
Rev. 0.2 11/06 Copyright © 2006 by Silicon Laboratories AN249

AN249

HUMAN INTERFACE DEVICE TUTORIAL

1.  Introduction
The Human Interface Device (HID) class specification allows designers to create USB-based devices and
applications without the need for custom driver development. Their high levels of on-chip integration and robust
USB interface make Silicon Laboratories microcontrollers ideal devices for HID designs.

1.1.  About this Document
This application note assumes that the reader has a basic understanding of the USB specification, including some
knowledge of endpoints, descriptors, and transfer protocols. This document concentrates on highlighting the
benefits of designing with HID and techniques for creating and optimizing HID-based systems that use Silicon
Laboratories microcontrollers.

This document includes the following:

Discussion on HID
A firmware template that can be used as a starting point for HID device firmware
Description of the HID object class that can be used by host applications to communicate with HID devices
Explanation of two example HID firmware systems implemented by modifying the Template Firmware
Firmware source for each HID example discussed in the text
Example code for host-side application software 

1.2.  HID Examples
Both HID examples in this application note were created using the included firmware template as a starting point.
The sections titled "7. USB Mouse Example" on page 26 and "8. HID Blinky Firmware and Software Example" on
page 33 describe how the firmware template was modified to create each example. Section “8. HID Blinky
Firmware and Software Example”  also provides an example of how the HID class object can be used to
communicate with an HID device.

Relevant Devices
This application note applies to the following devices:
All Silicon Labs USB MCUs.



AN249

2 Rev. 0.2

2.  Introduction To HID
USB devices communicate with PCs as shown in Figure 1. Creating a USB interface between an embedded
system and a PC requires writing code for the following software subsystems:

Embedded device firmware
Host-side operating system drivers
Host-side PC application

Figure 1. USB Interface between a PC and an Embedded System

2.1.  USB System Development
USB specification defines a number of USB classes, such as HID, mass storage devices, etc.  Developers creating
a USB system that does not fit into one of the pre-defined USB classes must develop custom drivers along with
device firmware and PC applications.  For these systems, developers can use a software package such as Silicon
Laboratories USBXpress, which includes a set of custom drivers, firmware routines, and host routines that enable
USB communication.  HID-class devices simplify USB communication one step further by using a standardized,
flexible driver that comes pre-installed with all commonly used operating systems.  

Benefits of developing with HID include:

Compatibility with all commonly used operating systems (XP, 2000, Mac, Linux)
No need for driver development or distribution
Streamlined device/host interface due to standardized but flexible HID specifications

2.2.  Getting Started With HID
Designers can create embedded HID firmware using the Silicon Laboratories IDE, the evaluation version of the
Keil compiler, and the target board included in the Silicon Laboratories development kit.  Designers developing
host-side PC applications must install the Windows Driver Development Kit (DDK), which can be downloaded from
http://www.microsoft.com/whdc/devtools/ddk/. Once the DDK is installed, the developer will be able to take
advantage of HID-specific API calls to send and receive data with HID-based devices.

For designers creating an HID-based system using this application note's associated firmware template as a
starting point, the typical system design flow is shown in Figure 2.

Host-Side 
Application 

System Drivers

Bi-directional Data Flow

PC

USB Device

Device Firmware
System-

Level 
Data 

Buffers 

 

 

U
SB

 P
or

t

U
S

B
 P

er
ip

he
ra

l



AN249

Rev. 0.2 3

Figure 2. Project Work Flow Chart

Install Software development environments
(Silicon Laboratories IDE, Visual Studios, etc. )

Install the HID Driver 
Development Kit

Copy Firmware Template to 
project directory.

Open Firmware Template in 
firmware development 

environment.

Use Section 5 of this Application 
Note as a guide when modifiying 
Firmware Template to suit your 

system requirements.

Open a host application project 
within host side software 

development environment
-

Send and receive data with 
HID-class device using the 

HIDDevice object class 
discussed in Section 6.   

Connect device to host system.

Design host application.

 



AN249

4 Rev. 0.2

3.  HID Specification Overview
The HID class of the universal serial bus (USB) protocol was created to define devices that interact to some degree
with humans and transfer data with a computer system.

3.1.  Universal Serial Bus
USB protocol presents significant advantages over other PC interfaces in versatility, speed, and reliability. USB
systems communicate under device/host relationships where a device is attached to a USB port of a host PC or a
hub that is then connected to a PC. Host-side application software interacts with device-side firmware through the
native operating system or customized drivers.

3.1.1. Device Endpoints

In USB-based systems, all data travels to or from device endpoints. The USB specification requires that all devices
have a control endpoint. The host uses this endpoint to retrieve information about the device through data packets
called descriptors. Many USB devices also support additional endpoints that transfer data to and from the host. IN
endpoints transfer data from the device to the host while OUT endpoints transfer data from the host to the device.

3.1.2. Silicon Laboratories Microcontroller Capabilities

Silicon Laboratories microcontroller families with USB functionality can support a control endpoint and at least one
additional endpoint. USB hardware controls low-level data transfer to and from the host. The hardware sends and
receives data through user-accessible buffers. The microcontroller signals firmware about USB events, including
data reception and transmission-related events, by setting flags. These flags trigger the servicing of an interrupt
service routine (ISR) if interrupts have been enabled.

3.1.3. USB Device Classes

The USB specification and supplemental documents define a number of device classes that categorize USB
devices according to capability and interface requirements. When a host retrieves device information, class
classification helps the host to determine how to communicate with the USB device.

3.2.  Human Interface Device Class
The HID class devices usually interface with humans in some capacity. HID-class devices include mice, keyboards,
printers, etc. However, the HID specification merely defines basic requirements for devices and the protocol for
data transfer, and devices do not necessarily depend on any direct human interaction.

3.2.1. Class Requirements

HID devices must meet a few general requirements that are imposed to keep the HID interface standardized and
efficient:

All HID devices must have a control endpoint (Endpoint 0) and an interrupt IN endpoint. Many devices also use 
an interrupt OUT endpoint. In most cases, HID devices are not allowed to have more than one OUT and one IN 
endpoint. 
All data transferred must be formatted as reports whose structure is defined in the report descriptor. Reports are 
discussed in detail later in this document.
HID devices must respond to standard HID requests in addition to all standard USB requests.



AN249

Rev. 0.2 5

4.  Enumeration and Device Detection
Before the HID device can enter its normal operating mode and transfer data with the host, the device must
properly enumerate. The enumeration process consists of a number of calls made by the host for descriptors
stored in the device that describe the device’s capabilities.

The device must respond with descriptors that follow a standard format. Descriptors contain all basic information
about a device. The USB specification defines some of the descriptors retrieved, and the HID specification defines
other required descriptors. The next section discusses the descriptor structure a host expects to receive. The two
sections after that describe the responsibilities of the device and the host during enumeration. These sections refer
to sections of the HID firmware template, which is discussed in detail later in this document.

4.1.  Descriptor Structure
Descriptors begin with a byte describing the descriptor length in bytes. This length equals the total number of bytes
in the descriptor including the byte storing the length. The next byte indicates the descriptor type, which allows the
host to correctly interpret the rest of the bytes contained in the descriptor. The content and values of the rest of the
bytes are specific to the type of descriptor being transmitted. Descriptor structure must follow specifications
exactly; the host will ignore received descriptors containing errors in size or value, potentially causing enumeration
to fail and prohibiting further communication between the device and the host.

Descriptor contents are typically stored in FLASH memory space. The file named USB_Descriptor.h in the HID
firmware template declares each value of every descriptor. The file USB_Descriptor.c defines the contents for each
descriptor.

4.1.1. Descriptor Declaration Example

A declaration might look like the following.

//------------------------------------------

// Standard Device Descriptor Type Definition

//------------------------------------------

typedef struct

{

   BYTE bLength;                // Size of this Descriptor in Bytes

   BYTE bDescriptorType;        // Descriptor Type (=1)

   WORD bcdUSB;                 // USB Spec Release Number in BCD

   BYTE bDeviceClass;           // Device Class Code

   BYTE bDeviceSubClass;        // Device Subclass Code

   BYTE bDeviceProtocol;        // Device Protocol Code

   BYTE bMaxPacketSize0;        // Maximum Packet Size for EP0 

   WORD idVendor;               // Vendor ID 

   WORD idProduct;              // Product ID

   WORD bcdDevice;              // Device Release Number in BCD

   BYTE iManufacturer;          // Index of String Desc for Manufacturer

   BYTE iProduct;               // Index of String Desc for Product

   BYTE iSerialNumber;          // Index of String Desc for SerNo

   BYTE bNumConfigurations;     // Number of possible Configurations

} device_descriptor;            // End of Device Descriptor Type

This declaration exactly conforms to the USB specification’s requirements for the size and content order of the
device descriptor. Some contents are stored in single bytes while others require two bytes.



AN249

6 Rev. 0.2

4.1.2. Descriptor Definition Example

The definition might look like the following:

const code device_descriptor DeviceDesc = 

{

   18,                  // bLength

   0x01,                // bDescriptorType

   0x1001,              // bcdUSB

   0x00,                // bDeviceClass

   0x00,                // bDeviceSubClass

   0x00,                // bDeviceProtocol

   EP0_PACKET_SIZE,     // bMaxPacketSize0

   0xC410,              // idVendor

   0x0001,              // idProduct 

   0x0000,              // bcdDevice 

   0x01,                // iManufacturer

   0x02,                // iProduct     

   0x00,                // iSerialNumber

   0x01                 // bNumConfigurations

}; //end of DeviceDesc

The definition exactly follows the declaration for the struct device_descriptor. All contents in this definition
must be valid at the firmware system’s compile time because all of these values will be stored in nonvolatile
memory. Descriptor values stored in multiple bytes must follow the "little endian" style of formatting, where the least
significant byte is stored first. For example, a value of 300 or 0x012C, would be stored as 0x2C01.

4.1.3. A Reminder About Descriptors

Many HID devices have very similar descriptor contents, and in many cases, the descriptors defined in the
firmware template will need to be changed in only a few places to create a customized HID-class device that suits
the needs of a given application. For detailed discussions on each descriptor’s contents, read the sections of this
document describing the firmware template and the two examples created by modifying the template.

4.2.  Device Responsibilities During Enumeration
A device’s main responsibility during enumeration is to respond to requests for information made by the host
system in a timely and accurate manner. The device transfers all enumeration data across the control endpoint. In
the firmware template, this endpoint is handled during execution of the USB ISR.



AN249

Rev. 0.2 7

4.2.1. The Control Endpoint Handler

The USB ISR examines USB registers to determine the cause of the interrupt. If the ISR finds that an Endpoint 0
transaction caused the interrupt, the ISR calls the control endpoint handler. The Endpoint 0 handler parses the
Setup Packet sent by the host and stored in the Endpoint 0 buffer to determine what standard USB request has
been made by the host system. The handler then calls the appropriate function. The firmware template file named
F3xx_USB0_Standard_Requests.c defines all standard requests.

Some of these standard requests require the device to transmit information back to the host. One such standard
request, Get_Descriptor, allows the host to gather all basic information about the newly-attached device. Other
standard requests require the device to receive additional packets of information before the transaction terminates.

4.3.  Device Detection after Successful Enumeration
Standard requests sent during enumeration by the host system are not controlled by user-level code. When a
device connects with a host’s USB port, the host system software will automatically retrieve descriptors and
determine whether to enable communication with the device. Host-side application software wishing to interface
with the device can then begin communicating with the device using standard API calls.

4.4.  Application Communications
Once a device has successfully enumerated, the host can begin sending and receiving data in the form of Reports.
All data passed between an HID device and a host must be structured according to specifications found in the
Report Descriptor. These reports can be transmitted across either the “Control” pipe (endpoint 0) or the “Interrupt”
pipe (endpoints configured to be IN or OUT).

The following sections discuss how to define the report structure inside the report descriptor and how to transfer
these reports across either the “Control” pipe or the “Interrupt” pipe.

Figure 3. Report Descriptor Example Structure

Usage Page/Usage Tags
Application Collection

Usage Page/Usage Tags

Nested Collections (Application, Physical, Logical)

Usage Tags,
Data Desc. Items

Report

Report Data

Usage Tags,
Data Desc. Items

Report

Report Data



AN249

8 Rev. 0.2

4.4.1. Report Descriptors

All data transferred to and from an HID device must be structured in the form of reports. The Report Descriptor
defines the report structure, which contains all the information a host needs to determine the data format and how
the data should be processed. See Figure 3 for a Report Descriptor's example structure.

4.4.1.1.  Report Structure Overview

Although the report structure must follow a few constraints and guidelines, the HID specification purposefully
allows for a high degree of customization. This potential for customization gives HID device designers freedom to
create a wide variety of HID-class devices.

4.4.1.2.  Usage Page and Usage Items

A Report Descriptor begins with a Usage Page item that describes the general function of all of the reports that
follow. For instance, in a Report Descriptor describing reports for a USB Keyboard or a USB Mouse (such as the
one found in the USB Mouse example in this document), designers would use the “Generic Desktop” Usage Page.

Reports contained in defined Usage Pages have defined Usages, which provide more specific information about
the Report contents. For example, a keyboard would use the “Keyboard” Usage for its “Generic Desktop” Usage
Page.

For a complete list of defined Usage Pages, check the “HID Usage Tables” document found at USB.org.

4.4.1.3.  Collections

“Collections” group similar data. Every Report Descriptor must have at least one top-level Collection in which the
data is contained, but the descriptor can define more than one top-level collection. A keyboard with an attached
mouse would have two top-level collections, one describing mouse reports and one describing keyboard reports.
Each Collection must have a Usage tag. For example, the “Keyboard” Usage can tag a collection of USB
Keyboard-related data. Also, collections can be nested.

The HID Specification defines three types of collections:

Application Collections group variables that carry out a common purpose. All report items must be contained 
inside an Application Collection. 
Logical Collections group variables of different types that form a composite data structure. Think of Logical 
Collections as a collection designator for “struct” data types, such as a struct that groups a buffer with index 
variables for that buffer.
Physical Collections group data describing a single data point. For instance, a physical collection of data could 
contain readings from a temperature sensor.

4.4.1.4.  Data Types

Report Descriptors also contain extensive information describing the characteristics of each data item. Logical
Minimum and Logical Maximum items describe the boundary conditions the data contained in reports can reach.
The Report Size item describes how many bits each data item uses, and Report Count describes how many data
items are contained inside the report. A report of Size 8 and Count 2 would contain 16 bits, or 2 bytes of data.

Data values are further described by designating each data item as Input, Output, or Feature. Input items travel
from device to host, Output Items travel from host to device, and Feature items can travel in either direction.

Data items can also be designated as Variable, meaning that the values can be read and written, or Constant,
meaning that the values are read-only. Another often-used designation indicates whether the value is Absolute,
meaning that the value contained in a report is measured from a fixed origin, or Relative, meaning that the value
has no fixed reference and instead describes the change of value since the last report.

Systems using more than one defined report structure also need to give each report a unique Report ID tag. This
Report ID precedes reports during transfer and signals to the receiver which report is being transmitted. For an
example of a USB system that uses more than one Report Structure, see the HID Blinky Firmware and Software
example. For a more detailed discussion on the items in a Report Descriptor, see the latest revision of the HID
specification.

http://www.USB.org


AN249

Rev. 0.2 9

4.4.2. Two Transfer Types

Data traffic contained in HID reports can be transferred between device and host through one of two methods.
Reports travel across the “Control Pipe” when control endpoint transfers are initiated by host calls to the Windows
API functions, HidD_SetOutputReport(), HidD_GetInputReport(), HidD_GetFeatureReport(), and
HidD_SetFeatureReport(). Reports travel across the “Interrupt Pipe” when data is made available for transfer
across endpoints configured as Interrupt IN or Interrupt OUT. The next subsections examine Control Pipe and
Interrupt Pipe data transfers.

4.4.2.1.  Control Transfers from the Perspective of the Host
The HID specification defines six HID-specific requests. For a complete list of HID-specific requests, see the
relevant section in the HID specification.
HidD_SetOutputReport() and HidD_GetInputReport() allow host applications to send and receive IN and
OUT reports. Parameters passed in with the call to HidD_SetOutputReport() include the handle to the HID
device, the buffer containing the report, and the number of bytes to transmit. Similarly, calls to
HidD_GetInputReport() require parameters for the handle to the HID device, a buffer where the incoming
report will be stored, and the number of packets that the system expects to receive. HidD_GetFeatureReport()
and HidDSetFeatureReport() receive and send Feature reports, which are bi-directional.
The API calls first send a packet to the control endpoint of the device that contains reserved command byte
corresponding to HidD_SetOutputReport() or HidD_GetInputReport(). In the case of the
HidD_SetOutputReport() command, the system then transmits a second packet containing the report. In the
case of the HidD_GetInputReport() command, the API transmits a second packet containing the Report ID of
the report the application wishes to retrieve. The host then expects the device to ready that packet for transmission
to the host, and the host makes an attempt to retrieve that packet.
4.4.2.2.  Control Transfers from the Perspective of the Device
After the host initiates a control endpoint transfer, the device’s control endpoint handler parses the bytes of this
setup packet to determine what request has been transmitted to the device. 
If a HidD_SetOutputReport() request has been transmitted to the device, the Report ID of the report to be
retrieved will be included as part of the setup packet. The device then transmits that report back to the host.
If a HidD_GetInputReport() request has been transmitted, the firmware switches the handler into
EP_GetReport mode. The host then transmits a report to the device. After the report has been transmitted, the
microcontroller signals firmware of the availability of the report, and the report can be retrieved from the buffer.
4.4.2.3.  Interrupt Transfers from the Perspective of the Host

During enumeration, host system software learns about the interface of the attached USB device. After reception of
endpoint descriptors, the system polls any Endpoint configured as interrupt IN or interrupt OUT at an interval
defined in the Endpoint Descriptor.

To retrieve IN Endpoint reports transmitted across the interrupt pipe by the device after a poll from the host, the
application calls a Windows API function called Readfile(). This function requires parameters for the handle of
the device, a buffer to store the information, the number of bytes requested, and a variable where the number of
bytes successfully retrieved will be stored.

To transmit an OUT Endpoint Report across the Interrupt Pipe, an application calls the Windows API routine named
Writefile(), and passes into this function parameters including the device handle, a buffer containing the report
to be transmitted, the number of bytes to be transmitted, and a variable where the number of bytes successfully
transmitted will be stored.

4.4.3. Interrupt Transfers from the Perspective of the Device

Until a device has data to send across the IN endpoint, it should simply NAK the host’s polled requests for data by
not signaling that data is ready to be received. Once data has been collected into a report structure and placed
onto the IN endpoint’s buffer, firmware signals that data is ready to transmit.

When the host sends a packet across the OUT endpoint, the microcontroller signals the firmware and the OUT
Endpoint handler retrieves the bytes from the OUT Endpoint buffer.



AN249

10 Rev. 0.2

5.  HID Firmware Template
The remainder of this document describes the example code from the HID firmware template and the included
derivative example systems. This section gives a brief description of the firmware template and general usage
techniques.

5.1.  Firmware Template Goals
The firmware template takes advantage of the fact that many HID systems differ only in the way they handle data
contained in incoming and outgoing Reports. By separating standard USB operation, which remains constant
across almost all USB-based systems, from custom USB operation, which varies according to the needs of a
particular firmware system, the template localizes customized operation to as few points as possible. The user
needs to modify only a few sections of code to create a custom HID-class firmware system.

5.2.  Template Files
The HID firmware template includes the following files. 

F3xx_USB0_Main.c—contains all global variable declarations, the main() function, and all routines for 
peripherals other than USB.
F3xx_InterruptServiceRoutine.c—contains the USB Interrupt Service Routine and handler routines needed to 
service data on all Endpoints.
F3xx_USB0_InterruptServiceRoutine.h —includes prototypes for all USB routines.
F3xx_USB0_Register.h—includes all USB core register addresses, register access macros, and register bit 
masks.
F3xx_USB0_Standard_Requests.c—contains all standard USB-related functions called by the USB_ISR and 
associated handler routines.
F3xx_USB0_Descriptor.c—where all descriptors are declared.
F3xx_USB0_ReportHandler.c—contains all code for handling input and output packets and the declaration of 
the Input Vector table and Output Vector table.
F3xx_USB0_ReportHandler.h—includes definition of vector tables.

5.3.  Using the Template
Below is a checklist of the locations in the firmware template that must be modified to create a customized HID
firmware solution. The modifications on this list are all discussed in detail later in this document.

In F3xx_USB0_ReportHandler.c, modify descriptors as needed.
In F3xx_USB0_ReportHandler.c, add routines to handle all input and output data packets and populate the 
Report Handler Vector tables.
In F3xx_USB0_Main.c, add any necessary foreground routines for processing USB traffic.
Add code to control any other peripherals needed to implement the system.

5.4.  Default Descriptor Declaration Values
The file F3xx_USB0_Main.c declares values for each descriptor. Some of these values will remain the same
across all HID-class devices, while others will need to be altered depending on the application. The following
subsections discuss the values of each descriptor. Items most commonly modified to implement custom devices
are highlighted in bold.



AN249

Rev. 0.2 11

5.4.1. Device Descriptor

The template defines the Device Descriptor as follows:

{

18, // bLength

0x01, // bDescriptorType

0x1001, // bcdUSB

0x00, // bDeviceClass

0x00, // bDeviceSubClass

0x00, // bDeviceProtocol

EP0_PACKET_SIZE, // bMaxPacketSize0

0xC410, // idVendor

0x0000, // idProduct

0x0000, // bcdDevice 

0x00, // iManufacturer

0x00, // iProduct     

0x00, // iSerialNumber

0x01 // bNumConfigurations

};

18, // bLength

The first item describes the descriptor length and should be common to all USB Device Descriptors.

0x01,                // bDescriptorType

0x01 is the constant one-byte designator for Device descriptors and should be common to all device descriptors.

0x1001,              // bcdUSB

This BCD-encoded two-byte item tells the system which USB specification release guidelines the device follows.
This number might need to be altered in devices that take advantage of additions or changes included in future
revisions of the USB specification, as the host will use this item to help determine what driver to load for the device.

0x00,                // bDeviceClass

If the USB device class is to be defined inside the device descriptor, this item would contain a constant defined in
the USB specification. However, this firmware template assumes that the device will be defined in other
descriptors. Device classes defined in other descriptors should set the Device Class item in the Device Descriptor
to 0x00.

0x00,                // bDeviceSubClass

If the Device Class item discussed above is set to 0x00, then the Device Sub Class item should also be set to
0x00. This item can tell the host information about the device’s subclass setting.

0x00,                // bDeviceProtocol

This item can tell the host whether the device supports high speed transfers. If the above two items are set to 0x00,
this one should also be set to 0x00.

EP0_PACKET_SIZE,     // bMaxPacketSize0



AN249

12 Rev. 0.2

This item tells the host the maximum number of bytes that can be contained inside a single control endpoint
transfer. For low speed devices, this byte must be set to 8, while full speed devices can have maximum Endpoint 0
packet sizes of 8, 16, 32, or 64. EP0_PACKET_SIZE is defined in the F3xx_USB0_Descriptor.h header file.

Reports can be larger than the maximum packet size. In this case, the report will be transferred across multiple
packets.

0xC410, // idVendor

This two-byte item identifies the Vendor ID for the device. Vendor IDs can be acquired through the USB.org
website. Devices using C8051F32x microcontrollers are allowed to use Silicon Laboratories’ Vendor ID, which is
0xC410, after applying for a Silicon Labs-issued PID.

Host applications will search attached USB devices’ Vendor IDs to find a particular device needed for an
application. 

0x0000, // idProduct

Like the Vendor ID, this two-byte item uniquely identifies the attached USB device. Product IDs can be acquired
through the USB.org web site. Alternatively, Silicon Laboratories has reserved a block of Product IDs to be used by
customers designing products with Silicon Laboratories USB products. Contact Silicon Laboratories technical
support to allocate one of these reserved Product IDs for your design. This service is free of charge.

0x0000, // bcdDevice 

This item is used along with the Vendor ID and the Product ID to uniquely identify each USB device. 

0x00,                // iManufacturer

The next three one-byte items tell the host which string array index to use when retrieving UNICODE strings
describing attached devices that are displayed by the system on-screen. This string describes the manufacturer of
the attached device. For example, the string could read “Silicon Laboratories.”

A string index value of 0x00 indicates to the host that the device does not have a value for this string stored in
memory.

0x00,                // iProduct     

This index will be used when the host wants to retrieve the string that describes the attached product. For example,
the string could read “USB Keyboard”.

0x00,                // iSerialNumber

The string pointed to by this index can contain the UNICODE text for the product’s serial number. 

0x01                 // bNumConfigurations

This item tells the host how many configurations the device supports. A configuration is the definition of the
device’s functional capabilities, including endpoint configuration. All devices must contain at least one
configuration, but more than one can be supported. For this example, only one configuration will be defined.



AN249

Rev. 0.2 13

5.4.2. Configuration Descriptor

After the host retrieves the Device Descriptor, it can request other descriptors including the Configuration
Descriptor. The following is the firmware template’s Configuration Descriptor:

{

0x09, // Length

0x02, // Type

0x0000, // Totallength 

0x01, // NumInterfaces

0x01, // bConfigurationValue

0x00, // iConfiguration

0x80, // bmAttributes

0x00 // MaxPower (in 2 mA units)

}

0x09, // Length

This defines the length of the Configuration Descriptor. This is a standard length and should be common to all HID
devices.

0x02, // Type

0x02 is the constant one-byte designator for Configuration descriptors.

0x2200, // Totallength 

This two-byte item defines the length of this descriptor and all of the other descriptors associated with this
configuration. The length of this example is calculated by adding the length of the Configuration Descriptor, the
Interface Descriptor, the HID Descriptor, and one Endpoint Descriptor. This two-byte item follows a “little endian”
data format. 

This two-byte item defines the length of this descriptor and all of the other descriptors associated with this
configuration. The length of this example is calculated by adding the lengths of the 9-byte Configuration Descriptor,
the 9-byte Interface Descriptor, the 9-byte HID Descriptor, and one 7-byte Endpoint Descriptor. Note that this two-
byte length value follows a "little endian" format, where the value is stored least significant byte first.

0x01,                // NumInterfaces

This item defines the number of interface settings contained in this configuration.

0x01,                // bConfigurationValue

This item gives this particular configuration a designation of 0x01, which can be used in the standard USB requests
Get_Configuration and Set_Configuration to identify this configuration. This number must be higher than
0.

0x00,                // iConfiguration

This item defines the string index for a string that describes this configuration. This example defines no
Configuration String and sets the index to 0x00 to indicate this condition to the host.

0x80,                // bmAttributes

This item tells the host whether the device supports USB features such as remote wake-up. Item bits are set or
cleared to describe these conditions. Check the USB specification for a detailed discussion on this item.

0x00                 // MaxPower (in 2 mA units)

This item tells the host how much current the device will require to function properly at this configuration.



AN249

14 Rev. 0.2

5.4.3. Interface Descriptor

The firmware template defines the Interface Descriptor as follows:

{

   0x09, // bLength

   0x04, // bDescriptorType

   0x00, // bInterfaceNumber

   0x00, // bAlternateSetting

   0x01, // bNumEndpoints

   0x03, // bInterfaceClass (3 = HID)

   0x00, // bInterfaceSubClass

   0x00, // bInterfaceProcotol

   0x00 // iInterface

},

0x09, // bLength

This item describes the size of the interface descriptor and is common to all devices’ Interface Descriptors.

0x04, // bDescriptorType

0x04 is the constant one byte designator for Interface descriptors.

0x00, // bInterfaceNumber

This item distinguishes between interfaces of a configuration. Composite devices, such as a keyboard with an
embedded mouse, have more than one active interface. Each interface must be distinguished using this
designation item. The firmware template only defines a single interface, so the Interface number can be set to
0x00.

0x00, // bAlternateSetting

This item is useful for devices that define multiple interfaces. This firmware template assumes that only one
primary interface will be defined for the device, and sets this item to 0x00, which tells the host that the device
defines no alternate setting.

0x01, // bNumEndpoints

This item tells the host how many endpoints, not counting the control endpoint, will be active in this configuration.
Remember that the HID specification requires at least one IN Interrupt Endpoint be defined in every device.

0x03, // bInterfaceClass

This item is used to define the device’s subclass. A value of 0x03 designates this device’s class as HID. 

0x00, // bInterfaceSubClass

This item further describes the device by defining which subclass of the above-defined class the device falls under.
For many HID devices, this item will be set to set to 0x00. See the HID Specification for a list of defined HID
subclasses.

0x00, // bInterfaceProcotol

This item can be used to define protocol settings for a USB device. For many HID devices, this item will be set to
set to 0x00. See the HID Specification for a list of defined HID protocols.

0x00 // iInterface



AN249

Rev. 0.2 15

This item tells the host the string index of the Interface String that describes the specifics of the interface and can
be displayed on-screen. The firmware template defines no such string, and so sets the index to 0x00.

5.4.4. IN Endpoint Descriptor

The firmware template defines the IN Endpoint Descriptor as follows:

{

   0x07,                // bLength

   0x05,                // bDescriptorType

   0x81,                // bEndpointAddress

   0x03,                // bmAttributes

   EP1_PACKET_SIZE_LE,  // MaxPacketSize (LITTLE ENDIAN)

10 // bInterval

}

0x07,                // bLength

This item defines the length of this endpoint descriptor.

0x05,                // bDescriptorType

0x05 is the constant one-byte designator for Endpoint descriptors.

0x81,                // bEndpointAddress

This item describes the address and data flow direction of the endpoint. Bits 0 through 3 define the endpoint’s
address, and bit 7 describes the data flow direction, with 1 meaning IN and 0 meaning OUT. The item in this
descriptor defines an “IN” endpoint with Endpoint Address 1.

0x03,                // bmAttributes

This item describes the type of data transfer the device is configured to use. “0x03” designates this endpoint as
using the Interrupt data transfer method.

EP1_PACKET_SIZE_LE,  // MaxPacketSize (LITTLE ENDIAN)

This item tells the host the maximum packet size for the endpoint. The maximum packet size should be at least as
large as the largest Report. EP1_PACKET_SIZE_LE is defined in the F3xx_USB0_Descriptor.h header file.

10 // bInterval

The value contained in this item determines how often the endpoint will be polled for data by the system software.
Units of the value vary depending on the speed of the device. 



AN249

16 Rev. 0.2

5.4.5. OUT Endpoint Descriptor

HID-class devices are not required to use an OUT Endpoint. The firmware template declares an OUT Endpoint in
case custom systems require one. Most item values in this descriptor will be identical to the IN Endpoint descriptor.
The descriptor is defined as follows:

{ 

   0x07, // bLength

   0x05, // bDescriptorType

   0x02, // bEndpointAddress

   0x03, // bmAttributes

   EP2_PACKET_SIZE_LE,  // MaxPacketSize (LITTLE ENDIAN)

   10                 // bInterval

}

0x07,                // bLength

This item describes the size of the descriptor.

0x05,                // bDescriptorType

0x05 is the constant one-byte designator for Endpoint descriptors.

0x02,                // bEndpointAddress

This item configures the endpoint to be OUT at address 02.

0x03, // bmAttributes

This item describes the type of data transfer the device is configured to use. “0x03” designates this endpoint as
using the Interrupt data transfer method.

EP2_PACKET_SIZE_LE,  // MaxPacketSize (LITTLE ENDIAN)

This item tells the host the maximum packet size for the endpoint. The maximum packet size should be at least as
large as the largest Report. EP2_PACKET_SIZE_LE is defined in the F3xx_USB0_Descriptor.h header file.

10 // bInterval

The value contained in this item determines how often the endpoint will be polled for data by the system software.
Units of the value vary depending on the speed of the device. For the firmware template, which transfers data full
speed rates, the units for bInterval are 125 ms. This descriptor defines a polling speed of 125 ms x 10 or once
every 1.25 seconds.



AN249

Rev. 0.2 17

5.4.6. HID Descriptor

This class-specific descriptor gives the host information specific to the device at the above-defined configuration.

The descriptor looks as follows:

{ // class_descriptor hid_descriptor

0x09, // bLength

0x21, // bDescriptorType

0x0101, // bcdHID

0x00, // bCountryCode

0x01, // bNumDescriptors

0x22, // bDescriptorType

HID_REPORT_DESCRIPTOR_SIZE_LE // wItemLength (total length of report descriptor)

}

0x09, // bLength

This length describes the size of the HID Descriptor. It can vary depending on the number of subordinate
descriptors, such as Report Descriptors, that are included in this HID Configuration definition.

0x21, // bDescriptorType

0x21 is the constant one-byte designator for Device Descriptors and should be common to all HID Descriptors.

0x0101, // bcdHID

This two-byte item tells the host which version of the HID Class Specification the device follows. USB specification
requires that this value be formatted as a Binary Coded Decimal digit, meaning that the upper and lower nibbles of
each byte represent a the number '0'...9'. In this case, 0x0101 represents the number 0101, which equals a
revision number of 1.01 with an implied decimal point.

0x00, // bCountryCode

If the device was designed to be localized to a specific country, this item tells the host which country. Setting the
item to 0x00 tells the host that the device was not designed to be localized to any country.

0x01, // bNumDescriptors

This item tells the host how many Report Descriptors are contained in this HID configuration. The following two-
byte pairs of items describe each contained Report Descriptor. The firmware template is configured to contain a
single Report Descriptor, which can define multiple reports.

0x22, // bDescriptorType

This item describes the first descriptor which will follow the transfer of this HID descriptor. “0x22” indicates that the
descriptor to follow is a Report Descriptor.

HID_REPORT_DESCRIPTOR_SIZE_LE // wItemLength (total length of report
descriptor)

This item tells the host the size of the descriptor that is described in the preceding item. The value for
HID_REPORT_DESCRIPTOR_SIZE_LE can be set in the F3xx_USB0_Descriptor.h header file.

If the HID Descriptor contains more than one subordinate descriptor, those descriptors would be defined at this
point, in two-byte pairs like the Report Descriptor declared above.



AN249

18 Rev. 0.2

5.4.7. String Descriptors

The USB device stores character strings defining the Product, the Manufacturer, the Serial Number, and other
descriptive texts. A String Descriptor Table stores the memory addresses of these strings. The host retrieves
strings through a standard request call that passes the index of the requested string.

The firmware template defines the following String Description Table:

BYTE* const StringDescTable[] = 
{
   String0Desc,
   String1Desc,
   String2Desc
};

The first String Descriptor of the String Descriptor Table, shown above to be defined 
as String0Desc, contains special information about the strings contained within the 
table. The Firmware Template defines String0Desc as follows:

code const BYTE String0Desc[STR0LEN] =
{
   STR0LEN, 0x03, 0x09, 0x04
}; //end of String0Desc

The first byte of this descriptor defines the descriptor's length, and the second byte defines this array as a String
Descriptor. The next two bytes form the Language ID code, which the host can use to determine how to interpret
characters in the other strings of the String Descriptor Table. “0x09” indicates that the strings use the English
language, and the “0x04” subcode indicates that the English language type is U.S. English.

Each element that follows the first special descriptor holds an address to a string. The first byte of each String
Descriptor defines the length of the String Descriptor, and the second byte tags the array as a String Descriptor.
After the first two bytes, all remaining bytes are two-byte Unicode-formatted string characters. For most strings, the
Unicode values will store the ANSI character in the low byte and a “0” in the high byte. Following USB's little endian
format requirement, each character will appear in the String Descriptor with the ANSI character followed by a 0. For
example, the firmware template would define the string “Silicon Laboratories” as follows:

code const BYTE String1Desc[STR1LEN] =
{
   STR1LEN, 0x03,
   'S', 0,
   'I', 0,
   'L', 0,
   'I', 0,
   'C', 0,
   'O', 0,
   'N', 0,
   ' ', 0,
   'L', 0,
   'A', 0,
   'B', 0,
   'O', 0,
   'R', 0,
   'A', 0,



AN249

Rev. 0.2 19

   'T', 0,
   'O', 0,
   'R', 0,
   'I', 0,
   'E', 0,
   'S', 0
}; //end of String1Desc

The index values to USB-specification standard descriptive texts such as the Product String, the Manufacturer
String, and the Serial string are defined in the Device Descriptor. For instance, the firmware template defines the
Product String index as “0x02” in the Device Descriptor. At any point after the host retrieves the Device Descriptor,
the host can retrieve the Product String by making a standard Get Descriptor request for a String Descriptor of
index “0x02”. When the firmware template receives this request, it returns the value of the string held in memory
addressed in indexed element “0x02” of the String Descriptor Table.

5.4.8. Report Descriptor

By default, the Report Descriptor declaration of the firmware template is left blank. The contents of this descriptor
depend on device requirements. The next two sections provide examples of how the Report Descriptor can look
and how Reports can be structured.



AN249

20 Rev. 0.2

5.5.  F3xx_USB0_ReportHandler.c File
All Report preparation and formatting takes place inside Report Handlers contained within the
USB_ReportHandler.c file. Locations in the .c file that must be modified by the user are clearly commented. The
following subsections describe how the firmware system functions and discuss each location where modifications
will be necessary.

5.5.1. Behavior of the F3xx_USB0_ReportHandler.c File

Firmware calls handlers defined inside F3xx_USB0_ReportHandler.c every time a newly received output report
has been received and every time an input report needs to be formatted before transmission.

The F3xx_USB0_ReportHandler.c file defines two Report Vector Tables, one for input reports and one for output
reports. Each element of a vector table is composed of a struct linking a Report ID to its corresponding custom
Report Handler. Designers are responsible for entering their Report IDs and Report Handler function names into
these tables. 

When a report needs to be prepared or processed, firmware calls either ReportHandler_IN() or
ReportHandler_OUT(), with the Report ID passed as a parameter. These functions search the Report Vector
Tables for a matching Report ID and then call the corresponding Report Handler.

5.5.2. Handler Prototypes And Declarations

Toward the top of the file, designers will find a few sections where custom code must be added. A function
prototype for each Report Handler must be placed in the Local Function Prototype section. Designers should link
each of these functions to their corresponding Report IDs inside the Report Vector Tables. Input Reports should be
added to IN_VectorTable, while output reports should be added to OUT_VectorTable. Designers must also
set the vector table array sizes correctly by setting the pre-compiler directives IN_VectorTableSize and
OUT_VectorTableSize.

In the case where the HID system requires only one input or output report, the Vector Tables must link the Report
Handler to Report ID of 0x00. For an example of this, see “7. USB Mouse Example” .

5.5.3. Report Handler Requirements

Designers must define a function body for each Report Handler, and these handlers must follow a few simple
guidelines. Input Report handlers must set the IN_Buffer field “Ptr” to the buffer containing data to be
transferred, and must set the IN_Buffer field “length” to the number of bytes the USB system should attempt to
transfer. 

Before the firmware system calls the appropriate Output Report Handler, the system calls a function defined in
F3xx_USB0_ReportHandler.c called Setup_OUT_Buffer(). This routine points the OUT_Buffer field “Ptr” to a
buffer where the received report can be stored. The routine must also set OUT_Buffer’s field “Length” to the
size of the buffer.

Output Report Handlers must assume that data contained in OUT_Buffer will be overwritten after the Handler
exits and should copy any data that needs to be preserved elsewhere in memory.

5.5.4. Including Report IDs

If the Report Descriptor defines Report IDs, Report Handlers must include Report IDs in the IN_Buffer.Ptr and
adjust the IN_Buffer.Length accordingly. The first byte of the input buffer should be set to the Report ID of the
report about to be transmitted. The number of bytes transmitted should be increased by 1 to include the Report ID
byte. The USB Mouse example uses only one report, does not define any Report IDs, and so the Report Handler
does not include any Report ID information in the buffer. The HID Blinky Example does use more than one report,
so all of its Report Handlers must take Report IDs into account.

For systems that use more than one Report, each report must be tagged with a unique Report ID. 



AN249

Rev. 0.2 21

6.  CHIDDeviceclass Object Class
The files HIDDevice.cpp and HIDDevice.h define an object that can be declared and associated with an HID-class
device.  Host-side applications can communicate with HID-class devices using the following member functions
included with this class:

GetConnectedDeviceNum() - Returns number of device connected
GetSerialString() - Retrieves a string from device
Open() - Initiates communication
IsOpened() - Shows whether device is connected
SetFeatureReport() - Sends feature report
GetFeatureReport() - Receive feature report
SetReport_Interrupt() - Send OUT report
GetReport_Interrupt() - Receive IN report
SetReport_Control() - Send OUT report
GetReport_Control() - Receive IN report
GetInputReportBufferLength() - Returns size of biggest input report
GetOutputReportBufferLength() - Returns size of biggest output report
GetFeatureReportBufferLength() - Returns size of biggest feature report
GetMaxReportRequest() - Number of reports that can be retrieved
FlushBuffers() - Clear all of the object's buffers

The following sections describe how to use the CHIDDeviceclass.

6.1.  Using The Class
To use the CHIDDeviceclass, the file HIDDevice.cpp must be added to the host application's build, and files using
the class must include the HIDDevice.h header file.  

The object requires that the Windows DDK has been installed on the developer's system.  Please contact Microsoft
for a copy of the DDK.  After the DDK is installed, the following modifications must be made to the host application
project before the HID device class will function properly:

In the project's properties' list of included directories, the following two directories must be added to the "Include 
files" list: C:\WINDDK\3790.1830\inc\wxp and C:\WINDDK\3790.1830\inc\crt
In the project's properties' list of included directories, the following directory must be added to the "Library files" 
list: c:\WINDDK\3790.1830\lib\wxp\i386
In the properties' Linker list of input sources, the following two files must be added to the "Additional 
Dependencies" list: setupapi.lib and hid.lib

6.2.  GetConnectedDeviceNum
Description: This function returns the number of devices found on the USB that have PIDs and

VIDs matching the function's input parameters

Prototype: DWORD GetConnectedDeviceNum(WORD vid, WORD pid)

Parameters: 1.  vid - device VID used in search.
2.  pid - device PID used in search.

Return Value: Number of devices with matching vid and pid attached to the USB



AN249

22 Rev. 0.2

6.3.  GetSerialString()
Description: This routine obtains the serial string of a device by its index within its VID and PID.  If

only one device is connected with VID 0x10C4, 0x9999, its index is 0. If three devices
are connected with VID 0x10C4, 0x9999, they would be referenced as devices 0, 1,
and 2.

Prototype: BYTE GetSerialString(DWORD deviceIndex, WORD vid, WORD pid,
LPSTR serialString, DWORD serialStringLength)

Parameters: 1. deviceIndex - identifier for device, 0 unless multiple devices with matching pid
and vid are attached to the USB.

2. vid - device VID used in search.

3. pid - device PID used in search.

4.serialString - pointer where retrieved string will be stored.

5.serialStringLength - length of string to be retrieved.

Return Value: Results = HID_DEVICE_NOT_FOUND or
HID_DEVICE_SUCCESS

6.4.  Open()
Description: This routine opens a communication link to an attached HID device identified by index,

VID, and PID.  This routine also adjusts the number of input reports that can be
received by the system's HID class driver buffer.

Prototype: BYTE Open(DWORD deviceIndex, WORD vid, WORD pid, WORD
numInputBuffers)

Parameters: 1. deviceIndex - identifier for device, 0 unless multiple devices with matching pid
and vid are attached to the USB.

2. vid - device VID used in search.

3. pid - device PID used in search.

4.numInputBuffers - changes the size of the input report buffer.  In most systems,
it is not necessary to use this parameter.

Return Value: Results = HID_DEVICE_SUCCESS or
HID_DEVICE_ALREADY_OPENED or
HID_DEVICE_NOT_FOUND

6.5.  IsOpened()
Description: This routine is used to determine when a call to Open() has successfully opened a

communication link with an attached HID device.

Prototype: BOOL IsOpened()

Parameters: None.

Return Value: TRUE if communication link is open, or
FALSE if no link has been opened.



AN249

Rev. 0.2 23

6.6.  SetFeatureReport()
Description: This routine sends a feature report across the control pipe using the HID API function

HidD_GetFeatureReport().

Prototype: BYTE SetFeatureReport(BYTE* buffer, DWORD bufferSize)

Parameters: 1. buffer - pointer to the feature report to be transmitted.  This buffer must be able to
store at least bufferSize bytes.

2.  bufferSize - size of the feature report in bytes.

Return Value: Results = HID_DEVICE_SUCCESS or
HID_DEVICE_TRANSFER_FAILED or
HID_DEVICE_NOT_OPENED

6.7.  GetFeatureReport()
Description: This routine retrieves a feature report across the control pipe using the HID API

function HidD_GetFeatureReport().

Prototype: BYTE GetFeatureReport(BYTE* buffer, DWORD bufferSize)

Parameters: 1. buffer - pointer to location where retrieved feature report will be stored.  This
buffer must be able to store at least bufferSize bytes.
IMPORTANT NOTE: The first byte of this buffer should be the report ID of the
report to be retrieved.
2. bufferSize - should be set to the size of the largest feature report listed in the
device's report descriptor.  This information can be obtained by calling the member
function GetFeatureReportBufferLength().

Return Value: Results = HID_DEVICE_SUCCESS or
HID_DEVICE_TRANSFER_FAILED or
HID_DEVICE_NOT_OPENED

6.8.  SetReport_Interrupt()
Description: This function sends an OUT report across the interrupt pipe using a call to

WriteFile().

Prototype: BYTE SetReport_Interrupt(BYTE* buffer, DWORD bufferSize)

Parameters: 1. buffer - pointer to the OUT report to be transmitted.  This buffer must be able to
store at least bufferSize bytes.
2. bufferSize - size of the OUT report in bytes.

Return Value: Results = HID_DEVICE_SUCCESS or
HID_DEVICE_TRANSFER_TIMEOUT or
HID_DEVICE_TRANSFER_FAILED or
HID_DEVICE_NOT_OPENED or
HID_DEVICE_INVALID_BUFFER_SIZE



AN249

24 Rev. 0.2

6.9.  GetReport_Interrupt()
Description: This function attempts to retrieve an IN report across the interrupt pipe using a call to

ReadFile().

Prototype: BYTE GetReport_Interrupt(BYTE* buffer, DWORD bufferSize, WORD
numReports, DWORD* bytesReturned)

Parameters: 1. buffer - pointer to the IN report to be transmitted.  This buffer must be able to
store at least bufferSize bytes.
2. bufferSize - should be set to the size of the largest feature report listed in the
device's report descriptor.  This information can be obtained by calling the member
function GetInputReportBufferLength().

Return Value: Results = HID_DEVICE_SUCCESS or
HID_DEVICE_TRANSFER_TIMEOUT or
HID_DEVICE_TRANSFER_FAILED or
HID_DEVICE_NOT_OPENED or
HID_DEVICE_INVALID_BUFFER_SIZE

6.10.  SetReport_Control()
Description: This function sends a report across the control pipe using the HID API function

HidD_SetOutputReport().

Prototype: BYTE SetReport_Control(BYTE* buffer, DWORD bufferSize)

Parameters: 1.  buffer - pointer to the OUT report to be transmitted.  This buffer must be able to
store at least bufferSize bytes.
2.  bufferSize - size of the OUT report in bytes.

Return Value: Results = HID_DEVICE_SUCCESS or
HID_DEVICE_TRANSFER_FAILED or
HID_DEVICE_NOT_OPENED or
HID_DEVICE_INVALID_BUFFER_SIZE

6.11.  GetReport_Control()
Description: This function receives a report across the control pipe using the HID API function

HidD_GetInputReport().

Prototype: BYTE GetReport_Control(BYTE* buffer, DWORD bufferSize)

Parameters: 1.  buffer - pointer to the OUT report to be transmitted. This buffer must be able to
store at least bufferSize bytes.
2.  bufferSize - size of the OUT report in bytes.

Return Value: Results = HID_DEVICE_SUCCESS or
HID_DEVICE_TRANSFER_FAILED or
HID_DEVICE_NOT_OPENED or
HID_DEVICE_INVALID_BUFFER_SIZE

6.12.  GetInputReportBufferLength()
Description: This function returns the size of the largest IN report listed in the Report Descriptor of

the opened HID device.

Prototype: WORD GetInputReportBufferLength()

Parameters: None.

Return Value: The size of the largest IN report.



AN249

Rev. 0.2 25

6.13.  GetOutputReportBufferLength()
Description: This function returns the size of the largest OUT report listed in the Report Descriptor

of the opened HID device.

Prototype: WORD GetOutputReportBufferLength()

Parameters: None.

Return Value: The size of the largest OUT report.

6.14.  GetFeatureReportBufferLength()
Description: This function returns the size of the largest Feature report listed in the Report

Descriptor of the opened HID device.

Prototype: WORD GetFeatureReportBufferLength()

Parameters: None.

Return Value: The size of the largest Feature report.

6.15.  GetMaxReportRequest()
Description: This function returns the maximum allowable reports to request for read during one

GetReport_Control().

Prototype: WORD GetMaxReportRequest()

Parameters: None.

Return Value: Number of reports that can be retrieved during one call to GetReport_Control().

6.16.  FlushBuffers()
Description: This routine flushes the input queue of the opened HID device by calling the HID API

function HidD_FlushQueue().

Prototype: BOOL FlushBuffers()

Parameters: None.

Return Value: True if buffers were successfully flushed and false if they were not successfully
flushed.



AN249

26 Rev. 0.2

7.  USB Mouse Example
This section examines the steps taken to emulate a USB Mouse using the Silicon Laboratories target board. This
example touches on all necessary firmware modifications that need to be made for HID-class device designs
derived from the firmware template. The USB Mouse Example needs no host-side application to operate correctly.
For an example of host-side application software, read the next section, titled “HID Blinky Device And Host
Firmware Example.”

7.1.  Overview
This example contains two versions of low-level mouse emulation code. Code running on a C8051F320/1 or a
C8051F34x microcontroller emulates mouse movement by measuring the potentiometer’s position. The axis of
moment (whether motion on the potentiometer translates to up-down motion or left-right motion) is controlled by
one of the switches found on the target board. Every press of the button switchies between X-axis movement and
Y-axis movement. The other switch on the target board acts as the left mouse button. Code running on a
C8051F326/7 emulates movement by setting mouse vector values in a predefined pattern. 

The USB Mouse example was created by taking the following steps:

1. Configure all descriptors so that the host recognizes the attached device as a USB mouse.
2. Initialize Timer 2 and (for the C8051F320/1 and C8051F34x device builds) ADC peripherals.
3. Format captured data into a report structure defined in the Report Descriptor.
4. Add the report handler to transmit these reports to the host.

7.2.  Descriptors
This section describes how each descriptor located in the firmware template file USB_Descriptor.c has been
modified to create a device that appears to the host to be a USB mouse. This subsection describes only items in
descriptors that have been modified from their default firmware template values. 

7.2.1. Device Descriptor

The device descriptor for this example looks as follows. Changes from the firmware template are highlighted in
bold.

{

18, // bLength

0x01, // bDescriptorType

0x1001, // bcdUSB

0x00, // bDeviceClass

0x00, // bDeviceSubClass

0x00, // bDeviceProtocol

EP0_PACKET_SIZE, // bMaxPacketSize0

0xC410, // idVendor

0x0000, // idProduct

0x0000, // bcdDevice 

0x01, // iManufacturer

0x02, // iProduct     

0x00, // iSerialNumber

0x01 // bNumConfigurations



AN249

Rev. 0.2 27

}; //end of DeviceDesc

0x01, // iManufacturer

This example declares a string describing the hardware manufacturer at string table index 1. This item will allow
the host to retrieve that string.

0x02, // iProduct 

This example also declares a string describing the product at string table index 2.

7.2.2. Configuration Descriptor
0x09, // Length

0x02, // Type

0x2200, // Totallength (= 9+9+9+7)

0x01, // NumInterfaces

0x01, // bConfigurationValue

0x00, // iConfiguration

0x80, // bmAttributes

0x20 // MaxPower (in 2 mA units)

0x2200, // Totallength (= 9+9+9+7)

This item was calculated by adding together the lengths of the configuration descriptor (9) and all of the other
descriptors associated with this particular configuration, specifically the Interface Descriptor (9), one IN Endpoint
descriptor (7), and the HID Descriptor(9).

0x20 // MaxPower (in 2 mA units)

This item tells the host that the device will require 64 mA to function properly. This should be enough current to
supply the microcontroller.

7.2.3. Interface Descriptor
{ // endpoint_descriptor hid_endpoint_in_descriptor

0x09, // bLength

0x04, // bDescriptorType

0x00, // bInterfaceNumber

0x00, // bAlternateSetting

0x01, // bNumEndpoints

0x03, // bInterfaceClass (3 = HID)

0x01, // bInterfaceSubClass

0x02, // bInterfaceProcotol

0x00 // iInterface

};

0x01, // bInterfaceSubClass

This item has been set to the Boot Interface subclass, which is one of the defined HID subclass types. The Boot
Interface is a standard transfer mode that can be used by a system’s BIOS at boot time. This device must tell the
firmware that it is compatible with the Boot Interface subclass in order to be recognized as a USB Mouse.



AN249

28 Rev. 0.2

0x02, // bInterfaceProcotol

This item chooses the “Mouse” protocol for the Boot Interface HID subclass. It must be set to 0x02 so that the
system will know how to interpret the incoming Reports.

7.2.4. IN Endpoint Descriptor
// IN endpoint (mandatory for HID)

{ // endpoint_descriptor hid_endpoint_in_descriptor

   0x07,                // bLength

   0x05,                // bDescriptorType

   0x81,                // bEndpointAddress

   0x03,                // bmAttributes

   EP1_PACKET_SIZE_LE,  // MaxPacketSize (LITTLE ENDIAN)

   10                   // bInterval

}

EP1_PACKET_SIZE_LE

In the USB_Descriptor.h header file, this pre-compiler directive is defined to be “3”. which will be big enough to
allow transfers of the example’s only defined Report Structure.

7.2.5. HID Descriptor
{ // class_descriptor hid_descriptor

0x09, // bLength

0x21, // bDescriptorType

0x0101, // bcdHID

0x00, // bCountryCode

0x01, // bNumDescriptors

0x22, // bDescriptorType

HID_REPORT_DESCRIPTOR_SIZE_LE // wItemLength (total length of report descriptor)

}

HID_REPORT_DESCRIPTOR_SIZE_LE // wItemLength (total length of report
descriptor)

This pre-compiler directive is defined in the USB_Descriptor.h file and reflects the size of the Mouse example’s
Report Descriptor.

7.2.6. Report Descriptor

The Report Descriptor contains the definition for a Report that includes one bit describing the state of the left
mouse button and two bytes describing the relative X- and Y- axis positions of the mouse pointer. This example will
require that only one Report be defined.

This example’s only Report groups all data inside an Application Collection that contains Generic Desktop
information pertaining to a mouse. Inside this Application Collection is a Physical Collection pertaining to a pointer
that contains all information about a single data point, in this case information about the mouse. This Physical
Collection will group a byte of data containing the bit of data describing the left mouse button state and 7 bits of
padding with two bytes of data describing the X- and Y- axis positions of the pointer.

The report descriptor for the Mouse Emulation Example looks as follows:



AN249

Rev. 0.2 29

{

0x05, 0x01, // Usage Page (Generic Desktop)

0x09, 0x02, // Usage (Mouse) 

0xA1, 0x01, // Collection (Application) 

0x09, 0x01, // Usage (Pointer) 

0xA1, 0x00, // Collection (Physical) 

0x05, 0x09, // Usage Page (Buttons) 

0x19, 0x01, // Usage Minimum (01) 

0x29, 0x01, // Usage Maximum (01) 

0x15, 0x00, // Logical Minimum (0) 

0x25, 0x01, // Logical Maximum (1) 

0x95, 0x01, // Report Count (1) 

0x75, 0x01, // Report Size (1) 

0x81, 0x02, // Input (Data, Variable, Absolute) 

0x95, 0x01, // Report Count (1) 

0x75, 0x07, // Report Size (7) 

0x81, 0x01, // Input (Constant) for padding 

0x05, 0x01, // Usage Page (Generic Desktop) 

0x09, 0x30, // Usage (X) 

0x09, 0x31, // Usage (Y)

0x15, 0x81, // Logical Minimum (-127) 

0x25, 0x7F, // Logical Maximum (127) 

0x75, 0x08, // Report Size (8) 

0x95, 0x02, // Report Count (2) 

0x81, 0x06, // Input (Data, Variable, Relative) 

0xC0, // End Collection (Physical)

0xC0 // End Collection (Application)

};

0x05, 0x01, // Usage Page (Generic Desktop)

This item tells the host that the controls, in this case mouse data, contained within this Report Descriptor are
relevant to the desktop. Mouse, Keyboard, and Joystick controls would all be found on the Generic Desktop usage
page.

0x09, 0x02, // Usage (Mouse) 

This item tells the host that the following Collection contains data pertaining to a Mouse.

0xA1, 0x01, // Collection (Application) 

This item begins the top-level collection of data that can be used by the host application, which is in this case the
system software.

0x09, 0x01, // Usage (Pointer)



AN249

30 Rev. 0.2

This item tells the host that the following collection contains data pertaining to the characteristics of a Mouse
pointer device.

0xA1, 0x00, // Collection (Physical)

This item begins the collection of data describing a single data point. In this case, the single data point is the state
of the left mouse button and the relative position of the mouse along the X- and Y-axis.

0x05, 0x09, // Usage Page (Buttons)

This item tells the host that the following data should be interpreted as “buttons”, meaning that each bit represents
some indicator that is either in the “On” or “Off” state.

0x19, 0x01, // Usage Minimum (01)

0x29, 0x01, // Usage Maximum (01)

These two items function to give the button in the following data a Usage. If the mouse supported multiple buttons,
then the Usage Maximum would be increased and each button would be assigned a unique Usage.

0x15, 0x00, // Logical Minimum (0)

0x25, 0x01, // Logical Maximum (1)

These two items function to show the lowest and highest possible value of the data that will follow. Since the data
can only take an “On” or “Off” state, the minimum can be set to 0 and the maximum can be set to 1.

0x95, 0x01, // Report Count (1)

0x75, 0x01, // Report Size (1)

These two items tell the host that one data point will follow, and that this data point will take one bit of space. This is
the data bit that will show whether or not the left mouse button has been pressed.

0x81, 0x02, // Input (Data, Variable, Absolute)

This is the item that describes the data itself. The item tells the host that the data can change and that its value is
absolute (i.e., not relative to any other data or axis).

0x95, 0x01, // Report Count (1)

0x75, 0x07, // Report Size (7)

These two items set up the padding needed to fill in the other bits of the byte containing the data pertaining to the
button. These items refer to 7 1-bit data points.

0x81, 0x01, // Input (Constant) for padding

This item designates the above 7 bits of data to be constant. This will effectively create a byte of data where bit 0
contains information about the left mouse button and bits 2 through 7 are padding.

0x05, 0x01, // Usage Page (Generic Desktop)

0x09, 0x30, // Usage (X)

0x09, 0x31, // Usage (Y)

These items describe the next group of data. The Usage Page is set to Generic Desktop to tell the host that the
following data will be relevant to system software. The next two usages tell the host that the Generic Desktop data
to follow pertain to X- and Y-axis information controlled by the system. This usage definition informs the host that
the following data will be formatted such that the data pertaining to the X-axis will be transferred before data
pertaining to the Y-axis.

0x15, 0x81, // Logical Minimum (–127)



AN249

Rev. 0.2 31

0x25, 0x7F, // Logical Maximum (127)

These items describe the minimum and maximum values that the following data can take.

0x75, 0x08, // Report Size (8)

0x95, 0x02, // Report Count (2)

These items describe the data that follows as being two bytes (with 8 bits per byte).

0x81, 0x06, // Input (Data, Variable, Relative)

This item tells the host about the data’s direction of flow, that the data can change in value, and that it is relative to
some axis. In this case, the data measured relative to the change in mouse position since the last measurement.
This item applies to both bytes of data.

0xC0, // End Collection (Physical)

0xC0 // End Collection (Application)

These two items should be considered “closing parentheses” on the above-defined collections. The first End
Collection closes the physical collection containing information about the mouse data point, and the second End
Collection closes the top-level application collection.

7.3.  Mouse Emulation Data Sampling
The routines that capture and save mouse-related data are found in the file Mouse.c, and some global variables
are included in the Mouse.h header file. In the C8051F320/1 build, the Mouse.c file contains two routines, the
“Timer 2 ISR” and the “ADC Sample Complete ISR”. In the C8051F326/7 build, the Mouse.c file contains only a
“Timer 2 ISR”.

Initialization routines, as well as port configuration, are also found in the Mouse.c file.

7.3.1. Timer 2 ISR

Once properly configured to overflow and enabled as an interrupt, Timer 2 is used to take readings from the two
switches on the ‘F320 target board. Inside Timer2_ISR(), both switch values are captured by saving the state of
the port pin connected to each switch. Timer overflows allow for switch “debouncing” by comparing switch values
across two consecutive Timer 2 ISR servicings. Switch states are saved in variables of Mouse.c file scope.

In the C8051F326/7 build of the project, the Timer 2 ISR also controls mouse movement by setting the
Mouse_Vector and Mouse_Axis to a pattern that causes the cursor to move on-screen.

7.3.2. Adc_ConvComplete_ISR

In the C8051F320/1 version of the build, the ADC is configured to take samples at the port pin connected to the
potentiometer. The captured value of the potentiometer is translated to relative mouse movement by first
converting the unsigned potentiometer value to a signed character value by subtracting 128. The value is then
divided by 16 to reduce the movement sensitivity of the potentiometer. Dividing by 16 makes cursor movement on-
screen smoother.

At this point, the potentiometer value has been centered around 0 and reduced so that the maximum value is
128/16 = 8. This value is then saved as relative X- or Y- Axis movement, depending on whether X-Axis or Y-Axis
movement is selected. Axis selection is accomplished by using one of the switches to toggle between the two axes.

Inside the ADC ISR, variables for the mouse button, mouse vector (relative movement), and active axis are saved
in the global variables Mouse_Button, Mouse_Vector, and Mouse_Axis, respectively. These variables will be
formatted into a report inside the Report Handler, which is discussed in the following section.



AN249

32 Rev. 0.2

7.4.  IN Report Handler
Since only one input report was defined in the Report Descriptor of this example, only one input report handler is
needed. This report will transfer mouse information stored the global variables Mouse_Button, Mouse_Vector,
and Mouse_Axis to the host.

The function prototype for the Report Handler, called IN_Report(), has been placed in the appropriate spot at
the top of the F3xx_USB0_ReportHandler.c file. IN_VectorTableSize is set to 1. The Report Handler is linked
to a Report ID of 0. In the case where only one report is defined in the Report Descriptor, no Report ID should be
defined, and 0 should be placed in the Report ID field of the Vector Table element.

The IN_Report() body takes the Mouse global variables and stores them in a buffer following the format defined
in the Report Descriptor. Bit 0 of byte 0 of the buffer is set to Mouse_Button state. The report handler examines
Mouse_Axis to determine whether the X-Axis or the Y-Axis is being manipulated, and then sets either byte 1 or
byte 2 of the buffer to Mouse_Vector, depending on whether the X-Axis or the Y-Axis is selected.

IN_Buffer.Ptr is set to the newly formatted buffer, and IN_Buffer.Length is set to “3”, following the Report
Descriptor’s definition of a 3-byte report.

This example does not require the use of any output reports. If it did, the function Setup_OUT_Buffer() would
need to set the OUT_Buffer struct elements so that the firmware would know where to store output reports.
Reports stored in this output buffer would then be processed by defined output report handlers. For an example of
how such a system could look, read the next section that describes the creation of an HID Blinky firmware and
software system.

7.5.  Alterations to Main()
The main(void) function of the firmware template requires only a few modifications. After peripheral
initializations, the system enters a while(1) loop. Inside this loop, the SendPacket() function is repeatedly
called, with a Report ID of 0 passed in as the Report to transmit to the host.

SendReport(), a function found in the USB_ISR.c file, checks to see if the IN Endpoint is set to IDLE. If it is not,
meaning that another transfer is already in progress, SendReport exits with an error code of 0. If the IN Endpoint is
set to IDLE, a transmission of the report with ID “0” is initiated.



AN249

Rev. 0.2 33

8.  HID Blinky Firmware and Software Example
This example shows a system where device-side firmware and host-side software transfer data between each
other using both the Interrupt and Control data pipes. Like the first example, this one takes advantage of the
switches, LEDs, and the potentiometer on Silicon Laboratories target boards.

8.1.  Overview
The data transfers in this example are written to exercise every data path between the device and the host. Data
travels through the IN and OUT endpoints, and travels in both directions through the control endpoint. This
example also shows how multiple reports can be employed to optimize data transfer.

This example exercises the following data paths:

LED blinking patterns transmitted to the device in OUT reports across the Interrupt OUT endpoint
Potentiometer position, used to choose from a list of blinking patterns, transmitted to the host in IN reports 
across the Interrupt IN endpoint
LED blinking rate configuration transmitted to the device in OUT reports across the control endpoint
LED blinking enable/disable command transmitted to the device in OUT reports across the control endpoint
Runtime-calculated statistical information transmitted to the host in IN reports across the control endpoint

LED brightness adjustment and command acknowledgement transmitted between device and host in Feature
reports across the control endpoint

The HID Blinky Example's firmware was created by performing the following steps:

1. Modify descriptors so that the microcontroller appears as a device of some vendor-defined purpose.
2. Write code that controls LED lighting patterns.
3. Create a Report Descriptor that defines 5 Reports of different sizes and types.
4. Initialize ADC, Timer 2, and Timer 0 peripherals.
5. Write Report Handlers for each of the reports.
6. Modify main(void) to poll for changes in data and initiate transfers when necessary.

8.2.  Firmware System
The firmware system blinks LEDs according to patterns received from the host application. It also saves
measurements concerning these patterns that can be retrieved by the host. The C8051F320/1 and C8051F34x
builds alter LED brightness by adjusting pulse width modulation signals connected to the LEDs.

8.2.1. Descriptors

Each of the following subsections describes modifications that need to be made to the firmware template’s
descriptors.

8.2.1.1.  Device Descriptor

The device descriptor for this example looks as follows:

{

18, // bLength

0x01, // bDescriptorType

0x1001, // bcdUSB

0x00, // bDeviceClass

0x00, // bDeviceSubClass

0x00, // bDeviceProtocol

EP0_PACKET_SIZE, // bMaxPacketSize0



AN249

34 Rev. 0.2

0xC410, // idVendor

0x0002, // idProduct 

0x0000, // bcdDevice 

0x01, // iManufacturer

0x02, // iProduct     

0x00, // iSerialNumber

0x01 // bNumConfigurations

}; //end of DeviceDesc

0x0002, // idProduct 

When a device gets connected to the host system for the first time, the system saves a record that links the
device’s Vendor ID and Product ID to the drivers the system determines it should use for communication. If an
‘F320 is loaded with the USB mouse example and connected to the host system, the system determines that the
USB mouse drivers should be used to interact with attached devices matching this Product and Vendor ID. Later, if
the ‘F320 is loaded with HID firmware for this example but with the same Product and Vendor ID, the system
expects that the attached device is a USB mouse and tries to communicate with it with those drivers. Host
application software will not be able to communicate with the device. In this Device descriptor, the firmware has
been given a distinct Product ID.

0x01, // iManufacturer

0x02, // iProduct     

Manufacturer and Product strings have been added to this design so that some information appears on-screen
when the device is attached.

8.2.1.2.  Configuration Descriptor
0x09, // Length

0x02, // Type

0x2900, // Totallength (= 9+9+9+7+7)

0x01, // NumInterfaces

0x01, // bConfigurationValue

0x00, // iConfiguration

0x80, // bmAttributes

0x20 // MaxPower (in 2 mA units)

0x2900, // Totallength (= 9+9+9+7+7)

This example contains one more descriptor, than the USB mouse example because the design uses an OUT
endpoint. The last 7 bytes added to the total length include this descriptor.

0x20 // MaxPower (in 2 mA units)

This amount of current will be sufficient to supply the ‘F320 with enough current to function properly.

8.2.1.3.  Interface, IN Endpoint, and OUT Endpoint Descriptors

No changes to the firmware template need to be made to implement this design other than modifying the Endpoint
Sizes to be at least as large as the largest Reports.



AN249

Rev. 0.2 35

8.2.1.4.  Report Descriptor

This example uses six different Reports, each with a unique Report Structure. Two input reports are created: one to
transmit the potentiometer value, and one to transmit device statistics that are displayed in the application window.
Three output reports are created: one to transfer selected LED blinking patterns, one for enable and disable LED
blinking, and one command sends a two-byte blinking rate to the device. One feature report is created to transmit
LED dimmer levels and dimmer acknowledgement signalling. The Report Descriptor for this example appears as
follows:

{

0x06, 0x00, 0xff, // USAGE_PAGE (Vendor Defined Page 1)

0x09, 0x01, // USAGE (Vendor Usage 1)

0xa1, 0x01, // COLLECTION (Application)

0x09, 0x01, // USAGE (Vendor Usage 1)

0x85, OUT_Blink_PatternID, // Report ID

0x95, OUT_Blink_PatternSize, // REPORT_COUNT ()

0x75, 0x08, // REPORT_SIZE (8)

0x26, 0xff, 0x00, // LOGICAL_MAXIMUM (255)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x09, 0x01, // USAGE (Vendor Usage 1)

0x91, 0x02, // OUTPUT (Data,Var,Abs)

0x85, OUT_Blink_EnableID, // Report ID

0x95, OUT_Blink_EnableSize, // REPORT_COUNT ()

0x75, 0x08, // REPORT_SIZE (8)

0x26, 0xff, 0x00, // LOGICAL_MAXIMUM (255)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x09, 0x01, // USAGE (Vendor Usage 1)

0x91, 0x02, // OUTPUT (Data,Var,Abs)

0x85, OUT_Blink_RateID, // Report ID

0x95, OUT_Blink_RateSize, // REPORT_COUNT ()

0x75, 0x08, // REPORT_SIZE (8)

0x26, 0xff, 0x00, // LOGICAL_MAXIMUM (255)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x09, 0x01, // USAGE (Vendor Usage 1)

0x91, 0x02, // OUTPUT (Data,Var,Abs)

0x85, IN_Blink_SelectorID, // Report ID

0x95, IN_Blink_SelectorSize, // REPORT_COUNT ()



AN249

36 Rev. 0.2

0x75, 0x08, // REPORT_SIZE (8)

0x26, 0xff, 0x00, // LOGICAL_MAXIMUM (255)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x09, 0x01, // USAGE (Vendor Usage 1)

0x81, 0x02, // INPUT (Data,Var,Abs)

0x85, IN_Blink_StatsID, // Report ID

0x95, IN_Blink_StatsSize, // REPORT_COUNT ()

0x75, 0x08, // REPORT_SIZE (8)

0x26, 0xff, 0x00, // LOGICAL_MAXIMUM (255)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x09, 0x01, // USAGE (Vendor Usage 1)

0x81, 0x02, // INPUT (Data,Var,Abs)

0x85, FEATURE_BLINK_DIMMERID, // Report ID

0x95, FEATURE_BLINK_DIMMERSIZE, //   REPORT_COUNT ()

0x75, 0x08, //   REPORT_SIZE (8)

0x26, 0xff, 0x00, //   LOGICAL_MAXIMUM (255)

0x15, 0x00, //   LOGICAL_MINIMUM (0)

0x09, 0x01, //   USAGE (Vendor Usage 1)

0xB1, 0x02, //   FEATURE (Data,Var,Abs)

0xC0 // end Application Collection

};

0x06, 0x00, 0xff, // USAGE_PAGE (Vendor Defined Page 1)

0x09, 0x01, // USAGE (Vendor Usage 1)

0xa1, 0x01, // COLLECTION (Application)

These items tell the host system that the Usage Pages and Usages found in this Report Descriptor are all Vendor-
defined, which means that the reports follow no standard format (such as the one used in the mouse example). The
top-level Application Collection, tagged with vendor-defined usage, assumes that a host-side application will have
some knowledge of the report structure and will be able to communicate with the device.

0x85, OUT_Blink_PatternID, // Report ID

0x95, OUT_Blink_PatternSize, // REPORT_COUNT ()

0x75, 0x08, // REPORT_SIZE (8)

0x26, 0xff, 0x00, // LOGICAL_MAXIMUM (255)

0x15, 0x00, // LOGICAL_MINIMUM (0)

0x09, 0x01, // USAGE (Vendor Usage 1)

0x91, 0x02, // OUTPUT (Data,Var,Abs)



AN249

Rev. 0.2 37

The rest of the Report Descriptor is composed of similarly worded information describing each report used in this
example. Each Report description begins with a Report ID, which is defined in the F3xx_Blink_Control.h file. The
next item tells the number of data items contained in this particular report. This value is also defined in the
F3xx_Blink_Control.h file. The next item tells the host that each data item will be 1 byte in size. The two next items
indicate that these data bytes can contain any value from 0 to 0xFF. The Usage item tags the data that follows as
vendor-defined with the same Usage as the rest of the data. The last item of each report description tells the host
whether data contained in this report is input or output.

8.2.2. Data Capture and Processing Routines

The data capture and storage of this system takes place inside the BlinkControl.c file and its associated header file
F3xx_Blink_Control.h. In the C8051F320/1 and C8051F34x versions of the build, the potentiometer’s value is
captured by saving the high byte of the ADC0 during an ADC Complete ISR servicing. In the C8051F326/7 version
of the build, switch 1’s state is saved instead. This value is sent to the host program, which uses it to select a
blinking pattern. Effectively, the user will be able to scroll through LED lighting sequence choices on-screen using
the potentiometer.

To optimize USB bandwidth usage, the firmware system transmits a report containing the potentiometer’s value
only if the value has changed since the last transmitted report. The ADC ISR sets a global variable called
Blink_SelectorUpdate whenever the new ADC value does not match the next value. The firmware system’s
foreground while(1) loop polls Blink_SelectorUpdate and when it finds the variable set, the foreground
initiates a transfer of potentiometer information.

The host application transmits the lighting pattern, and the device saves this pattern in the Blink_Pattern array.
The host transmits a blinking rate to the device and the device saves it to variable Blink_Rate. For a detailed
discussion on these data transfers, read the next subsection.

The firmware system configures Timer 0 ISR to interrupt at a rate of 0.5 ms. Inside the ISR, Blink_Rate
multiplies this interrupt rate by being used in a comparison with a counter that is incremented once every interrupt
servicing. For example, if Blink_Rate is equal to 2000, the LED pattern will be updated at a rate of 0.5 ms x 2000
or 1 s.

The Timer 0 ISR measures the percentage of time each LED is active during the sequence. The ISR stores these
measurements in the global variables Blink_Led1Active and Blink_Led2Active. The host has access to
these variables through the use of the Control data pipe.

The Timer 0 ISR updates the lighting pattern by checking the lower two bits of an element of the Blink_Pattern
array, where bit 0 controls Led1 and bit 1 controls Led2. The ISR increments an index variable used to access the
Blink_Pattern array after every LED pattern update. When the element selected by the incremented index
equals 0xFF, the index is reset to 0 and the pattern repeats.

8.2.3. Report Handler Creation

The five reports defined in the Report Descriptor each need a Report Handler. Prototypes for each handler have
been added to the F3xx_USB0_ReportHandler.c file as follows:

void IN_Blink_Selector(void);

void OUT_Blink_Enable(void);

void OUT_Blink_Pattern(void);

void OUT_Blink_Rate(void);

void IN_Blink_Stats(void);

void FEATURE_Blink_Dimmer_Input(void);

void FEATURE_Blink_Dimmer_Output(void);

Each of these functions corresponds to one of the reports. The IN and OUT Vector tables establish a link between
these handlers and their associated reports. 



AN249

38 Rev. 0.2

The file defines the IN and OUT Vector Tables as follows:

#define IN_VectorTableSize 3

#define OUT_VectorTableSize 4

The IN Vector table contains the following elements:

IN_Blink_SelectorID, IN_Blink_Selector,

IN_Blink_StatsID, IN_Blink_Stats

FEATURE_Blink_DimmerID, FEATURE_Blink_Dimmer_Input

The OUT Vector Table contains the following elements:

OUT_Blink_EnableID, OUT_Blink_Enable,

OUT_Blink_PatternID, OUT_Blink_Pattern,

OUT_Blink_RateID, OUT_Blink_Rate

FEATURE_Blink_DimmerID, FEATURE_Blink_Dimmer_Output

The F3xx_Blink_Control.h header file must be included for the compiler to recognize the Report IDs listed in these
tables.

The function bodies for each Handler mostly perform simple data transfer, either from a Global Variable and into an
input buffer, or from an Output Buffer to some global variable.

Since this example uses Output Reports, the firmware needs a body for the function Setup_OUT_Buffer. This
function is called before data is retrieved from a buffer storing data transferred during either a Control OUT transfer
or an OUT Endpoint transaction. The body of the function only needs to set the OUT_Buffer.Ptr struct to a data
buffer and to save the size of this buffer in the struct element Length.

This example configures the Setup_OUT_Buffer as follows:

OUT_Buffer.Ptr = OUT_PACKET;

OUT_Buffer.Length = 10;

8.2.4. Alterations to main(void)

Only a few modifications need to be made to the main(void) function of the firmware template. Blink_Init()
must be called to initialize the timer used for blink rate measurement. Inside the while(1) loop, the global
variable defined in F3xx_USB0_Main.c named Blink_SelectionUpdate is polled. If this variable is set, the
potentiometer value has changed, and the main(void) function initiates a transmission of a report containing
potentiometer information by calling the function SendPacket().

8.3.  Host-side PC Application
The host-side software application uses the CHIDDevice class to communicate with the HID Blinky device.  The
following sub-sections describe how the application connects to the device, and how data is transferred using the
CHIDDevice class.

8.3.1. Project Overview

The application was created using dialog-based MFC classes in Visual C++. All application functionality is
contained within the HID_BlinkyDlg dialog.  Controls and communication are contained in HID_BlinkyDlg.cpp.
All low-level HID communication is handled by the CHIDDevice, which is defined in HIDDevice.cpp and
HIDDevice.h.

8.3.2. HID Device Initialization

The dialog class's header file, called HID_BlinkyDlg.h, includes the file HIDDevice.h, which declares all member
functions and variables for the CHIDDevice class. The CHID_BlinkyDlg definition in HID_BlinkyDlg.h contains
the following line:



AN249

Rev. 0.2 39

CHIDDevice HID_Blinky;

This line defines HID_Blinky, which is the variable that the application uses to communicate with the HID Blinky
device.

8.3.3. Device Connection/Removal Detection

The application recognizes three different device connection states:

Disconnected - device not detected on the USB
Connected, Idle - device detected, but the application has not opened a communications link
Connected, Active - application has established a communications link with the device

Device detection is handled using three notification routines.  These routines enable the software to monitor the
USB for devices, and react anytime a device is connected or disconnected.  The routines operate as follows:

RegisterNotification() - creates a notification handle that is signaled whenever a device is connected to 
or disconnected from the USB.
OnDeviceChange() - called whenever a device is attached or removed from the bus; connect/disconnect 
event notification is stored in the function parameter nEventType.
UnregisterNotification() - tells the system to no longer send notification of device 
connection/disconnection

RegisterNotification() is called when the dialog box is created, and UnregisterNotification() is
called whenever the dialog box closes.  OnDeviceChange() contains a switch statement on nEventType that
recognizes two different notification event types:

DBT_DEVICEARRIVAL - this case verifies that a HID Blinky device was connected by calling CHIDDevice 
member function GetConnectedDeviceNum() to search for a device with a VID and a PID that match HID 
Blinky's VID and PID.
DBT_DEVICEREMOVECOMPLETE - this case verifies that the HID Blinky device was disconnected by calling 
GetConnectedDeviceNum() to check that no device is attached to the bus with HID Blinky's VID and PID.

8.3.4. Opening A Communication Link With A Device

A communication link is established with a connected device by pressing the "Activate" control button calls
GetConnectedDeviceNum() to check that the device is connected t o the bus, then calls the CHIDDevice
member function IsOpened() to check that a communications link has not already been established with this
device.  If no link exists, Open() is called to establish one.

A link is terminated by pressing the "Deactivate" button.  Link termination is accomplished by first checking that a
link exists using IsOpened().  If a link exists, the software calls Close() to terminate the link.

8.3.5. Controls and Reports

Operating the buttons, check boxes, and sliders call routines with names that begin "On…"
(OnBnClickedDisconnect(), OnBnClickedRate (), etc.). These functions then call routines with names
beginning "Update_..." that modify variables and communicate with the attached HID device. The Update_...
routines operate as follows:

Update_BlinkPattern() - transmits a BlinkPattern output report and transmits it by calling 
SetReport_Interrupt().
Update_BlinkEnable() -  transmits a Blink_Enable output report by calling SetReport_Control().
Update_BlinkRate() - transmits a BlinkRate output report by calling SetReport_Control().
Update_Stats() - receives a Blink_Stats input report by creating a buffer, setting the first element of that 
buffer to the Blink_Stats report ID, and calling GetReport_Control()
Update_Dimmer() - transmits a Blink_Slider feature report by calling SetFeatureReport() and then 
calls GetFeatureReport() to receive an acknowledge from the device

The application receives input reports across the interrupt pipe by creating a thread that constantly attempts to



AN249

40 Rev. 0.2

retrieve reports.  This thread is created when a communication link is established with the device, and is destroyed
when the communication link is terminated.

The thread calls InterruptThreadProc(), which continuously calls HID_InterruptGetReport (), which in
turn calls the CHIDDevice member function GetReport_Interrupt(). If GetReport_Interrupt()
successfully retrieves a report, HIDcallback() processes received data. In this application, HIDcallback()
handles Blink_Selector input report reception.



AN249

Rev. 0.2 41

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.2
Added Section "2. Introduction To HID" on page 2.
Added Section "6. CHIDDeviceclass Object Class" 
on page 21.
Modified Section "8. HID Blinky Firmware and 
Software Example" on page 33 to conform to latest 
firmware and software example.
 Minor formatting changes.



AN249

42 Rev. 0.2

CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78704
Email: MCUinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. 
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from 
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features 
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability 
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to 
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages. 


	437-AN249
	1. Introduction
	1.1. About this Document
	1.2. HID Examples

	2. Introduction To HID
	Figure 1. USB Interface between a PC and an Embedded System
	2.1. USB System Development
	2.2. Getting Started With HID
	Figure 2. Project Work Flow Chart


	3. HID Specification Overview
	3.1. Universal Serial Bus
	3.1.1. Device Endpoints
	3.1.2. Silicon Laboratories Microcontroller Capabilities
	3.1.3. USB Device Classes

	3.2. Human Interface Device Class
	3.2.1. Class Requirements


	4. Enumeration and Device Detection
	4.1. Descriptor Structure
	4.1.1. Descriptor Declaration Example
	4.1.2. Descriptor Definition Example
	4.1.3. A Reminder About Descriptors

	4.2. Device Responsibilities During Enumeration
	4.2.1. The Control Endpoint Handler

	4.3. Device Detection after Successful Enumeration
	4.4. Application Communications
	Figure 3. Report Descriptor Example Structure
	4.4.1. Report Descriptors
	4.4.2. Two Transfer Types
	4.4.3. Interrupt Transfers from the Perspective of the Device


	5. HID Firmware Template
	5.1. Firmware Template Goals
	5.2. Template Files
	5.3. Using the Template
	5.4. Default Descriptor Declaration Values
	5.4.1. Device Descriptor
	5.4.2. Configuration Descriptor
	5.4.3. Interface Descriptor
	5.4.4. IN Endpoint Descriptor
	5.4.5. OUT Endpoint Descriptor
	5.4.6. HID Descriptor
	5.4.7. String Descriptors
	5.4.8. Report Descriptor

	5.5. F3xx_USB0_ReportHandler.c File
	5.5.1. Behavior of the F3xx_USB0_ReportHandler.c File
	5.5.2. Handler Prototypes And Declarations
	5.5.3. Report Handler Requirements
	5.5.4. Including Report IDs


	6. CHIDDeviceclass Object Class
	6.1. Using The Class
	6.2. GetConnectedDeviceNum
	6.3. GetSerialString()
	6.4. Open()
	6.5. IsOpened()
	6.6. SetFeatureReport()
	6.7. GetFeatureReport()
	6.8. SetReport_Interrupt()
	6.9. GetReport_Interrupt()
	6.10. SetReport_Control()
	6.11. GetReport_Control()
	6.12. GetInputReportBufferLength()
	6.13. GetOutputReportBufferLength()
	6.14. GetFeatureReportBufferLength()
	6.15. GetMaxReportRequest()
	6.16. FlushBuffers()

	7. USB Mouse Example
	7.1. Overview
	7.2. Descriptors
	7.2.1. Device Descriptor
	7.2.2. Configuration Descriptor
	7.2.3. Interface Descriptor
	7.2.4. IN Endpoint Descriptor
	7.2.5. HID Descriptor
	7.2.6. Report Descriptor

	7.3. Mouse Emulation Data Sampling
	7.3.1. Timer 2 ISR
	7.3.2. Adc_ConvComplete_ISR

	7.4. IN Report Handler
	7.5. Alterations to Main()

	8. HID Blinky Firmware and Software Example
	8.1. Overview
	8.2. Firmware System
	8.2.1. Descriptors
	8.2.2. Data Capture and Processing Routines
	8.2.3. Report Handler Creation
	8.2.4. Alterations to main(void)

	8.3. Host-side PC Application
	8.3.1. Project Overview
	8.3.2. HID Device Initialization
	8.3.3. Device Connection/Removal Detection
	8.3.4. Opening A Communication Link With A Device
	8.3.5. Controls and Reports


	Document Change List
	Contact Information


