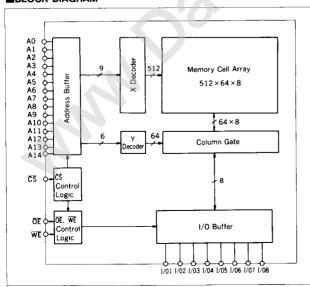
SRM20256L_{10/12}

CMOS 256K-BIT STATIC RAM

DESCRIPTION


The SRM20256L10/12 is a 32,768 words x 8 bits asynchronous, static, random access memory fabricated using an advanced CMOS technology. Its very low standby power requirement makes it ideal for applications requiring non-volatile storage with back-up batteries. The asynchronous and static nature of the memory requires no external clock or refresh circuit. Input and output ports are TTL compatible and the three-state output allows easy expansion of memory capacity.

FEATURES

- - SRM20256L₁₂ 120ns (Max)
- Low supply currentStandby : 2µA (Typ)
 - Operation: 13mA/1MHz (Typ)
- Completely static No clock required
- Single power supply5V ± 10%
- TTL compatible inputs and outputs
- 3-state output
- Battery back-up operation

SRM20256LS10/12 28-pin Shrink DIP (plastic) SRM20256L10/12 28-pin TSOP (plastic)

■BLOCK DIAGRAM

PIN CONFIGURATION

A14 [1 A12 [2 A7 [3 A6 [4 A5 [5 A4 [6 A3 [7 A2 [8 A1 [9 A0 [10 I/O1[11 I/O2[12 I/O3[13 Vss [14) SRM20256LC	28] Vod 27 D WE 26] A13 25 D A8 24] A9 23 D A11 22 D OE 21 D A10 20 D CS 19 D I /O8 18 D I /O5 15 D I /O4	S
		_	

PIN DESCRIPTION

A0 to A14	Address Input
WE	Write Enable
ŌĒ	Output Enable
CS	Chip Select
1/01 to 8	Data Input/Output
V _{DD}	Power Supply (+5V)
V _{SS}	Power Supply (0V)

MARSOLUTE MAXIMUM RATINGS

 $(V_{SS} = 0V)$

Parameter	Symbol	Ratings	Unit
Supply voltage	V_{DD}	-0.5 to 7.0	V
Input voltage	Vı	-0.5* to 7.0	V
Input/Output voltage	V _{I/O}	$-0.5*$ to $V_{DD} + 0.3$	V
Power dissipation	PD	1.0	W
Operating temperature	Topr	0 to 70	°C
Storage temperature	T _{stg}	- 65 to 150	°C
Soldering temperature and time	T _{sol}	260°C, 10s (Lead only)	-

*V_I, $V_{I/O}(Min) = -1.0V$ when pulse width is less or equal to 50ns

IDC RECOMMENDED OPERATING CONDITIONS

 $(V_{SS} = 0V, Ta = 0 to 70^{\circ}C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply voltage	V _{DD}		4.5	5.0	5.5	٧
Supply voltage	V _{SS}		0	0	0	V
Input voltage	V _{IH}		2.2	3.5	V _{DD} +0.3	٧
input voitage	V _{IL}	-	-0.3*	0	0.8	V

 $[*]V_{IL}(Min) = -1.0V$ when pulse width is less or equal to 50ns

BELECTRICAL CHARACTERISTICS

● DC Electrical Characteristics

 $(V_{DD} = 5V \pm 10\%, V_{SS} = 0V, Ta = 0 to 70^{\circ}C)$

Parameter	Symbol	Conditions	SRN	120256	LC10	SRM	120256	LC ₁₂	l lais
Parameter	Symbol	Conditions	Min	Typ*	Max	Min	Typ*	Max	Unit
Input leakage	l _{L1}	V _I =0 to V _{DD}	-1	_	1	-1	_	1	μA
Standby cupply current	I _{DDS}	CS = V _{IH}	_	1.5	3.0		1.5	3.0	mA
Standby supply current	I _{DDS1}	CS≥V _{DD} -0.2V	_	2	100	_	2	100	μA
A	I _{DDA}	$V_I = V_{IL}, V_{IH}$ $I_{I/O} = 0 \text{mA} t_{cyc} = M \text{in}$	_	40	70	_	37	70	mA
Average operating current	I _{DDA1}	$V_i = V_{iL}, V_{iH}$ $I_{I/O} = 0 \text{mA} t_{cyc} = 1 \mu \text{s}$	_	13	_	_	13	_	mA
Operating supply current	I _{DDO}	$V_i = V_{iL}, V_{iH}$ $I_{i/O} = 0 \text{mA}$	-	35	65	_	35	65	mA
Output leakage	ILO	$\overline{CS} = V_{IH}$ or $\overline{WE} = V_{IL}$ or $\overline{OE} = V_{IH}$ $V_{I/O} = 0$ to V_{DD}	-1	_	1	-1	-	1	μΑ
High level output voltage	V _{OH}	$I_{OH} = -1.0 \text{mA}$	2.4	V _{DO} -0.1	_	2.4	V _{DD} = 0.1	_	٧
Low level output voltage	Vol	I _{OL} = 2.1mA	_	0.2	0.4		0.2	0.4	٧

^{*}Typical values are measured at Ta = 25°C and V_{DD} = 5.0V

●Terminal Capacitance

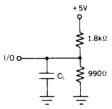
 $(f = 1MHz, Ta = 25^{\circ}C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Address Capacitance	C _{ADD}	$V_{ADD} = 0V$	-	_	10	pF
Input Capacitance	Cı	V ₁ = 0V			10	pF
I/O Capacitance	C _{1/0}	V _{I/O} = 0V	_	_	10	pF

AC Electrical Characteristics

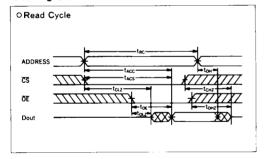
○ Read Cycle

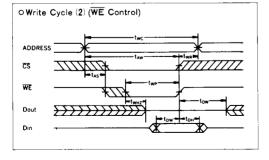
 $(V_{DD} = 5V \pm 10\%, V_{SS} = 0V, Ta = 0 to 70^{\circ}C)$


Parameter	Symbol	Conditions	SRM20	256LC ₁₀	SRM20	256L.C ₁₂	
rarameter	Зушьы	Conditions	Min	Max	Min	Max	Unit
Read cycle time	t _{RC}	·	100	_	120		ns
Address access time	tacc		_	100		120	ns
CS access time	tacs	*1	_	100	-	120	ns
OE access time	toE		_	50		60	ns
CS output set time	t _{CLZ}		10	_	10		ns
CS output floating	t _{CHZ}	* 2		35		40	ns
OE output set time	t _{OLZ}		5	_	5		ns
OE output floating	tonz		_	35	i –	40	ns
Output hold time	t _{OH}	*1	10	_	10		ns

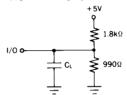
OWrite Cycle

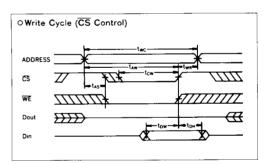
$(V_{DD} = 5V \pm 10\%, V_{SS} = 0V, Ta = 0 \text{ to}$	o 70°C)	
---	---------	--


			SRM20	256LC ₁₀	SRM20	256LC ₁₂	Unit
Parameter	Symbol	Conditions	Min	Max	Min	Max	Unit
Write cycle time	twc		100		120	_	ns
Chip select time	tcw		80	_	85		ns
Address valid to end of write	t _{AW}	*1	80		85		ns
Address setup time	tas		0	_	0	_	ns
Write pulse width	twp		75	_	80		ns
Address hold time	twR		0	_	0	_	ns
Input data set time	t _{DW}		45	_	50		ns
Input data hold time	t _{DH}		0		0	_	ns
Write to Output floating	twHz	. 0	_	35	_	40	ns
Output Active from end of write	tow	* 2	10		10	_	ns


- *1 Test Conditions
 - 1. Input pulse level: 0.6V to 2.4V
 - 2 . tr = tf = 5ns
 - 3. Input and output timing reference levels: 1.5V
 - 4 . Output load CL=100pF

C_L = 100pF (Includes Jig Capacitance)


●Timing Chart



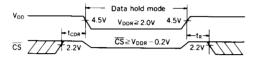
*2 Test Conditions

- 1 . Input pulse level: 0.6V to 2.4V
- $2 \cdot tr = tf = 5ns$
- 3 . Input timing reference levels : 1.5V
- 4. Output timing reference levels:
 - ±200mV (the level displaced from stable output voltage level)
- 5. Output load C_L = 5pF

C_L = 5pF (Includes Jig Capacitance)

Note

- 1. During read cycle time, WE is to be "H" level.
- During write cycle time that is controlled by CS, Output Buffer is in high impedance state, whether OE level is "H" or "L".
- During write cycle time that is controlled by WE, Output Buffer is in high impedance state if OE is "H" level.


DATA RETENTION CHARACTERISTIC WITH LOW VOLTAGE POWER SUPPLY

$(V_{SS} = 0V, Ta = 0 \text{ to } 70^{\circ}C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Data retention supply voltage	V_{DDR}		2.0	_	5.5	٧
Data retention current	I _{DDR}	$V_{DD} = 3V, \overline{CS} \ge V_{DDR} - 0.2V$	_	1	50	μA
Chip select data hold time	t _{CDR}		0	_	_	ns
Operation recovery time	t _R		t _{RC} *			ns

^{*}t_{RC} = Read cycle time

Data retention timing

FUNCTIONS

●Truth Table

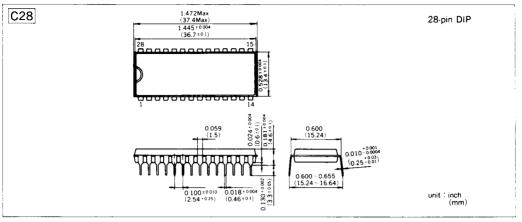
CS	ŌĒ	WE	A0 to A14	DATA I/O	Mode	I _{DD}
Н	_		_	Hi—Z	Standby	I _{DDS} , I _{DDS1}
L	X	L	Stable	Din	Write	IDDA, IDDA1
L	L	Н	Stable	D _{out}	Read	IDDA, IDDAI
L	Н	Н	Stable	Hi—Z	Output disable	IDDA, IDDAI

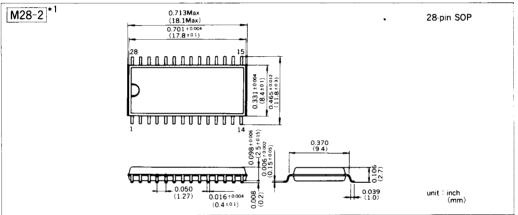
● Read Mode

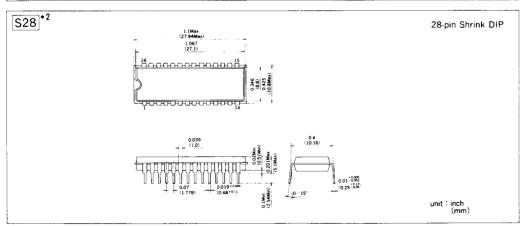
The Data appear when the address is setted while holding \overline{CS} ="L", \overline{OE} ="L" and \overline{WE} ="H". When \overline{OE} ="H", Data I/O terminals are in high impedance state, that makes circuit design and bus control easy.

●Write Mode

There are the following 3 ways of writing data into memory.

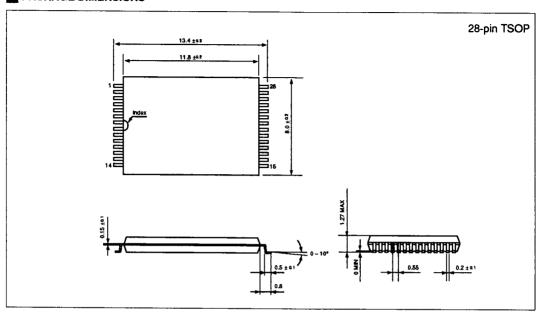

- (1) Hold \overline{CS} ="L" and \overline{WE} ="L", set address.
- (2) Hold \overline{CS} = "L" then set address and give "L" pulse to \overline{WE} .
- (3) After setting addresses, give "L" pulse to both CS and WE.

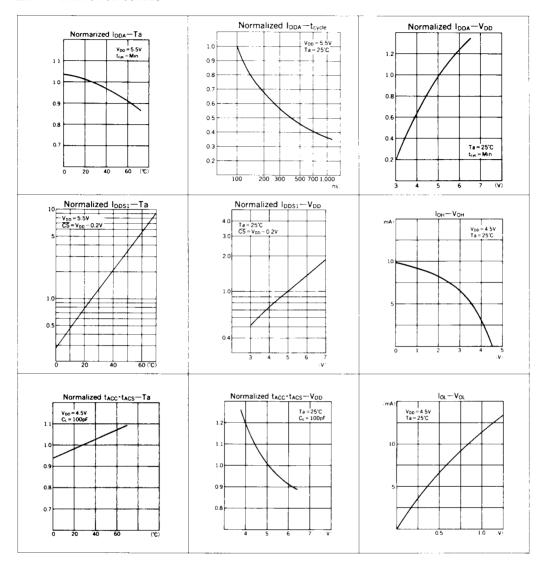

In above any case data on the DATA I/O terminals are latched up into the SRM20256L_{10/12} when \overline{CS} or \overline{WE} is in positive-going. Since DATA I/O terminals are high impedance when \overline{CS} or \overline{OE} ="H", bus contention between data driver and memory outputs can be avoided.


Standby Mode

When $\overline{\text{CS}}$ is "H" the SRM20256L_{10/12} become in the stand-by mode. In this mode, data I/O terminals are Hi-Z, and all inputs of addresses, $\overline{\text{WE}}$ and data can be any "H" or "L". When $\overline{\text{CS}}$ is over than V_{DD}=0.2V, the SRM20256L_{10/12} is in the data retention battery back-up mode, in this case, there is a small current in the SRM20256L_{10/12} which flow through the high resistances of the memory cells.

■PACKAGE DIMENSIONS





- *1 Represents SRM20256LM_{10/12} that has the same electrical characteristics as SRM20256LC_{10/12}.
- *2 Represents SRM20256LS_{10/12} that has the same electrical characteristics as SRM20256LC_{10/12}.

PACKAGE DIMENSIONS

■CHARACTERISTICS CURVES

