6-Channel, Muxed Input Line Inversion LCD Gamma Buffer

FEATURES

Single-supply operation: 3.3 V to 6.5 V
Rail-to-rail input, rail-to-rail output
High output current: $\mathbf{3 8 0} \mathbf{~ m A}$
Low supply current: 3.9 mA
Stable with 1 nF loads
Wide temperature range: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
24-lead, Pb -free, TSSOP package

APPLICATIONS

LCD line inversion gamma references
Car navigation panels
Personal media player panels

GENERAL DESCRIPTION

The ADD8506 has 6-channel LCD gamma reference buffers designed to drive column driver gamma inputs in line inversion panels. Each buffer channel has an A/B input to select between two gamma voltage curves. These buffer channels drive the resistor ladders of LCD column drivers for gamma correction. The ADD8506 outputs have high slew rates and output drives that increase the stability of the reference ladder, resulting in optimal gray scale and visual performance.

The ADD8506 is specified over the $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ temperature range. It is available in a 24 -lead thin shrink small outline (TSSOP), surface-mount, Pb -free package.

PIN CONFIGURATION DIAGRAM

Figure 1.

Rev. 0

ADD8506

TABLE OF CONTENTS

\qquad
Applications. 1
General Description 1
Pin Configuration Diagram 1
Revision History 2
Specifications 3
Electrical Characteristics 3
Absolute Maximum Ratings 4
Thermal Resistance 4
ESD Performance 4
ESD Caution 4
Typical Performance Characteristics 5
Applications 6
Outline Dimensions 7
Ordering Guide 7

REVISION HISTORY

9/05-Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. V_{IN} denotes buffer input voltage; $\mathrm{I}_{\mathrm{LOAD}}$ denotes load current; R_{L} denotes load resistance; C_{L} denotes load capacitance.

Table 1.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
INPUT CHARACTERISTICS Offset Voltage Input Common-Mode Voltage Range Input Bias Current Voltage Gain	Vos $V_{\text {cm }}$ IB Avo	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}} \leq 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N}}=2.5 \mathrm{~V} \end{aligned}$	0 0.985		$\begin{aligned} & 20 \\ & 5 \\ & 50 \end{aligned}$	mV V nA V/V
OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Resistance Output Short Circuit Current	Voн Vol Rout Isc	$\begin{aligned} & I_{\text {LOAD }}=+20 \mathrm{~mA} \\ & \mathrm{I}_{\text {LOAD }}=-20 \mathrm{~mA} \\ & -20 \mathrm{~mA} \leq \mathrm{I}_{\text {LOAD }} \leq+20 \mathrm{~mA} ; 0.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 4.5 \mathrm{~V} \end{aligned}$	4.75 120	$\begin{aligned} & 0.20 \\ & 380 \\ & \hline \end{aligned}$	0.2	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \Omega \\ & \mathrm{~mA} \end{aligned}$
POWER SUPPLY Supply Current Supply Voltage Range	$\begin{aligned} & \mathrm{I}_{\mathrm{SY}} \\ & \mathrm{~V}_{\mathrm{cc}} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$	3.3		$\begin{aligned} & 5.1 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~V} \end{aligned}$
DYNAMIC PERFORMANCE Slew Rate Settling Time	SR ts	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=250 \Omega \\ & \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{aligned} & 7.0 \\ & 6.2 \\ & 2.5 \end{aligned}$	6	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
LOGIC INPUT CHARACTERISTICS Input Current Low Input Current High Input Voltage Low Input Voltage Low Input Voltage High Input Voltage High	IIL I_{H} VII VII V_{H} V_{H}	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.4 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & 0.8 \\ & 0.7 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$

ADD8506

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	7 V
Input Voltage	GND to V cc
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$300^{\circ} \mathrm{C}$

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE
Table 3. Thermal Package Characteristics

Model	Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}{ }^{\mathbf{1}}$	$\boldsymbol{\theta}_{\mathbf{\prime} \mathbf{c}^{\mathbf{2}}}$	Unit
ADD8506WRUZ	24-Lead Pb-Free TSSOP	128	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1} \theta_{\mathrm{JA}}$ is specified for natural convection on a two-layer board.
${ }^{2} \theta_{\mathrm{Jc}}$ is specified for natural convection on a two-layer board.

ESD PERFORMANCE

Table 4.

Model	HBM $^{\mathbf{1}}$	MM $^{\mathbf{2}}$	FICDM $^{\mathbf{3}}$
ADD8506WRUZ	3.5 kV	200 V	1.0 kV

${ }^{1}$ Human body model.
${ }^{2}$ Machine model.
${ }^{3}$ Field induced charge device model.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 2. Supply Current vs. Supply Voltage

Figure 3. Δ Output Voltage to Supply Rail vs. Load Current

Figure 4. Offset Voltage vs. Temperature

Figure 5. Transient Response—Rising

Figure 6. Transient Response-Falling

ADD8506

APPLICATIONS

The ADD8506 has CMOS buffers with A/B inputs to select between two different reference voltages set up by an external resistor ladder. Input bias currents are orders of magnitude less than competitive parts. This allows the use of a very large resistor ladder to save supply current.

The buffer outputs are designed to drive resistive or capacitive loads. Therefore, to attain the best display performance, do not use resistors in series with these outputs. Outputs have high slew rates and 6μ settling times. Each output delivers a minimum of 120 mA , ensuring a fast response to varying loads.

Power supply pins on the ADD8506 have multiple ground (GND) and supply (V_{CC}) connections. Because of the high peak currents that these buffers deliver, it is recommended that all GND and VCC pins be connected and suitably bypassed.

Table 5. MUX Function

A/B Select	Input
Logic High	INAx
Logic Low	INBx

NOTES

1. RAx RESISTORS ARE USED TO SET POSITIVE INVERSION GAMMA VOLTAGES. 2. RBx RESISTORS ARE USED TO SET NEGATIVE INVERSION GAMMA VOLTAGES.

Figure 7. Typical Application

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Ordering Quantity
ADD8506WRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	24-Lead Thin Shrink Small Outline Package [TSSOP], Tube	RU-24	96
ADD8506WRUZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	24-Lead Thin Shrink Small Outline Package [TSSOP], 7"Reel	RU- 24	1,000
ADD8506WRUZ-REEL 1	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	24-Lead Thin Shrink Small Outline Package [TSSOP],13"Reel	RU-24	2,500

${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

ADD8506

NOTES

