustment
RSEN	21	receive signal envelope sensitivity adjustment
TNOI	22	transmit noise envelope timing adjustment
TENV	23	transmit signal envelope timing adjustment
TSEN	24	transmit signal envelope sensitivity adjustment

Fig. 2 Pin configuration.

Voice switched speakerphone IC

FUNCTIONAL DESCRIPTION

The values given in the functional description are typical values except when otherwise specified.
A principle diagram of the TEA1096 is shown on the left side of Fig.3. The TEA1096 is a transmission and listening-in circuit. It incorporates a receiving amplifier for the earpiece, a transmit amplifier for the microphone, a loudspeaker amplifier and a hybrid. For more details on the TEA1096 circuit (please refer to Data Handbook IC03). The right side of Fig. 3 shows a principle diagram of the TEA1095, a hands-free add-on circuit with a transmit amplifier, a receiver amplifier and a duplex controller.
As can be seen from Fig.3, a loop is formed via the sidetone network in the transmission circuit and the acoustic coupling between loudspeaker and microphone of the hands-free circuit. When this loop gain is greater than 1, howling is introduced. In a full duplex application, this would be the case. The loop-gain has to be much
lower than 1 and therefore has to be decreased to avoid howling. This is achieved by the duplex controller. The duplex controller of the TEA1095 detects which channel has the 'largest' signal and then controls the gains of the transmit amplifier and the receiver amplifier such that the sum of the gains remains constant. As a result, the circuit can be in three stable modes:

1. Transmit mode (Tx mode): the gain of the transmit amplifier is at its maximum and the gain of the receiver amplifier is at its minimum.
2. Receive mode ($R x$ mode): the gain of the receiver amplifier is at its maximum and the gain of the transmit amplifier is at its minimum.
3. Idle mode: the gain of the amplifiers is halfway between their maximum and minimum value.

The difference between the maximum gain and minimum gain is called the switching range.

Fig. 3 Hands-free telephone set principles.

Supply: pins $\mathrm{VBB}_{\mathrm{BB}}$, GND and PD

The TEA1095 must be supplied with an external stabilized voltage source between pins V_{BB} and GND. In idle mode, without any signal, the internal supply current is 2.7 mA at $V_{B B}=5 \mathrm{~V}$.
To reduce current consumption during pulse dialling or register recall (flash), the TEA1095 is provided with a power-down (PD) input. When the voltage on PD is HIGH, the current consumption from V_{BB} is $140 \mu \mathrm{~A}$.

Transmit channel: pins TXIN, GATX, TXOUT, TXGND and MUTETX

The TEA1095 has an asymmetrical transmit input (TXIN) with an input resistance of $20 \mathrm{k} \Omega$. The gain of the input stage varies according to the mode of the TEA1095. In the transmit mode, the gain is at its maximum; in the receive
mode, it is at its minimum and in the idle mode, it is halfway between maximum and minimum. Switch-over from one mode to the other is smooth and click-free. The output capability at pin TXOUT is $20 \mu \mathrm{~A}$ (RMS).
In the transmit mode, the overall gain of the transmit amplifier (from pin TXIN to TXOUT) can be adjusted from 0 dB to 40 dB to suit application specific requirements.
The gain is proportional to the value of $\mathrm{R}_{\text {GATX }}$ and equals 15.5 dB with $\mathrm{R}_{\mathrm{GATX}}=30.1 \mathrm{k} \Omega$.

A capacitor must be connected in parallel with $R_{\text {GATX }}$ to ensure stability of the transmit amplifier. Together with $R_{\text {GATX }}$, it also provides a first-order low-pass filter.
By applying a HIGH level on pin MUTETX, the transmit amplifier is muted and the TEA1095 is automatically forced into the receive mode.

Fig. 4 Transmit channel.

Voice switched speakerphone IC

Receive channe

Fig. 5 Receive channel.

Receiver amplifier: pins RXIN, GARX, RXOUT and MUTERX

The TEA1095 has an asymmetrical input (RXIN) for the receiver amplifier with an input resistance of $20 \mathrm{k} \Omega$. The gain of the input stage varies according to the mode of the TEA1095. In the receive mode, the gain is at its maximum; in the transmit mode, it is at its minimum and in the idle mode, it is halfway between maximum and minimum. Switch-over from one mode to the other is smooth and click-free.

In the receive mode, the overall gain of the receive amplifier can be adjusted from -14 dB to +26 dB to suit application specific requirements. The gain from RXIN to RXOUT is proportional to the value of $\mathrm{R}_{\mathrm{GARX}}$ and equals 6.5 dB with $\mathrm{R}_{\mathrm{GARX}}=16.5 \mathrm{k} \Omega$. A capacitor connected in parallel with $R_{G A R X}$ can be used to provide a first-order low-pass filter.

By applying a HIGH level on pin MUTERX, the receiver amplifier is muted and the TEA1095 is automatically forced into the transmit mode.

Volume control: pin vol
The receiver amplifier gain can be adjusted with the potentiometer R VOL . A linear potentiometer can be used to obtain logarithmic control of the gain of the receiver amplifier. Each 950Ω increase of $R_{\text {VoL }}$ results in a gain loss of 3 dB . The maximum gain reduction with the volume control is internally limited to the switching range.

Duplex controller

Signal and noise envelope detectors: Pins TSEN, TENV, TNOI, RSEN, RENV AND RNOI

The signal envelopes are used to monitor the signal level strength in both channels. The noise envelopes are used to monitor background noise in both channels. The signal and noise envelopes provide inputs for the decision logic. The signal and noise envelopes detectors are shown in Fig.6.
For the transmit channel, the input signal at TXIN is 40 dB amplified to TSEN. For the receive channel, the input signal at RXIN is 0 dB amplified to RSEN. The signals from TSEN and RSEN are logarithmically compressed and buffered to TENV and RENV respectively. The sensitivity of the envelope detectors is set with $\mathrm{R}_{\text {TSEN }}$ and $\mathrm{R}_{\text {RSEN }}$.

The capacitors connected in series with the two resistors block any DC component and form a first order high-pass filter. In the basic application (see Fig.12), it is assumed that $\mathrm{V}_{\text {TXIN }}=1 \mathrm{mV}$ (RMS) and $\mathrm{V}_{\text {RXIN }}=100 \mathrm{mV}$ (RMS) nominal and both $R_{\text {TSEN }}$ and $R_{\text {RSEN }}$ have a value of $10 \mathrm{k} \Omega$. With the value of $\mathrm{C}_{\text {TSEN }}$ and $\mathrm{C}_{\text {RSEN }}$ at 100 nF , the cut-off frequency is at 160 Hz .

The buffer amplifiers leading the compressed signals to TENV and RENV have a maximum source current of $120 \mu \mathrm{~A}$ and a maximum sink current of $1 \mu \mathrm{~A}$. Together with the capacitors $\mathrm{C}_{\text {TENV }}$ and $\mathrm{C}_{\text {RENV }}$, the timing of the signal envelope monitors can be set. In the basic application, the value of both capacitors is 470 nF . Because of the logarithmic compression, each 6 dB signal increase means 18 mV increase of the voltage on the envelopes TENV or RENV at room temperature. Thus, timings can be expressed in $\mathrm{dB} / \mathrm{ms}$. At room temperature, the $120 \mu \mathrm{~A}$ sourced current corresponds to a maximum rise-slope of the signal envelope of $85 \mathrm{~dB} / \mathrm{ms}$. This is enough to track normal speech signals. The $1 \mu \mathrm{~A}$ current sunk by TENV or

RENV corresponds to a maximum fall-slope of $0.7 \mathrm{~dB} / \mathrm{ms}$. This is enough for a smooth envelope and also eliminates the effect of echoes on switching behaviour.

To determine the noise level, the signal on TENV and RENV are buffered to TNOI and RNOI. These buffers have a maximum source current of $1 \mu \mathrm{~A}$ and a maximum sink current of $120 \mu \mathrm{~A}$. Together with the capacitors $\mathrm{C}_{\text {TNO }}$ and $\mathrm{C}_{\text {RNOI, }}$, the timing can be set. In the basic application of Fig.12, the value of both capacitors is $4.7 \mu \mathrm{~F}$. At room temperature, the $1 \mu \mathrm{~A}$ sourced current corresponds to a maximum rise-slope of the noise envelope of approximately $0.07 \mathrm{~dB} / \mathrm{ms}$. This is small enough to track background noise and not to be influenced by speech bursts. The $120 \mu \mathrm{~A}$ current that is sunk corresponds to a maximum fall-slope of approximately $8.5 \mathrm{~dB} / \mathrm{ms}$. However, during the decrease of the signal envelope, the noise envelope tracks the signal envelope so it will never fall faster than approximately $0.7 \mathrm{~dB} / \mathrm{ms}$. The behaviour of the signal envelope and noise envelope monitors is illustrated in Fig.7.

Fig. 6 Signal and noise envelope detectors.

Voice switched speakerphone IC

Fig. 7 Signal and noise envelope waveforms.

(1) When MUTETX $=$ HIGH $+10 \mu \mathrm{~A}$ is forced. When MUTERX $=\mathrm{HIGH}-10 \mu \mathrm{~A}$ is forced.

Fig. 8 Decision logic.

Decision logic: Pins IDT and SWT

The TEA1095 selects its mode of operation (transmit, receive or idle mode) by comparing the signal and the noise envelopes of both channels. This is executed by the decision logic. The resulting voltage on pin SWT is the input for the voice-switch.

To facilitate the distinction between signal and noise, the signal is considered as speech when its envelope is more than 4.3 dB above the noise envelope. At room temperature, this is equal to a voltage difference $\mathrm{V}_{\mathrm{ENV}-\mathrm{NOI}}=13 \mathrm{mV}$. This so called speech/noise threshold is implemented in both channels.

The signal on TXIN contains both speech and the signal coming from the loudspeaker (acoustic coupling). When receiving, the contribution from the loudspeaker overrules the speech. As a result, the signal envelope on TENV is formed mainly by the loudspeaker signal. To correct this, an attenuator is connected between TENV and the TENV/RENV comparator. Its attenuation equals that applied to the transmit amplifier.

When a dial tone is present on the line, without monitoring, the tone would be recognized as noise because it is a signal with a constant amplitude. This would cause the TEA1095 to go into the idle mode and the user of the set would hear the dial tone fade away. To prevent this, a dial tone detector is incorporated which, in standard application, does not consider the input signals at RXIN as noise when they have a level greater than 42 mV (RMS). This level is proportional to $R_{\text {RSEN }}$.
As can be seen from Fig.8, the output of the decision logic is a current source. The logic table gives the relationship between the inputs and the value of the current source. It can charge or discharge the capacitor $\mathrm{C}_{\text {SWT }}$ with a current of $10 \mu \mathrm{~A}$ (switch-over). If the current is zero, the voltage on SWT becomes equal to the voltage on IDT via the high ohmic resistor $\mathrm{R}_{\text {IDT }}$ (idling). The resulting voltage difference between SWT and IDT determines the mode of the TEA1095 and can vary between -400 mV and +400 mV .

Table 1 Modes of TEA1095

$\mathbf{V}_{\mathbf{S W T}}-\mathbf{V}_{\text {IDT }}(\mathbf{m V})$	MODE
<-180	transmit mode
0	idle mode
>180	receive mode

The switch-over timing can be set with $\mathrm{C}_{S W T}$, the idle mode timing with $\mathrm{C}_{\text {SWT }}$ and $\mathrm{R}_{\text {IDT }}$. In the basic application given in Fig.12, $\mathrm{C}_{S W T}$ is chosen at 220 nF and $\mathrm{R}_{\text {IDT }}$ at $2.2 \mathrm{M} \Omega$. This enables a switch-over time from transmit to receive mode or vice-versa of approximately $13 \mathrm{~ms}(580 \mathrm{mV}$ swing on SWT). The switch-over time from idle mode to transmit mode or receive mode is approximately 4 ms (180 mV swing on SWT).
The switch-over time from receive mode or transmit mode to idle mode is equal to $4 \times \mathrm{R}_{\text {IDT }} \mathrm{C}_{\text {SWT }}$ and is approximately 2 s (idle mode time).

The inputs MUTETX and MUTERX overrule the decision logic. When MUTETX goes HIGH, the capacitor $\mathrm{C}_{\text {SWT }}$ is charged with $10 \mu \mathrm{~A}$ resulting in the receive mode. When the voltage on pin MUTERX goes HIGH, the capacitor $\mathrm{C}_{\text {SWT }}$ is discharged with $10 \mu \mathrm{~A}$ resulting in the transmit mode.

VoICE-SWITCH: PINS STAB AND SWR

A diagram of the voice-switch is illustrated in Fig.9. With the voltage on SWT, the TEA1095 voice-switch regulates the gains of the transmit and the receive channel such that the sum of both is kept constant.

In the transmit mode, the gain of the transmit amplifier is at its maximum and the gain of the receive amplifier is at its minimum. In the receive mode, the opposite applies. In the idle mode, both transmit and receive amplifier gains are halfway.

The difference between maximum and minimum is the so called switching range. This range is determined by the ratio of $R_{S W R}$ and $R_{S T A B}$ and is adjustable between 0 and 52 dB . R $\mathrm{R}_{\text {StAB }}$ should be equal to $3.65 \mathrm{k} \Omega$ and sets an internally used reference current. In the basic application diagram given in Fig.12, $\mathrm{R}_{\text {SWR }}$ is equal to $365 \mathrm{k} \Omega$ which results in a switching range of 40 dB . The switch-over behaviour is illustrated in Fig. 10.

In the receive mode, the gain of the receive amplifier can be reduced using the volume control. Since the voice-switch keeps the sum of the gains constant, the gain of the transmit amplifier is increased at the same time (see dashed curves in Fig.10). In the transmit mode however, the volume control has no influence on the gain of the transmit amplifier or the gain of the receive amplifier. Consequently, the switching range is reduced when the volume is reduced. At maximum reduction of volume, the switching range becomes 0 dB .

Voice switched speakerphone IC

Where $\mathrm{C}=$ constant.
Fig. 9 Voice switch.

Fig. 10 Switch-over behaviour.

Voice switched speakerphone IC

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\mathrm{n}(\max)}$	maximum voltage on all pins; except pins V_{BB} and RXIN		$\mathrm{V}_{\mathrm{GND}}-0.4$	$\mathrm{~V}_{\mathrm{BB}}+0.4$	V
$\mathrm{~V}_{\mathrm{RIN}(\max)}$	maximum voltage on pin RXIN		$\mathrm{V}_{\mathrm{GND}}-1.2$	$\mathrm{~V}_{\mathrm{BB}}+0.4$	V
$\mathrm{~V}_{\mathrm{BB}(\max)}$	maximum voltage on pin V_{BB}		$\mathrm{V}_{\mathrm{GND}}-0.4$	12.0	V
$\mathrm{~T}_{\text {stg }}$	IC storage temperature	-40	+125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature		-25	+75	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
$R_{\text {th } j \text {-a }}$	thermal resistance from junction to ambient in free air		
	TEA1095	50	K/W
	TEA1095T	75	K/W
	TEA1095TS	104	K/W

CHARACTERISTICS

$\mathrm{V}_{\mathrm{BB}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{MUTETX}=\mathrm{LOW} ; \mathrm{MUTERX}=\mathrm{LOW} ; \mathrm{PD}=\mathrm{LOW} ;$ Rvol $=0 \Omega$; measured in test circuit of Fig.11; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply (V_{BB}, PD and GND)						
$\mathrm{V}_{\text {BB }}$	supply voltage		2.9	-	12.0	V
$\mathrm{I}_{\text {BB }}$	current consumption from pin V_{BB}		-	2.7	3.8	mA
POWER-DOWN INPUT PD						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		$\mathrm{V}_{\mathrm{GND}}-0.4$	-	0.3	V
V_{IH}	HIGH level input voltage		1.5	-	$\mathrm{V}_{\mathrm{BB}}+0.4$	V
IPD	power-down input current	$\mathrm{PD}=\mathrm{HIGH}$	-	2.5	5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{BB} \text { (PD) }}$	current consumption from pin V_{BB} in power-down mode	$\mathrm{PD}=\mathrm{HIGH}$	-	140	190	$\mu \mathrm{A}$
Transmit channel (TXIN, GATX, TXOUT, MUTETX and TXGND)						
TRANSMIT AMPLIFIER						
$\left\|Z_{i}\right\|$	input impedance between pins TXIN and TXGND		17	20	23	k Ω
$\mathrm{G}_{\mathrm{vtx}}$	voltage gain from TXIN to TXOUT in transmit mode	$\begin{aligned} & \mathrm{V}_{\mathrm{TXIN}}=1 \mathrm{mV}(\mathrm{RMS}) ; \\ & \mathrm{R}_{\mathrm{GATX}}=30.1 \mathrm{k} \Omega \end{aligned}$	-	15.5	-	dB
$\Delta \mathrm{G}_{\mathrm{vtxr}}$	voltage gain adjustment with $\mathrm{R}_{\text {GATX }}$		-15.5	-	+24.5	dB
$\Delta \mathrm{G}_{\mathrm{vtx}}$	voltage gain variation with temperature referenced to $25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\text {TXIN }}=1 \mathrm{mV}(\mathrm{RMS}) ; \\ & \mathrm{T}_{\mathrm{amb}}=-25 \text { to }+75^{\circ} \mathrm{C} \end{aligned}$	-	± 0.3	-	dB

Voice switched speakerphone IC

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\Delta \mathrm{G}_{\mathrm{vtxf}}$	voltage gain variation with frequency referenced to 1 kHz	$\begin{aligned} & \mathrm{V}_{\text {TXIN }}=1 \mathrm{mV}(\mathrm{RMS}) ; \\ & \mathrm{f}=300 \text { to } 3400 \mathrm{~Hz} \end{aligned}$	-	± 0.3	-	dB
$\mathrm{V}_{\text {notx }}$	noise output voltage at pin TXOUT	pin TXIN connected to TXGND through 200Ω in series with $10 \mu \mathrm{~F}$; psophometrically weighted (P53 curve)	-	-100	-	dBmp
Transmit mute input MUTETX						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		$\mathrm{V}_{\mathrm{GND}}-0.4$	-	0.3	V
V_{IH}	HIGH level input voltage		1.5	-	$\mathrm{V}_{\mathrm{BB}}+0.4$	V
$\mathrm{I}_{\text {MUTETX }}$	input current	MUTETX = HIGH	-	2.5	5	$\mu \mathrm{A}$
$\Delta \mathrm{G}_{\mathrm{vtxm}}$	voltage gain reduction with MUTETX active	MUTETX = HIGH	-	80	-	dB
Receive channel (RXIN, GARX, RXOUT and MUTERX)						
RECEIVE AMPLIFIER						
$\left\|z_{i}\right\|$	input impedance between pins RXIN and GND		17	20	23	k Ω
$\mathrm{G}_{\mathrm{vrx}}$	voltage gain from RXIN to RXOUT in receive mode	$\begin{aligned} & \mathrm{V}_{\mathrm{RXIN}}=20 \mathrm{mV}(\mathrm{RMS}) ; \\ & \mathrm{R}_{\mathrm{GARX}}=16.5 \mathrm{k} \Omega \\ & \hline \end{aligned}$	-	6.5	-	dB
$\Delta \mathrm{G}_{\text {vrxr }}$	voltage gain adjustment with $\mathrm{R}_{\text {GARX }}$		-20.5	-	+19.5	dB
$\Delta \mathrm{G}_{\mathrm{vrxT}}$	voltage gain variation with temperature referenced to $25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{RXIN}}=20 \mathrm{mV}(\mathrm{RMS}) ; \\ & \mathrm{T}_{\mathrm{amb}}=-25 \text { to }+75^{\circ} \mathrm{C} \end{aligned}$	-	± 0.3	-	dB
$\Delta \mathrm{G}_{\text {vrxf }}$	voltage gain variation with frequency referenced to 1 kHz	$\begin{aligned} & \mathrm{V}_{\mathrm{RXIN}}=20 \mathrm{mV}(\mathrm{RMS}) ; \\ & \mathrm{f}_{\mathrm{i}}=300 \text { to } 3400 \mathrm{~Hz} \end{aligned}$	-	± 0.3	-	dB
$\mathrm{V}_{\text {norx(rms) }}$	noise output voltage at pin RXOUT (RMS value)	input RXIN short-circuited through 200Ω in series with $10 \mu \mathrm{~F}$; psophometrically weighted (P53 curve)	-	20	-	$\mu \mathrm{V}$
$\Delta \mathrm{G}_{\mathrm{vrxv}}$	voltage gain variation referenced to $\Delta \mathrm{R}_{\mathrm{VOL}}=950 \Omega$	when total attenuation does not exceed the switching range	-	3	-	dB
Receive mute input MUTERX						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		$\mathrm{V}_{\mathrm{GND}}-0.4$	-	0.3	V
V_{IH}	HIGH level input voltage		1.5	-	$\mathrm{V}_{\mathrm{BB}}+0.4$	V
$\mathrm{I}_{\text {MUTERX }}$	input current	MUTERX = HIGH	-	2.5	5	$\mu \mathrm{A}$

Voice switched speakerphone IC

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\Delta \mathrm{G}_{\mathrm{vrxm}}$	gain reduction with MUTERX active	MUTERX = HIGH	-	80	-	dB
Envelope and noise detectors (TSEN, TENV, TNOI, RSEN, RENV and RNOI)						
Preamplifiers						
$\mathrm{G}_{\mathrm{v} \text { (TSEN) }}$	voltage gain from TXIN to TSEN		-	40	-	dB
$\mathrm{G}_{\mathrm{v} \text { (RSEN) }}$	voltage gain between RXIN to RSEN		-	0	-	dB
LOGARITHMIC COMPRESSOR AND SENSITIVITY ADJUSTMENT						
$\varphi \operatorname{det}$ (TSEN)	sensitivity detection on pin TSEN; voltage change on pin TENV when doubling the current from TSEN	$\mathrm{I}_{\text {TSEN }}=0.8$ to $160 \mu \mathrm{~A}$	-	18	-	mV
$\varphi_{\operatorname{det}(\text { RSEN }}$	sensitivity detection on pin RSEN; voltage change on pin RENV when doubling the current from RSEN	$\mathrm{I}_{\text {RSEN }}=0.8$ to $160 \mu \mathrm{~A}$	-	18	-	mV
SIGNAL ENVELOPE DETECTORS						
$\mathrm{I}_{\text {source(ENV) }}$	maximum current sourced from pin TENV or RENV		-	120	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {sink(ENV) }}$	maximum current sunk by pin TENV or RENV		0.75	1	1.25	$\mu \mathrm{A}$
$\Delta \mathrm{V}_{\text {ENV }}$	voltage difference between pins RENV and TENV	when $10 \mu \mathrm{~A}$ is sourced from both RSEN and TSEN; envelope detectors tracking; note 1	-	± 3	-	mV
NOISE ENVELOPE DETECTORS						
$\mathrm{I}_{\text {source(NOI) }}$	maximum current sourced from pins TNOI or RNOI		0.75	1	1.25	$\mu \mathrm{A}$
$\mathrm{l}_{\text {Sink(}}$ (NOI)	maximum current sunk by pins TNOI or RNOI		-	120	-	$\mu \mathrm{A}$
$\Delta \mathrm{V}_{\mathrm{NOI}}$	voltage difference between pins RNOI and TNOI	when $2 \mu \mathrm{~A}$ is sourced from both RSEN and TSEN; noise detectors tracking; note 1	-	± 3	-	mV
DIAL TONE DETECTOR						
$\mathrm{V}_{\text {RINDT(rms) }}$	threshold level at pin RXIN (RMS value)		-	42	-	mV

Voice switched speakerphone IC

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Decision logic (IDT and SWT)						
SIGNAL RECOGNITION						
$\Delta \mathrm{V}_{\text {Srx(th) }}$	threshold voltage between pins RENV and RNOI to switch-over from receive to idle mode	$\mathrm{V}_{\text {RXIN }}<\mathrm{V}_{\text {RINDT }}$; note 2	-	13	-	mV
$\Delta \mathrm{V}_{\text {Stx(th) }}$	threshold voltage between pins TENV and TNOI to switch-over from transmit to idle mode	note 2	-	13	-	mV
SWITCH-OVER						
$\mathrm{I}_{\text {source(SWT) }}$	current sourced from pin SWT when switching to receive mode		7.5	10	12.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {sink(SWT) }}$	current sunk by pin SWT when switching to transmit mode		7.5	10	12.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {idle(SWT) }}$	current sourced from pin SWT in idle mode		-	0	-	$\mu \mathrm{A}$
Voice switch (STAB and SWR)						
SWRA	switching range		-	40	-	dB
Δ SWRA	switching range adjustment	with $\mathrm{R}_{\mathrm{SWR}}$ referenced to $\mathrm{R}_{\mathrm{SWR}}=365 \mathrm{k} \Omega$	-40	-	+12	dB
$\left\|\Delta G_{v}\right\|$	voltage gain variation from transmit mode to idle mode on both channels		-	20	-	dB
G_{tr}	gain tracking $\left(\mathrm{G}_{\mathrm{vtx}}+\mathrm{G}_{\mathrm{vrx}}\right)$ during switching, referenced to idle mode		-	± 0.5	-	dB

Notes

1. Corresponds to $\pm 1 \mathrm{~dB}$ tracking.
2. Corresponds to 4.3 dB noise/speech recognition level.

Voice switched speakerphone IC

TEST AND APPLICATION INFORMATION

Voice switched speakerphone IC

MODE	SWITCH				MUTET
	S1	S2	S3	S4	
Hands-free	OPEN	OPEN	TXOUT	OPEN	LOW
Handset	CLOSED	CLOSED	HSMIC	OPEN	DON'T CARE
Handset plus listening-in	OPEN	CLOSED	HSMIC	CLOSED	HIGH

Fig. 13 Application example.

Voice switched speakerphone IC

PACKAGE OUTLINES

UNIT	$\underset{\max .}{A}$	$\begin{gathered} \mathbf{A}_{1} \\ \text { min. } \end{gathered}$	A_{2} max.	b	b_{1}	c	$D^{(1)}$	$E{ }^{(1)}$	e	e_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\mathrm{Zax}^{(1)}$
mm	5.1	0.51	4.0	$\begin{aligned} & 1.7 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 32.0 \\ & 31.4 \end{aligned}$	$\begin{aligned} & 14.1 \\ & 13.7 \end{aligned}$	2.54	15.24	$\begin{aligned} & 3.9 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 15.80 \\ & 15.24 \end{aligned}$	$\begin{aligned} & 17.15 \\ & 15.90 \end{aligned}$	0.25	2.2
inches	0.20	0.020	0.16	$\begin{aligned} & 0.066 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.26 \\ & 1.24 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.54 \end{aligned}$	0.10	0.60	$\begin{aligned} & 0.15 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 0.63 \end{aligned}$	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJJECTION	ISSUE DATE
	SOT101-1	051 G 02	JEDEC	EIAJ		

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT137-1	$075 E 05$	MS-013AD			$-97-05-22$	

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} \text { A } \\ \text { max. } \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2.0	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & \hline 8.4 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.2 \end{aligned}$	0.65	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$	1.25	$\begin{aligned} & 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$	8° 0°

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT340-1		MO-150AG		\square ¢	$\begin{aligned} & -93-09-08 \\ & 95-02-04 \end{aligned}$

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

DIP

Soldering by dipping or by wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg max }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

SO and SSOP

Reflow soldering

Reflow soldering techniques are suitable for all SO and SSOP packages.
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating
method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Wave soldering

Wave soldering is not recommended for SSOP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow and must incorporate solder thieves at the downstream end.

Even with these conditions, only consider wave soldering SSOP packages that have a body width of 4.4 mm , that is SSOP16 (SOT369-1) or SSOP20 (SOT266-1).

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

Voice switched speakerphone IC

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Voice switched speakerphone IC

NOTES

Voice switched speakerphone IC

NOTES

Voice switched speakerphone IC

NOTES

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2689 211, Fax. +359 2689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 3288 2636, Fax. +45 31570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050,5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 2274 8000, Fax. +4722 748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, TeI. +63 2816 6380, Fax. +63 28173474

Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA

Tel. +48 22612 2831, Fax. +48 226122327

Portugal: see Spain

Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500

Slovakia: see Austria

Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +2711470 5911, Fax. +27114705494
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14817730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1
TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors,
Internet: http://www.semiconductors.philips.com
International Marketing \& Sales Communications, Building BE-p,
P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1997
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights
Printed in The Netherlands 417027/1200/03/pp28

PHILIPS

