PCMCIA Flash Memory Card 1 MEGABYTE through 40 MEGABYTE (Intel/Sharp based) #### **FEATURES** - Low cost High Density Linear Flash Card - Supports 5V only systems or 5V systems with 12V VPP - Based on Intel/Sharp FlashFile Components - Fast Read Performance - 150ns or 200ns Maximum Access Time - x8 / x16 Data Interface - High Performance Random Writes - 8µs Typical Word Write Time - Automated Write and Erase Algorithms - Command User Interface - 100,000 Erase Cycles per Block - 64K word symmetrical Block Architecture - PC Card Standard Type I Form Factor #### **GENERAL DESCRIPTION** WEDC's FLA Series Flash memory cards offer high density linear Flash solid state storage solutions for code and data storage, high performance disk emulation and execute in place (XIP) applications in mobile PC and dedicated (embedded) equipment. FLA series cards conform to PCMCIA international standard. The card's control logic provides the system interface and controls the internal Flash memories. Card can be read/written in byte-wide or word-wide mode which allows for flexible integration into various systems. Combined with file management software, such as Flash Translation Layer (FTL), FLA Flash cards provide removable high-performance disk emulation. The FLA series offers low power modes controlled by registers. Standard cards contain separate 2kB EEPROM memory for Card Information Structure (CIS) which can be used for easy identification of card characteristics. The WEDC FLA series is based on Intel/Sharp Flash memories. Note: Standard options include attribute memory. Cards without attribute memory are available. Cards are also available with or without a hardware write protect switch. ### **ARCHITECTURE OVERVIEW** WEDC's FLA series is designed to support from 2 to 20, 4Mb, 8Mb or 16Mb components, providing a wide range of density options. Cards are based on the 28F008SA (8Mb) for 12V VPP applications or on the 28F004S5 (4Mb), 28F008S5 (8Mb) and 28F016S5 (16Mb) devices for 5V only applications. Devices codes for the 28F004S5, 28F008SA, 28F008S5 and the 28F016S5 are: A7H, A2H, A6H and AAh respectively. Systems should be able to recognize all four codes. Cards utilizing the 8Mb components provide densities ranging from 2MB to 20MB in 2MB increments, cards utilizing 16Mb components provide densities ranging from 4MB to 40MB in 4MB increments. 4 Mbit memory devices are used only for smallest capacity cards (1MB). In support of the PC Card 95 standard for word wide access devices are paired. Therefore, the Flash array is structured in 64K word (128kBytes) blocks. Write, read and block erase operations can be performed as either a word or byte wide operation . By multiplexing A0, $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$, 8-bit hosts can access all data on data lines DQ0-DQ7. The FLA21-FLA36 series also supports the following PCMCIA compatible register functions: Soft Reset via the Configuration Option Register, Power Down (sleep mode) via the Configuration and Status Register and monitoring of Ready/Busy, Soft Reset and Power Down via the Card Status Register (cards without attribute memory and versions FLA51 - FLA66 do not have registers). The FLA series cards conform with the PC Card Standard (PCMCIA) and JEIDA, providing electrical and physical compatibility. The PC Card form factor offers an industry standard pinout and mechanical outline, allowing density upgrades without system design changes. WEDC's standard cards are shipped with WEDC's Logo. Cards are also available with blank housings (no Logo). The blank housings are available in both a recessed (for label) and flat housing. Please contact WEDC sales representative for further information on Custom artwork. | Device type | Manuf ID | Device ID | |-------------|----------|-----------| | 28F004S5 | 89н | А7н | | 28F008SA | 89н | А2н | | 28F008S5 | 89н | А6н | | 28F016S5 | 89н | ААн | #### REGISTERS IN ATTRIBUTE MEMORY SPACE* | ADDRESS | REGISTER NAME | |---------|-------------------------------| | 4100h | Status Register | | 4002h | Config. and Status Register | | 4000h | Configuration Option Register | ^{*}Cards without Att. Mem and **FLA51- FLA66** do not have registers # COR CONFIGURATION OPTION REGISTER: ADRS = 4000h WRITE ONLY | SRES | LREQ | Configuration Index | | | | | | | |------|------|---------------------|----|----|----|----|----|--| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | D7 Soft Reset, active High 1 = Reset State 0 = End Reset State D6 Level Req (not supported) D5-D0 Configuration index (not supported) # CSR Configuration Status Register: ADRS = 4002h Write Only | | No | t Suppor | PDwn | Not Su | pported | | | | |----|----|----------|------|--------|---------|----|----|--| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | D2 Power Down, active High 1 = Place all memory devices in power down mode 0 = Normal Operation Power On default = 0 # SR STATUS REGISTER: ADRS = 4100h READ ONLY | Not Sup | ported | SReset | | PDwn | Not Supported | | R/BSY | |---------|--------|--------|----|------|---------------|----|-------| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | D5 Represents the state of SRESET bit in COR (4000h) 1 = Reset 0 = Normal Operation Power On default D5 = 0 D3 Represents the state of Power Down bit (D2) in CSR (4002h) 1 = Power Down D0 Reflects the card's Ready/Busy signal (pin 16) driven by memory components Ready/Busy outputs. This bit allows software polling of the card's Ready/Busy status. 1 = Ready #### **PINOUT** | Pin | Signal name | I/O | Function | Active | |-----|------------------|-----|----------------|---------| | 1 | GND | | Ground | | | 2 | DQ3 | I/O | Data bit 3 | | | 3 | DQ4 | I/O | Data bit 4 | | | 4 | DQ5 | I/O | Data bit 5 | | | 5 | DQ6 | I/O | Data bit 6 | | | 6 | DQ7 | I/O | Data bit 7 | | | 7 | CE ₁ | I | Card enable 1 | LOW | | 8 | A10 | I | Address bit 10 | | | 9 | ŌĒ | ı | Output enable | LOW | | 10 | A11 | I | Address bit 11 | | | 11 | A 9 | I | Address bit 9 | | | 12 | A 8 | I | Address bit 8 | | | 13 | A 13 | I | Address bit 13 | | | 14 | A14 | I | Address bit 14 | | | 15 | WE | I | Write Enable | LOW | | 16 | RDY/BSY | 0 | Ready/Busy | LOW (4) | | 17 | Vcc | | Supply Voltage | | | 18 | V _{PP1} | | Prog. Voltage | NC | | 19 | A 16 | I | Address bit 16 | | | 20 | A 15 | I | Address bit 15 | | | 21 | A12 | I | Address bit 12 | | | 22 | A 7 | ı | Address bit 7 | | | 23 | A 6 | ı | Address bit 6 | | | 24 | A 5 | ı | Address bit 5 | | | 25 | A ₄ | ı | Address bit 4 | | | 26 | Аз | I | Address bit 3 | | | 27 | A2 | I | Address bit 2 | | | 28 | A 1 | I | Address bit 1 | | | 29 | Ao | ı | Address bit 0 | | | 30 | DQo | I/O | Data bit 0 | | | 31 | DQ1 | I/O | Data bit 1 | | | 32 | DQ2 | I/O | Data bit 2 | | | 33 | WP | 0 | Write Potect | HIGH | | 34 | GND | | Ground | | | • | | | | | |-----|------------------|-----|---------------------|----------| | Pin | Signal name | I/O | Function | Active | | 35 | GND | | Ground | | | 36 | CD ₁ | 0 | Card Detect 1 | LOW | | 37 | DQ ₁₁ | I/O | Data bit 11 | | | 38 | DQ12 | I/O | Data bit 12 | | | 39 | DQ13 | I/O | Data bit 13 | | | 40 | DQ14 | I/O | Data bit 14 | | | 41 | DQ15 | I | Data bit 15 | | | 42 | CE ₂ | - 1 | Card Enable 2 | LOW | | 43 | VS ₁ | 0 | Voltage Sense 1 | NC | | 44 | RFU | | Reserved | | | 45 | RFU | | Reserved | | | 46 | A 17 | - | Address bit 17 | | | 47 | A 18 | - | Address bit 18 | | | 48 | A 19 | - | Address bit 19 | | | 49 | A20 | _ | Address bit 20 | 2MB(3) | | 50 | A 21 | _ | Address bit 21 | 4MB(3) | | 51 | Vcc | | Supply Voltage | | | 52 | VPP2 | | Prog. Voltage | NC | | 53 | A22 | - 1 | Address bit 22 | 8MB(3) | | 54 | A23 | - 1 | Address bit 23 | 16MB(3) | | 55 | A24 | - 1 | Address bit 24 | 32MB(3) | | 56 | A 25 | - 1 | Address bit 25 | 64MB(3) | | 57 | VS ₂ | 0 | Voltage Sense 2 | NC | | 58 | RST | I | Card Reset | HIGH (4) | | 59 | Wait | 0 | Extended Bus cycle | Low(2,4) | | 60 | RFU | | Reserved | | | 61 | REG | 1 | Attrib Mem Select | | | 62 | BVD2 | 0 | Bat. Volt. Detect 2 | (2) | | 63 | BVD1 | 0 | Bat. Volt. Detect 1 | (2) | | 64 | DQ8 | I/O | Data bit 8 | | | 65 | DQ9 | I/O | Data bit 9 | | | 66 | DQ10 | 0 | Data bit 10 | | | 67 | CD ₂ | 0 | Card Detect 2 | LOW | | 68 | GND | | Ground | | | | | | | | - 1. RDY/BSY signal is an "Open drain" type output, pull-up resistor on host side is required. - 2. Wait, BVD1 and BVD2 are driven high for compatibility. - 3. Shows density for which specified address bit is MSB. Higher order address bits are no connects (ie 4MB A21 is MSB A22 - A25 are NC). - 4. NC No Connection for FLA51 FLA66. # **PCMCIA Flash Memory Card** #### CARD SIGNAL DESCRIPTION | Ao - A2s INPUT ADDRESS INPUTS: Ao through A2s enable direct addressing of up to 64MB of memory on the card. Signal Ao is not used in word access mode. A2s is the most significant bit DQo - DQ15 INPUT DATA INPUT/OUTPUT: DQo THROUGH DQ15 constitute the bi-directional databus. DQ15 is the MSB. CE1, CE2 INPUT CARD ENABLE 1 AND 2: CE1 enables even byte accesses, CE2 enables odd byte accesses. Multiplexing Ao, CE1 and CE2 allows 8-bit hosts to access all data on DQ0 - DQ7. OE INPUT OUTPUT ENABLE: Active low signal gating read data from the memory card. WE INPUT WRITE ENABLE: Active low signal gating read data from the memory card. READY/BSY(*) OUTPUT READY/BUSY OUTPUT: Indicates status of internally timed erase or program algorithms. A high output indicates that the card is ready to accept accesses. A low output indicates that one or more devices in the memory card are busy with internally timed erase or write activities. CD1, CD2 OUTPUT CARD DETECT 1 and 2: Provide card insertion detection. These signals are internally connected to ground on the card. The host shall monitor these signals to detect card insertion (pulled-up on host side). WP OUTPUT WRITE PROTECT: Write protect reflects the status of the Write Protect switch on the memory card. WP set to high = write protected, providing internal hardware write lockout to the Flash array, if card does not include optional write protect switch, this signal will be pulled low internally indicating write protect = "off". VPP1, VPP2 N. C. PROGRAM/ERASE POWER SUPPLY: Provides programming voltages for card (12V). Not connected for 5V only card. Vcc CARD POWER SUPPLY: (5.0V). GND CARD GROUND REG INPUT ATTRIBUTE MEMORY SELECT : Active low signal, enables access to Attribute Memory Plane, occupied by Card Information Structure and Card Registers. RST(") INPUT RESET: Active high signal for placing card in Power-on default state. Reset can be used as a Power-Down signal for the memory array. WAIT (") OUTPUT WAIT: This signal is pulled high | Symbol | Туре | Name and Function | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | CE1, CE2 INPUT CARD ENABLE 1 AND 2: CE₁ enables even byte accesses, CE₂ enables odd byte accesses, Multiplexing Ao, CE₁ and CE₂ allows 8-bit hosts to access all data on DQo - DQr. OE INPUT OUTPUT ENABLE: Active low signal gating read data from the memory card. WE INPUT WRITE ENABLE: Active low signal gating write data to the memory card. RDY/BSY(*) OUTPUT READY/BUSY OUTPUT: Indicates status of internally timed erase or program algorithms. A high output indicates that the card is ready to accept accesses. A low output indicates that one or more devices in the memory card are busy with internally timed erase or write activities. CD1, CD2 OUTPUT CARD DETECT 1 and 2: Provide card insertion detection. These signals are internally connected to ground on the card. The host shall monitor these signals to detect card insertion (pulled-up on host side). WP OUTPUT WRITE PROTECT: Write protect reflects the status of the Write Protect switch on the memory card. WP set to high = write protected, providing internal hardware write lockout to the Flash array. If card does not include optional write protect switch, this signal will be pulled low internally indicating write protect = "off" off" of only card. VPP1, VPP2 N.C. PROGRAM/ERASE POWER SUPPLY: Provides programming voltages for card (12V). Not connected for 5V only card. Vcc CARD GROUND REG INPUT ATTRIBUTE MEMORY SELECT : Active low signal, enables access to Attribute Memory Plane, o | A0 - A25 | INPUT | | | Multiplexing Ao, CE1 and CE2 allows 8-bit hosts to access all data on DQo - DQr. DE INPUT OUTPUT ENABLE: Active low signal gating read data from the memory card. WE INPUT WRITE ENABLE: Active low signal gating write data to the memory card. READY/BSY(*) OUTPUT READY/BUSY OUTPUT: Indicates status of internally timed erase or program algorithms. A high output indicates that the card is ready to accept accesses. A low output indicates that one or more devices in the memory card are busy with internally timed erase or write activities. CD1, CD2 OUTPUT CARD DETECT 1 and 2: Provide card insertion detection. These signals are internally connected to ground on the card. The host shall monitor these signals to detect card insertion (pulled-up on host side). WP WRITE PROTECT: Write protect reflects the status of the Write Protect switch on the memory card. WP set to high = write protected, providing internal hardware write lockout to the Flash array. If card does not include optional write protect switch, this signal will be pulled low internally indicating write protect = "off". VPP1, VPP2 N.C. PROGRAM/ERASE POWER SUPPLY: Provides programming voltages for card (12V). Not connected for 5V only card. Vcc CARD POWER SUPPLY: (5.0V). GND CARD GROUND ATTRIBUTE MEMORY SELECT: Active low signal, enables access to Attribute Memory Plane, occupied by Card Information Structure and Card Registers. RST(*) INPUT RESET: Active high signal for placing card in Power-on default state. Reset can be used as a Power-Down signal for the memory array. WAIT (*) OUTPUT WAIT: This signal is pulled high internally for compatibility. No wait states are generated. RFSET: Active high signal is pulled high internally for compatibility. No wait states are generated. RFU RESET: Notifies the host socket of the card's Vcc requirements. VS1 and VS2 are open to indicate a 5V card. RESERVED FOR FUTURE USE | DQ0 - DQ15 | INPUT/OUTPUT | DATA INPUT/OUTPUT: DQ0 THROUGH DQ15 constitute the bi-directional databus. DQ15 is the MSB. | | WE INPUT WRITE ENABLE: Active low signal gating write data to the memory card. | CE ₁ , CE ₂ | INPUT | | | READY/BUSY OUTPUT: Indicates status of internally timed erase or program algorithms. A high output indicates that the card is ready to accept accesses. A low output indicates that one or more devices in the memory card are busy with internally timed erase or write activities. CD1, CD2 OUTPUT CARD DETECT 1 and 2: Provide card insertion detection. These signals are internally connected to ground on the card. The host shall monitor these signals are internally connected to ground on the card. The host shall monitor these signals to detect card insertion (pulled-up on host side). WP OUTPUT WRITE PROTECT: Write protect reflects the status of the Write Protect switch on the memory card. WP set to high = write protected, providing internal hardware write lockout to the Flash array. If card does not include optional write protect switch, this signal will be pulled low internally indicating write protect = "off". VPP1, VPP2 N.C. PROGRAM/ERASE POWER SUPPLY: Provides programming voltages for card (12V). Not connected for 5V only card. CARD POWER SUPPLY: (5.0V). CARD GROUND REG INPUT ATTRIBUTE MEMORY SELECT: Active low signal, enables access to Attribute Memory Plane, occupied by Card Information Structure and Card Registers. RST(*) INPUT RESET: Active high signal for placing card in Power-on default state. Reset can be used as a Power-Down signal for the memory array. WAIT(*) OUTPUT WAIT: This signal is pulled high internally for compatibility. No wait states are generated. BYD1, BVD2 OUTPUT WAIT: This signal is pulled high internally for compatibility. No wait states are generated. RFU RESERVED FOR FUTURE USE | ŌĒ | INPUT | OUTPUT ENABLE: Active low signal gating read data from the memory card. | | output indicates that the card is ready to accept accesses. A low output indicates that one or more devices in the memory card are busy with internally timed erase or write activities. CD1, CD2 OUTPUT CARD DETECT 1 and 2: Provide card insertion detection. These signals are internally connected to ground on the card. The host shall monitor these signals to detect card insertion (pulled-up on host side). WP OUTPUT WRITE PROTECT: Write protect reflects the status of the Write Protect switch on the memory card. WP set to high = write protected, providing internal hardware write lockout to the Flash array. If card does not include optional write protect switch, this signal will be pulled low internally indicating write protect = "off". VPP1, VPP2 N.C. PROGRAM/ERASE POWER SUPPLY: Provides programming voltages for card (12V). Not connected for 5V only card. Vcc CARD POWER SUPPLY: (5.0V). GND CARD GROUND REG INPUT ATTRIBUTE MEMORY SELECT: Active low signal, enables access to Attribute Memory Plane, occupied by Card Information Structure and Card Registers. RST(*) INPUT RESET: Active high signal for placing card in Power-on default state. Reset can be used as a Power-Down signal for the memory array. WAIT(*) OUTPUT WAIT: This signal is pulled high internally for compatibility. No wait states are generated. BVD1, BVD2 OUTPUT BATTERY VOLTAGE DETECT: These signals are pulled high to maintain SRAM card compatibility. VS1, VS2 OUTPUT VOLTAGE SENSE: Notifies the host socket of the card's Vcc requirements. VS1 and VS2 are open to indicate a 5V card. | WE | INPUT | WRITE ENABLE: Active low signal gating write data to the memory card. | | to ground on the card. The host shall monitor these signals to detect card insertion (pulled-up on host side). WP OUTPUT WRITE PROTECT: Write protect reflects the status of the Write Protect switch on the memory card. WP set to high = write protected, providing internal hardware write lockout to the Flash array. If card does not include optional write protect switch, this signal will be pulled low internally indicating write protect = "off". VPP1, VPP2 N.C. PROGRAM/ERASE POWER SUPPLY: Provides programming voltages for card (12V). Not connected for 5V only card. Vcc CARD POWER SUPPLY: (5.0V). GND CARD GROUND ATTRIBUTE MEMORY SELECT: Active low signal, enables access to Attribute Memory Plane, occupied by Card Information Structure and Card Registers. RST(") INPUT RESET: Active high signal for placing card in Power-on default state. Reset can be used as a Power-Down signal for the memory array. WAIT(*) OUTPUT WAIT: This signal is pulled high internally for compatibility. No wait states are generated. BVD1, BVD2 OUTPUT WAIT: This signal is pulled high internally for compatibility. No wait states are generated. BYD1, BVD2 OUTPUT VOLTAGE SENSE: Notifies the host socket of the card's Vcc requirements. VS1 and VS2 are open to indicate a 5V card . RESERVED FOR FUTURE USE | RDY/BSY(*) | OUTPUT | output indicates that the card is ready to accept accesses. A low output indicates that one or more | | card. WP set to high = write protected, providing internal hardware write lockout to the Flash array. If card does not include optional write protect switch, this signal will be pulled low internally indicating write protect = "off". VPP1, VPP2 N.C. PROGRAM/ERASE POWER SUPPLY: Provides programming voltages for card (12V). Not connected for 5V only card. Vcc CARD POWER SUPPLY: (5.0V). GND CARD GROUND REG INPUT ATTRIBUTE MEMORY SELECT : Active low signal, enables access to Attribute Memory Plane, occupied by Card Information Structure and Card Registers. RST(*) INPUT RESET: Active high signal for placing card in Power-on default state. Reset can be used as a Power-Down signal for the memory array. WAIT(*) OUTPUT WAIT: This signal is pulled high internally for compatibility. No wait states are generated. BVD1, BVD2 OUTPUT BATTERY VOLTAGE DETECT: These signals are pulled high to maintain SRAM card compatibility. VS1, VS2 OUTPUT VOLTAGE SENSE: Notifies the host socket of the card's Vcc requirements. VS1 and VS2 are open to indicate a 5V card . RESERVED FOR FUTURE USE | $\overline{CD}_1, \ \overline{CD}_2$ | ОИТРИТ | to ground on the card. The host shall monitor these signals to detect card insertion (pulled-up on | | connected for 5V only card. Vcc CARD POWER SUPPLY: (5.0V). GND CARD GROUND ATTRIBUTE MEMORY SELECT: Active low signal, enables access to Attribute Memory Plane, occupied by Card Information Structure and Card Registers. RST(*) INPUT RESET: Active high signal for placing card in Power-on default state. Reset can be used as a Power-Down signal for the memory array. WAIT(*) OUTPUT WAIT: This signal is pulled high internally for compatibility. No wait states are generated. BVD1, BVD2 OUTPUT WAIT: This signal is pulled high internally for compatibility. No wait states are generated. BVT1, VS2 OUTPUT VOLTAGE SENSE: Notifies the host socket of the card's Vcc requirements. VS1 and VS2 are open to indicate a 5V card. RESERVED FOR FUTURE USE | WP | OUTPUT | card. WP set to high = write protected, providing internal hardware write lockout to the Flash array.If card does not include optional write protect switch, this signal will be pulled low internally | | CARD GROUND | VPP1, VPP2 | N.C. | | | REG INPUT ATTRIBUTE MEMORY SELECT: Active low signal, enables access to Attribute Memory Plane, occupied by Card Information Structure and Card Registers. RST(*) INPUT RESET: Active high signal for placing card in Power-on default state. Reset can be used as a Power-Down signal for the memory array. WAIT(*) OUTPUT WAIT: This signal is pulled high internally for compatibility. No wait states are generated. BVD1, BVD2 OUTPUT BATTERY VOLTAGE DETECT: These signals are pulled high to maintain SRAM card compatibility. VS1, VS2 OUTPUT VOLTAGE SENSE: Notifies the host socket of the card's Vcc requirements. VS1 and VS2 are open to indicate a 5V card . RFU RESERVED FOR FUTURE USE | Vcc | | CARD POWER SUPPLY: (5.0V). | | occupied by Card Information Structure and Card Registers. RST(*) INPUT RESET: Active high signal for placing card in Power-on default state. Reset can be used as a Power-Down signal for the memory array. WAIT(*) OUTPUT WAIT: This signal is pulled high internally for compatibility. No wait states are generated. BVD1, BVD2 OUTPUT BATTERY VOLTAGE DETECT: These signals are pulled high to maintain SRAM card compatibility. VS1, VS2 OUTPUT VOLTAGE SENSE: Notifies the host socket of the card's Vcc requirements. VS1 and VS2 are open to indicate a 5V card . RFU RESERVED FOR FUTURE USE | GND | | CARD GROUND | | Power-Down signal for the memory array. WAIT(*) OUTPUT WAIT: This signal is pulled high internally for compatibility. No wait states are generated. BVD1, BVD2 OUTPUT BATTERY VOLTAGE DETECT: These signals are pulled high to maintain SRAM card compatibility. VS1, VS2 OUTPUT VOLTAGE SENSE: Notifies the host socket of the card's Vcc requirements. VS1 and VS2 are open to indicate a 5V card . RFU RESERVED FOR FUTURE USE | REG | INPUT | | | BVD1, BVD2 OUTPUT BATTERY VOLTAGE DETECT: These signals are pulled high to maintain SRAM card compatibility. VS1, VS2 OUTPUT VOLTAGE SENSE: Notifies the host socket of the card's Vcc requirements. VS1 and VS2 are open to indicate a 5V card . RFU RESERVED FOR FUTURE USE | RST(*) | INPUT | | | VS1, VS2 OUTPUT VOLTAGE SENSE: Notifies the host socket of the card's Vcc requirements. VS1 and VS2 are open to indicate a 5V card . RFU RESERVED FOR FUTURE USE | WAIT(*) | OUTPUT | WAIT: This signal is pulled high internally for compatibility. No wait states are generated. | | open to indicate a 5V card . RFU RESERVED FOR FUTURE USE | BVD1, BVD2 | OUTPUT | BATTERY VOLTAGE DETECT: These signals are pulled high to maintain SRAM card compatibility. | | | VS1, VS2 | OUTPUT | | | NC NO INTERNAL CONNECTION TO CARD: pin may be driven or left floating | RFU | | RESERVED FOR FUTURE USE | | | NC | | NO INTERNAL CONNECTION TO CARD: pin may be driven or left floating | ^(*) Signals not supported by FLA51-66 (N.C) #### FUNCTIONAL TRUTH TABLE | READ function | | | | | | C | ommon Memo | ry | Α | ttribute Memo | ory | |-----------------------|-----------------|-----------------|----------------|----|----|-----|------------|-----------|-----|---------------|-----------| | Function Mode | CE ₂ | CE ₁ | A ₀ | OE | WE | REG | D15-D8 | D7-D0 | REG | D15-D8 | D7-D0 | | Standby Mode | Н | Н | Х | Х | Х | Х | High-Z | High-Z | Х | High-Z | High-Z | | Byte Access (8 bits) | Н | L | L | L | Н | Н | High-Z | Even-Byte | L | High-Z | Even-Byte | | | Н | L | Н | L | Н | Н | High-Z | Odd-Byte | L | High-Z | Not Valid | | Word Access (16 bits) | L | L | Х | L | Н | Н | Odd-Byte | Even-Byte | L | Not Valid | Even-Byte | | Odd-Byte Only Access | L | Н | Х | L | Н | Н | Odd-Byte | High-Z | L | Not Valid | High-Z | | WRITE function | | | | | | | | | | | | | Standby Mode | Н | Н | Х | Χ | Х | Х | Х | Х | Χ | Х | Х | | Byte Access (8 bits) | Н | L | L | Н | L | Н | Х | Even-Byte | L | Х | Even-Byte | | | Н | L | Н | Н | L | Н | Х | Odd-Byte | L | Х | Х | | Word Access (16 bits) | L | L | Х | Н | L | Н | Odd-Byte | Even-Byte | L | Х | Even-Byte | | Odd-Byte Only Access | L | Н | Х | Н | L | Н | Odd-Byte | Х | L | Х | Х | #### ABSOLUTE MAXIMUM RATINGS (1) | Operating Temperature TA (ambient) | | | | | | | | | |------------------------------------|-------------------|--|--|--|--|--|--|--| | Commercial | 0°C to +60 °C | | | | | | | | | Industrial | -40°C to +85 °C | | | | | | | | | Storage Temperature | | | | | | | | | | Commercial | 30°C to +80 °C | | | | | | | | | Industrial | -40°C to +85 °C | | | | | | | | | Voltage on any pin relative to Vss | -0.5V to VCC+0.5V | | | | | | | | | Vcc supply Voltage relative to Vss | -0.5V to +7.0V | | | | | | | | #### Note (1) Stress greater than those listed under "Absolute Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. #### DC CHARACTERISTICS (1) | Symbol | Parameter | Density(Mbytes) | Notes | Typ ⁽³⁾ | Max | Units | Test Conditions | |--------|---------------------|-----------------|----------------------|--------------------|-----|-------|--------------------------------------------| | Iccr | Vcc Read Current | All | | | 35 | mA | VCC = VCCmax
tcycle = 150ns,CMOS levels | | Iccw | Vcc Program Current | All | 28F008S5
28F016S5 | | 75 | mA | | | Iccw | Vcc Program Current | All | 28F008SA | | 30 | mA | | | IPPW | VPP Program Current | All | Vpp=12V | | 30 | mA | | | Icce | Vcc Erase Current | All | | | 100 | mA | | | Iccs | Vcc Standby Current | 2MB | 2 | 110 | 230 | μA | VCC = VCCmax | | (CMOS) | | 20MB | 28F008SA | 900 | | | Control Signals = VCC | | ` | | 2MB | 2 | 600 | | | Reset = VSS, CMOS levels | | | | 20MB | 28F008S5 | 420 | | | | | | | 4MB | 2 | 60 | |] | | | | | 40MB | 28F016S5 | 380 | | | | CMOS Test Conditions: Vcc = 5V \pm 5%, VIL = Vss \pm 0.2V, VIH = Vcc \pm 0.2V #### Notes: - 1. All currents are RMS values unless otherwise specified. IccR, IccW and IccE are based on Byte wide operations. For 16 bit operation values are double. - 2. Control Signals: CE1, CE2, OE, WE, REG. - 3. Typical: Vcc = 5V, T = +25C. | Symbol | Parameter | Notes | Min | Max | Units | Test Conditions | |--------|-----------------------------------|-------|-----------------|---------|-------|----------------------------------| | lu | Input Leakage Current | 1 | | ±20 | μΑ | Vcc = VccMAX
Vin =Vcc or VSS | | llo | Output Leakage Current | 1 | | ±20 | μА | Vcc = VccMAX
Vout =Vcc or Vss | | VIL | Input Low Voltage | 1 | 0 | 0.8 | V | | | Vıн | Input High Voltage | 1 | 0.7 V cc | Vcc+0.5 | V | | | Vol | Output Low Voltage | 1 | | 0.4 | V | IoL = 3.2mA | | Vон | Output High Voltage | 1 | Vcc-0.4 | Vcc | V | Iон = -2.0mA | | VLKO | Vcc Erase/Program
Lock Voltage | 1 | 2.0 | | V | | #### Notes: - 1. Values are the same for byte and word wide modes for all card densities. - 2. Exceptions: Leakage currents on $\overline{CE_1}$, $\overline{CE_2}$, \overline{OE} , \overline{REG} and \overline{WE} will be < 500 μ A when V_{IN} = GND due to internal pull-up resistors. Leakage currents on RST will be <150 μ A when V_{IN} =Vcc due to internal pull-down resistor. #### **AC CHARACTERISTICS - READ TIMING PARAMETERS** | | | 150 | 150ns | | |-----------------|--|-----|-------|------| | SYMBOL (PCMCIA) | Parameter | Min | Max | Unit | | tc(R) | Read Cycle Time | 150 | | ns | | ta(A) | Address Access Time | | 150 | ns | | ta(CE) | Card Enable Access Time | | 150 | ns | | ta(OE) | Output Enable Access Time | | 75 | ns | | tsu(A) | Address Setup Time | | 20 | ns | | tsu(CE) | Card Enable Setup Time | | 0 | ns | | tн(A) | Address Hold Time | | 20 | ns | | tн(CE) | Card Enable Hold Time | | 20 | ns | | tv(A) | Output Hold from Address Change | | 0 | ns | | tois(CE) | Output Disable Time from CE | | 75 | ns | | tois(OE) | Output Disable Time from OE | | 75 | ns | | ten(CE) | Output Enable Time from CE | 5 | | ns | | ten(OE) | Output Enable Time from OE | 5 | | ns | | trec(RSR) | Power Down recovery to Output
Delay. Vcc = 5V | | 500 | ns | Note: AC timing diagrams and characteristics are guaranteed to meet or exceed PCMCIA 2.1 specifications. # **READ TIMING DIAGRAM** — tc(R) tH(A) - ta(A) -A[25::0], REG **⊢** t∨(A) tA(CE)tsu(CE) CE₁, CE₂ NOTE 1 NOTE 1 tH(CE) detau(A) tA(OE) tDIS(CE) ŌE ten(OE) tdis(OE) D[15::0] DATA VALID Note: Signal may be high or low in this area. #### AC CHARACTERISTICS - WRITE TIMING PARAMETERS | | | 150 | 0ns | | |-----------------|--------------------------------|-----|---------|----| | SYMBOL (PCMCIA) | Parameter | Min | Min Max | | | tcW | Write Cycle Time | 150 | | ns | | tw(WE) | Write Pulse Width | 80 | | ns | | tsu(A) | Address Setup Time | 20 | | ns | | tsu(A-WEH) | Address Setup Time for WE | 100 | | ns | | tsu(CE-WEH) | Card Enable Setup Time for WE | 100 | | ns | | tsu(D-WEH) | Data Setup Time for WE | 50 | | ns | | th(D) | Data Hold Time | 20 | | ns | | trec(WE) | Write Recover Time | 20 | | ns | | tois(WE) | Output Disable Time from WE | | 75 | ns | | tois(OE) | Output Disable Time from OE | | 75 | ns | | ten(WE) | Output Enable Time from WE | 5 | | ns | | ten(OE) | Output Enable Time from OE | 5 | | ns | | tsu(OE-WE) | Output Enable Setup from WE | 10 | | ns | | tн(OE-WE) | Output Enable Hold from WE | 10 | | ns | | tsu(CE) | Card Enable Setup Time from OE | 0 | | ns | | th(CE) | Card Enable Hold Time | 20 | | ns | Note: AC timing diagrams and characteristics are guaranteed to meet or exceed PCMCIA 2.1 specifications. - Signal may be high or low in this area. - When the data I/O pins are in the output state, no signals shall be applied to the data pins (D15-D0) by the host system. # **PCMCIA Flash Memory Card** ### DATA WRITE AND ERASE PERFORMANCE (1,3) $V_{CC} = 5V \pm 5\%$, $T_A = 0C \text{ to} + 70C$ | Symbol | Parameter | Notes | Min | Typ ⁽¹⁾ | Max | Units | |--------|------------------------|-----------|-----|--------------------|-----|-------| | twhqv1 | Word/Byte Program time | 4 | | 8 | | μs | | tehqv1 | | | | | | | | twhqv2 | Block Program Time | device SA | | 0.6 | 2.1 | sec | | tehqv2 | | device S5 | 0.4 | 0.5 | | | | | Block Erase Time | device SA | | 1.6 | 10 | sec | | | | device S5 | 0.9 | 1.1 | | | #### Notes: - 1. Typical: Nominal voltages and TA = 25C. - 2. Excludes system overhead. - 3. Valid for all speed options. - 4. To maximize system performance RDY/BSY signal should be polled. | Product Marking | | |---|---| | EDI WED 7P016FLA6200C15 C995 9915 COMPANYNAME PART NUMBER LOT CODE/TRACE NUMBER | į | | Note: Some products are currently marked with our pre-merger company name/acronym (EDI). During of transition period, some products will also be marked with our new company name/acronym (WED Starting October 2000 all PCMCIA products will be marked only with the WED prefix. | | ### CARD FAMILY AND VERSION INFORMATION FLA21-FLA24 Based on 28F008SA (requires 12V VPP for programming and erase functions) **FLA21** No Attribute Memory, no Write Protect FLA22 With Attribute Memory, no Write Protect FLA23 No Attribute Memory, with Write Protect FLA24 With Attribute Memory, with Write Protect Example P/N 7P004FLA2200C15 FLA25-FLA28 Based on 28F008S5 for 5V only applications > **FLA25** No Attribute Memory, no Write Protect FLA26 With Attribute Memory, no Write Protect FLA27 No Attribute Memory, with Write Protect FLA28 With Attribute Memory, with Write Protect 7P004FLA2600C15 Example P/N FLA29-FLA32 Based on 28F016S5 for 5V only applications > FLA29 No Attribute Memory, no Write Protect FLA30 With Attribute Memory, no Write Protect FLA31 No Attribute Memory, with Write Protect FLA32 With Attribute Memory, with Write Protect Example P/N 7P004FLA3000C15 FLA33-FLA36 Based on 28F004S5 for 5V only applications > FLA33 No Attribute Memory, no Write Protect FLA34 With Attribute Memory, no Write Protect FLA35 No Attribute Memory, with Write Protect FLA36 With Attribute Memory, with Write Protect 7P004FLA3600C15 Example P/N # PCMCIA Flash Memory Card FLA Series <u>FLA51-FLA54</u> Based on **28F008SA**; the same as FLA21-FLA24 with exception: - no registers - signals RST, RDY/BSY, Wait are not connected FLA51 No Attribute Memory, no Write Protect **FLA52** With Attribute Memory, no Write Protect **FLA53** No Attribute Memory, with Write Protect FLA54 With Attribute Memory, with Write Protect Example P/N 7P004FLA5200C15 <u>FLA55-FLA58</u> Based on **28F008S5**; the same as FLA25-FLA28 with exception: - no registers - signals RST, RDY/BSY, Wait are not connected FLA55 No Attribute Memory, no Write Protect **FLA56** With Attribute Memory, no Write Protect **FLA57** No Attribute Memory, with Write Protect **FLA58** With Attribute Memory, with Write Protect Example P/N **7P004FLA5600C15** <u>FLA59-FLA62</u> Based on **28F016S5**; the same as FLA29-FLA32 with exception: - no registers - signals RST, RDY/BSY, Wait are not connected **FLA59** No Attribute Memory, no Write Protect FLA60 With Attribute Memory, no Write Protect FLA61 No Attribute Memory, with Write Protect FLA62 With Attribute Memory, with Write Protect Example P/N **7P004FLA6000C15** <u>FLA63-FLA66</u> Based on **28F004S5**; the same as FLA33-FLA36 with exception: - no registers - signals RST, RDY/BSY, Wait are not connected **FLA63** No Attribute Memory, no Write Protect **FLA64** With Attribute Memory, no Write Protect **FLA65** No Attribute Memory, with Write Protect FLA66 With Attribute Memory, with Write Protect Example P/N 7P004FLA6600C15 #### **ORDERING INFORMATION** | | | | | | | |
AYY | | |--|---|--|--------------|-----------------------------------|---------|--|---------|--| | X — | | | | | | | | | | 0021) | 2MB | 0181) | 18MB | | | | | | | 004 | 4MB | 020 | 20MB | | | | | | | 0061) | 6MB | 0242) | 24MB | | | | | | | 800 | 8MB | 0282) | 28MB | | | | | | | 0101) | 10MB | 0322) | 32MB | | | | | | | 012 | 12MB | 0362) | 36MB | | | | | | | 0141) | 14MB | 0402) | 40MB | | | | | | | 016 | 16MB | | | | | | | | | 2) A | vailable only for F
vailable only for F | | | 3, FLA51-FLA54, and FLA55
.A62 | 5-FLA59 | | | | | 2) A | vailable only for F | FLA29-FLA32 a | and FLA59-FL | | | | | | | 2) And Card | vailable only for F | ersion (See | and FLA59-FL | A62 | | | | | | 2) Av | vailable only for F Family and Vi VEDC Logo S | ersion (See | and FLA59-FL | A62 | | | | | | 2) Av Card Card 00 W 01 B | Family and Volume VEDC Logo Stank Housing | ersion (See
ilkscreen
, Type I | Card Fami | A62 | | | | | | 2) Av Card Card 00 W 01 B | vailable only for F Family and Vi VEDC Logo S | ersion (See
ilkscreen
, Type I | Card Fami | A62 | | | | | | 2) Av Card Card 00 W 01 B | Family and Volume VEDC Logo Stank Housing | ersion (See
ilkscreen
, Type I | Card Fami | A62 | | | | | | 2) Av Card Car | Family and Volume VEDC Logo Stank Housing | ersion (See
ilkscreen
, Type I
, Type I Rec | Card Fami | A62 | | | | | Notes: Options without attribute memory and with hardware write protect switch are available. 77 15 150ns ** Denotes advanced information. #### CIS INFORMATION FOR FLA SERIES CARDS | ADDRESS | VALUE | DESCRIPTION | |------------|-------|---------------------------------| | 00H | 01H | CISTPL_DEVICE | | 02H | 03H | TPL_LINK | | 04H | 53H | FLASH = 150ns (device writable) | | 06H | 06H | CARD SIZE: 2MB | | | 0EH | 4MB | | | 16H | 6MB | | | 1EH | 8MB | | | 26H | 10MB | | | 2EH | 12MB | | | 36H | 14MB | | | 3EH | 16MB | | | 46H | 18MB | | | 4EH | 20MB | | | 5EH | 24MB | | | 6EH | 28MB | | | 7EH | 32MB | | | 8EH | 36MB | | | 9EH | 40MB | | 08H | FFH | END OF DEVICE | | 0AH | 18H | CISTPL_JEDEC_C | | 0CH | 02H | TPL LINK | | 0EH | 89H | INTEL - ID | | 10H | A2H | INTEL 28F008SA - ID | | 1011 | A6H | INTEL 28F008S5 - ID | | | AAH | INTEL 28F016S5 - ID | | 12H | 17H | CISTPL_DEVICE_A | | 14H | 03H | TPL LINK | | 16H | 42H | EEPROM - 200ns | | 18H | 01H | Device Size = 2KBytes | | 1AH | FFH | END OF TUPLE | | 1CH | 1EH | CISTPL_DEVICEGEO | | 1EH | 06H | TPL_LINK | | 20H | 00H | DGTPL BUS | | 20H | 11H | | | | 01H | DGTPL_EBS | | 24H
26H | 01H | DGTPL_RBS | | | | DGTPL_WBS | | 28H | 01H | DGTPL_PART FLASH DEVICE | | 2AH | 01H | NON-INTERLEAVED | | 2CH | 20H | CISTPL_MANFID | | 2EH | 04H | TPL_LINK(04H) | | 30H | F6H | EDI TPLMID_MANF: LSB | | 32H | 01H | EDI TPLMID MANF: MSB | | 34H | 00H | LSB: Number Not Assigned | | 36H | 00H | MSB: Number Not Assigned | | 38H | 15H | CISTPL_VERS1 | | 3AH | 47H | TPL_LINK | | 3CH | 05H | TPLLV1_MAJOR | | 3EH | 00H | TPLLV1_MINOR | | | 45H | | | 40H | 40H | E | | ADDRESS | VALUE | DESCRIPTION | |---------|-------|------------------------| | 42H | 44H | D | | 44H | 49H | I | | 46H | 37H | 7 | | 48H | 50H | Р | | 4AH | 30H | 0 | | 4CH | | X | | 4EH | | X | | 50H | 46H | F | | 52H | 4CH | L | | 54H | 41H | Α | | 56H | 32H | 2 based on 28F008SA | | 58H | 32H | 2 with Att. Mem. no WP | | | 32H | 2 based on 28F008S5 | | | 36H | 6 with Att. Mem. no WP | | | 33H | 3 based on 28F016S5 | | | 30H | 0 with Att. Mem. no WP | | 5AH | 2DH | - | | 5CH | 2DH | - | | 5EH | 2DH | - | | 60H | 31H | 1 | | 62H | 35H | 5 | | 64H | 20H | SPACE | | 66H | 00H | END TEXT | | 68H | 43H | C | | 6AH | 4FH | 0 | | 6CH | 50H | P | | 6EH | 59H | Y | | 70H | 52H | R | | 72H | 49H | l | | 74H | 47H | G | | 76H | 48H | Н | | 78H | 54H | T | | 7AH | 20H | SPACE | | 66H | 00H | END TEXT | | 68H | 43H | С | | 6AH | 4FH | 0 | | 6CH | 50H | Р | | 6EH | 59H | Y | | 70H | 52H | R | | 72H | 49H | I | | 74H | 47H | G | | 76H | 48H | Н | | 78H | 54H | T | | 7AH | 20H | SPACE | | 7CH | 45H | E | | 7EH | 4CH | L | | 80H | 45H | E | | 82H | 43H | C | | 84H | 54H | T | | 86H | 52H | R | | | | 1 · · · | The shaded area (addresses 56H 58H) represents just some of the family versions. For all the versions see the Card Family and Version information. ## CIS Information for FLA Series Cards (CONT.) | ADDRESS | VALUE | DESCRIPTION | |---------|-------|--------------------| | 88H | 4FH | 0 | | 8AH | 4EH | N | | 8CH | 49H | I | | 8EH | 43H | С | | 90H | 20H | SPACE | | 92H | 44H | D | | 94H | 45H | E | | 96H | 53H | S | | 98H | 49H | I | | 9AH | 47H | G | | 9CH | 4EH | N | | 9EH | 53H | S | | A0H | 20H | SPACE | | A2H | 49H | I | | A4H | 4EH | N | | A6H | 43H | С | | A8H | 4FH | 0 | | AAH | 52H | R | | ACH | 50H | Р | | AEH | 4FH | 0 | | ВОН | 52H | R | | B2H | 41H | A | | B4H | 54H | Т | | В6Н | 45H | E | | B8H | 44H | D | | BAH | 20H | SPACE | | ВСН | 00H | END TEXT | | BEH | 31H | 1 | | COH | 39H | 9 | | C2H | 39H | 9 | | C4H | 37H | 7 | | C6H | 00H | END TEXT | | C8H | FFH | END OF LIST | | CAH | 1AH | CISTPL_CONF | | CCH | 05H | TPL_LINK | | CEH | 01H | TPCC_SZ | | D0H | 00H | TPCC_LAST | | D2H | 00H | TPCC_RADR | | D4H | 40H | TPCC_RADR | | D6H | 03H | TPCC_RMSK | | D8H | 00H | NULL CONTROL TUPLE | | DAH | FFH | CISTPL_END | | DCH | 00H | INVALID ADDRESS | The shaded area (addresses BEH C0H C2H C4H) can be different. It represents the year of introducing the version of the card. ## **Document Title** PCMCIA Flash Memory Card - FLA Series ## **Revision History** | Rev level | <u>Description</u> | <u>Date</u> | |-----------|---|------------------| | rev 0 | initial release | May 26, 1998 | | rev 1 | Logo change | May 27, 1999 | | rev 2 | Change in Ordering info: added FLA24, took "EDI" off of all part numbers, changed "EDI Silkscreen" to "WEDC Logo Silkscreen" | January 31, 2000 | | rev 3 | Heading/Logo changed and added to all pages | May 30, 2000 | | | Changes to Pages 1 & 12 Pages 9-11: Added Product Marking Info, added Family and Version Information, edited Ordering Info, edited General description and edited Architecture Overview | | | rev 4 | Corrected Errors on pgs. 6 & 7 | August 1, 2000 | | rev 5 | CIS information changed, highlighting FLA51-66 family issues (notes added) | January 9,2003 |