June 1999

National Semiconductor

ADC1001 10-Bit µP Compatible A/D Converter

Features

A/D converters

interfacing logic needed

Easily interfaced to 6800 µP derivatives

Differential analog voltage inputs

voltage level specifications

On-chip clock generator

supply

10 bits

±1 LSB

200µS

ADC1001 is pin compatible with ADC0801 series 8-bit

■ Compatible with NSC800 and 8080 µP derivatives - no

Logic inputs and outputs meet both MOS and TTL

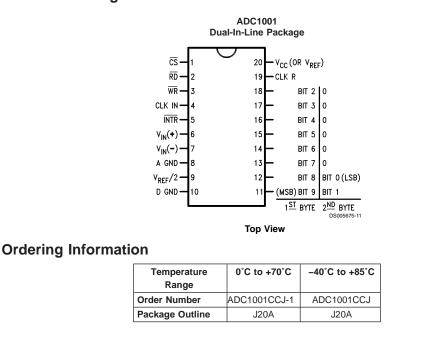
OV to 5V analog input voltage range with single 5V

• Operates ratiometrically or with 5 V_{DC} , 2.5 V_{DC} , or

Works with 2.5V (LM336) voltage reference

analog span adjusted voltage reference

0.3" standard width 20-pin DIP package


General Description

The ADC1001 is a CMOS, 10-bit successive approximation A/D converter. The 20-pin ADC1001 is pin compatible with the ADC0801 8-bit A/D family. The 10-bit data word is read in two 8-bit bytes, formatted left justified and high byte first. The six least significant bits of the second byte are set to zero, as is proper for a 16-bit word.

Differential inputs provide low frequency input common mode rejection and allow offsetting the analog range of the converter. In addition, the reference input can be adjusted enabling the conversion of reduced analog ranges with 10-bit resolution.

Key Specifications

- Resolution
- Linearity errorConversion time
- **Connection Diagram**

TRI-STATE® is a registered trademark of National Semiconductor Corp.

© 1999 National Semiconductor Corporation DS005675

Absolute Maximum Ratings (Notes 1, 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Lead Temp. (Soldering, 10 seconds) ESD Susceptibility (Note 10)

Operating Conditions (Notes 1, 2)

Supply Voltage (V _{CC}) (Note 3)	6.5V
Logic Control Inputs	-0.3V to +18V
Voltage at Other Inputs and Outputs	-0.3V to (V _{CC} +0.3V)
Storage Temperature Range	–65°C to +150°C
Package Dissipation at T _A =25°C	875 mW

Temperature Range ADC1001CCJ ADC1001CCJ-1 Range of V_{CC} $\begin{array}{l} T_{\text{MIN}} \leq T_{\text{A}} \leq T_{\text{MAX}} \\ -40^{\circ}\text{C} \leq T_{\text{A}} \leq +85^{\circ}\text{C} \\ 0^{\circ}\text{C} \leq T_{\text{A}} \leq +70^{\circ}\text{C} \\ 4.5 \text{ V}_{\text{DC}} \text{ to } 6.3 \text{ V}_{\text{DC}} \end{array}$

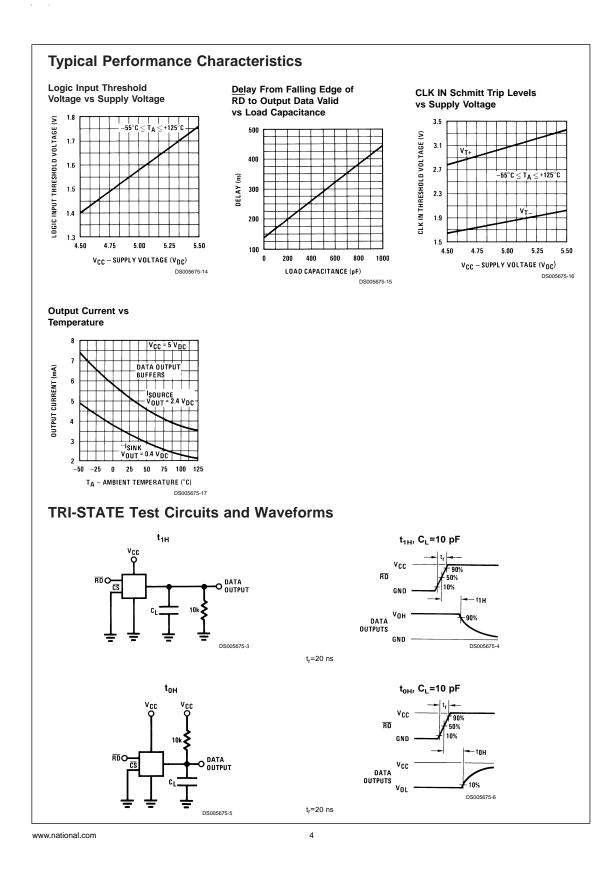
300°C

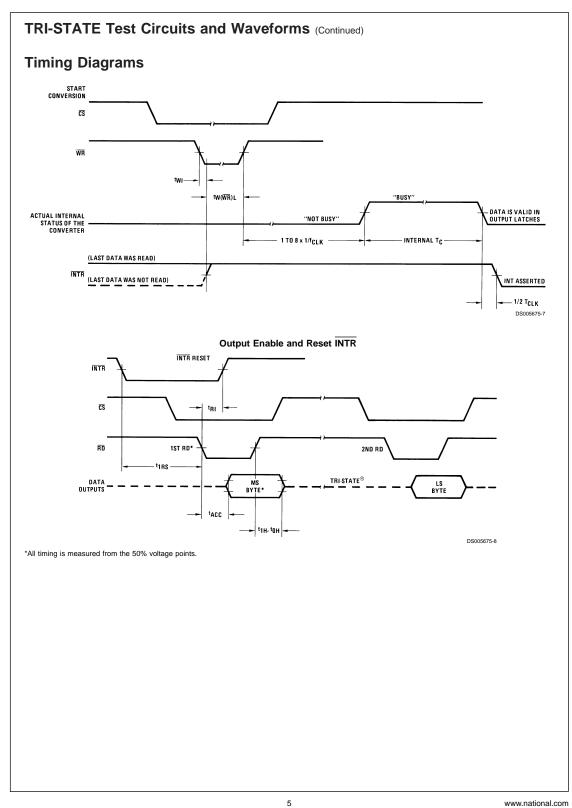
800V

Converter Characteristics

· ·

Converter Specifications: V_{CC} =5 V_{DC} , V_{REF} /2=2.500 V_{DC} , T_{MIN} ≤ T_A ≤ T_{MAX} and f_{CLK} =410 kHz unless otherwise specified.


Parameter	Conditions	MIn	Тур	Max	Units
Linearity Error				±1	LSB
Zero Error				±2	LSB
Full-Scale Error				±2	LSB
Total Ladder Resistance (Note 9)	Input Resistance at Pin 9	2.2	4.8		KΩ
Analog Input Voltage Range	(Note 4) V(+) or V(-)	GND-0.05		V _{CC} +0.05	V _{DC}
DC Common-Mode Error	Over Analog Input Voltage Range		±1⁄8		LSB
Power Supply Sensitivity	V _{CC} =5 V _{DC} ±5% Over		±1⁄8		LSB
	Allowed $V_{IN}(+)$ and $V_{IN}(-)$				
	Voltage Range (Note 4)				


AC Electrical Characteristics

Timing Specifications: V_{CC}=5 V_{DC}and T_A=25°C unless otherwise specified.

Symbol	Parameter	Conditions	MIn	Тур	Max	Units
T _c	Conversion Time	(Note 5)	80		90	1/f _{CLK}
		f _{CLK} =410 kHz	195		220	μs
f _{CLK}	Clock Frequency	(Note 8)	100		1260	kHz
	Clock Duty Cycle		40		60	%
CR	Conversion Rate In Free-Running	INTR tied to WR with			4600	conv/s
	Mode	$\overline{\text{CS}}$ =0 V _{DC} , f _{CLK} =410 kHz				
t _{W(WR)L}	Width of WR Input (Start Pulse Width)	$\overline{\text{CS}} = 0 \text{ V}_{\text{DC}} \text{ (Note 6)}$	150			ns
t _{ACC}	Access Time (Delay from	C _L =100 pF		170	300	ns
	Falling Edge of RD to Output					
	Data Valid)					
t _{1H} , t _{0H}	TRI-STATE [®] Control (Delay	C _L =10 pF, R _L =10k		125	200	ns
	from Rising Edge of RD to	(See TRI-STATE Test				
	Hi-Z State)	Circuits)				
t _{WI} , t _{RI}	Delay from Falling Edge			300	450	ns
	of WR or RD to Reset of INTR					
t _{1rs}	INTR to 1st Read Set-Up Time		550	400		ns
C _{IN}	Input Capacitance of Logic			5	7.5	pF
	Control Inputs					
C _{OUT}	TRI-STATE Output			5	7.5	pF
	Capacitance (Data Buffers)					

Symbol	Parameter	Conditions	MIn	Тур	Max	Units
CONTROL	INPUTS [Note: CLK IN is the input	of a Schmitt trigger circuit and is the	refore spec	ified separate	ely]	
V _{IN} (1)	Logical "1" Input Voltage	V _{CC} =5.25 V _{DC}	2.0		15	V _{DC}
	(Except CLK IN)					
V _{IN} (0)	Logical "0" Input Voltage	V _{CC} =4.75 V _{DC}			0.8	V _{DC}
	(Except CLK IN)					
I _{IN} (1)	Logical "1" Input Current	V _{IN} =5 V _{DC}		0.005	1	μΑ _{DO}
	(All Inputs)					
I _{IN} (0)	Logical "0" input Current	V _{IN} =0 V _{DC}	-1	-0.005		μΑ _{DC}
	(All Inputs)					
CLOCK IN						
V _T +	CLK IN Positive Going		2.7	3.1	3.5	V _{DC}
	Threshold Voltage					
V _T -	CLK IN Negative Going		1.5	1.8	2.1	V _{DC}
	Threshold Voltage					
V _H	CLK IN Hysteresis		0.6	1.3	2.0	V _{DC}
	$(V_{T}+)-(V_{T}-)$					
OUTPUTS /	AND INTR					
V _{OUT} (0)	Logical "0" Output Voltage	I_{OUT} =1.6 mA, V_{CC} =4.75 V_{DC}			0.4	V _{DC}
V _{OUT} (1)	Logical "1" Output Voltage	I_{O} =-360 µA, V _{CC} =4.75 V _{DC}	2.4			V _{DC}
		I_O =-10 µA, V_{CC} =4.75 V_{DC}	4.5			V _{DC}
l _{оит}	TRI-STATE Disabled Output	V _{OUT} =0.4 V _{DC}		0.1	-100	μA _D
	Leakage (All Data Buffers)	V _{OUT} =5 V _{DC}		0.1	3	μA _D
SOURCE		V_{OUT} Short to GND, $T_A=25^{\circ}C$	4.5	6		mA _D
I _{sink}		V_{OUT} Short to V_{CC} , $T_A=25^{\circ}C$	9.0	16		mA _D
POWER SU	IPPLY					-
I _{cc}	Supply Current (Includes	f _{CLK} =410 kHz,				
	Ladder Current)	V _{REF} /2=NC, T _A =25°C				
		and $\overline{CS} = 1$		2.5	5.0	mA
Note 2: All v Note 3: A ze Note 4: For v for analog in level analog i lows 50 mV f	and discrete the exists, internally, from V _{CC} to GNI V _{IN} (-) \geq V _{IN} (+) the digital output code will be a put voltages one diode drop below ground or nputs (5V) can cause this input diode to concorward bias of either diode. This means that a chieve an absolute 0 V _{DC} to 5 V _{DC} input vo	unless otherwise specified. The separate A GN D and has a typical breakdown voltage of 7 V_D all zeros. Two on-chip diodes are tied to each ar one diode drop greater than the V_{CC} supply. E duct — especially at elevated temperatures, and as long as the analog $V_{\rm IN}$ does not exceed the tage range will therefore require a minimum sup	C· nalog input (se Be careful, dur I cause errors e supply voltag	e Block Diagram) ing testing at low for analog inputs ge by more than s	which will forw V _{CC} levels (4. near fullscale. 50 mV, the out	vard condu 5V), as hig The spec a put code w
start request Note 6: The	is internally latched, see Figure 3 . $\overline{\text{CS}}$ input is assumed to bracket the $\overline{\text{WR}}$ strol	periods may be required before the internal clo be input and therefore timing is dependent on the	he WR pulse v	vidth. An arbitraril	y wide pulse w	
	on a reset mode and the start of conversion ypical values are for T _A =25°C.	is initiated by the low to high transition of the	wrt puise (see	nining Diagram	5).	
-		ner clock frequencies accuracy can degrade.				
of these two	equal resistors.	or divider (each resistor is $2.4k\Omega$) connected from 1.5	om V _{CC} to gro	und. Total ladder	input resistanc	e is the su
Note 10: Hu	man body model, 100 pF discharged throug	n a 1.5 kΩ resistor.				

Timing Diagrams (Continued)

Byte Sequencing For The 20-Pin ADC1001

Byte	8-Bit Data Bus Connection							
Order	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	MSB							
1st	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2
		LSB						
2nd	Bit 1	Bit 0	0	0	0	0	0	0

Functional Description

The ADC1001 uses an advanced potentiometric resistive ladder network. The analog inputs, as well as the taps of this ladder network, are switched into a weighted capacitor array. The output of this capacitor array is the input to a sampled data comparator. This comparator allows the successive approximation logic to match the analog difference input voltage $[V_{IN}(+)-V_{IN}(-)]$ to taps on the R network. The most significant bit is tested first and after 10 comparisons (80 clock cycles) a digital 10-bit binary code (all "1"s=full-scale) is transferred to an output latch and then an interrupt is asserted (INTR makes a high-to-low transition). The device may be operated in the free-running mode by connecting INTR to the \overline{WR} input with \overline{CS} =0. To ensure start-up under all possible conditions, an external WR pulse is required during the first power-up cycle. A conversion in process can be interrupted by issuing a second start command.

On the high-to-low transition of the \overline{WR} input the internal SAR latches and the shift register stages are reset. As long as the \overline{CS} input and \overline{WR} input remain low, the A/D will remain in a reset state. Conversion will start from 1 to 8 clock periods after at least one of these inputs makes a low-to-high transition.

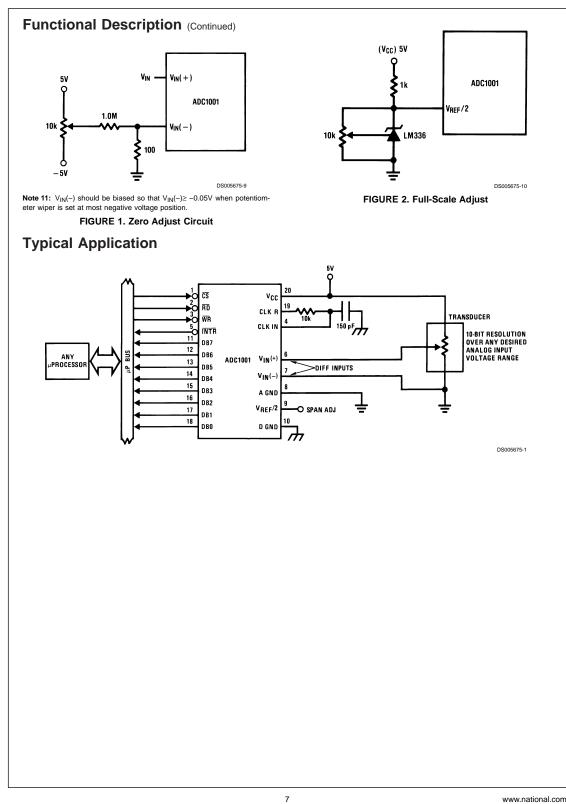
A functional diagram of the A/D converter is shown in *Figure* 3. All of the inputs and outputs are shown and the major logic control paths are drawn in heavier weight lines.

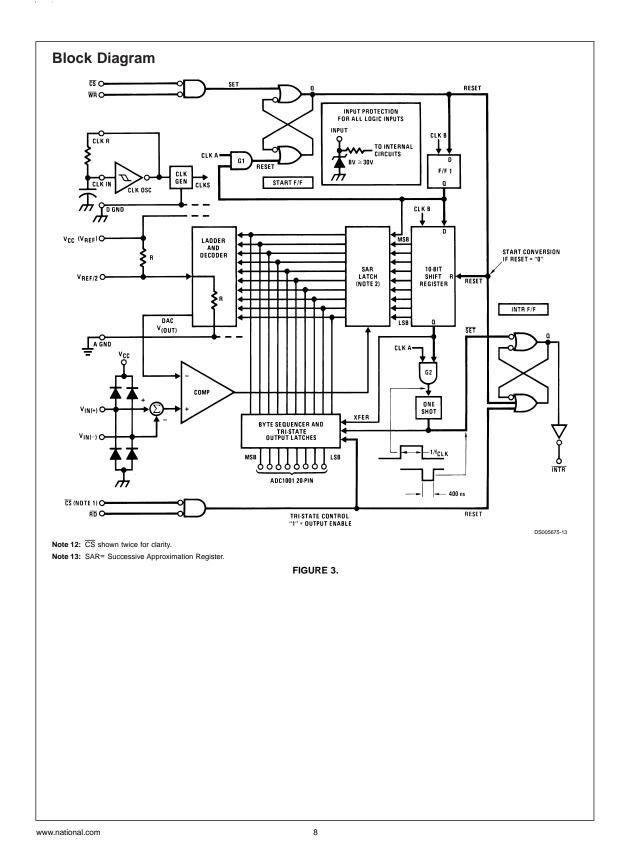
The conversion is initialized by taking $\overline{\text{CS}}$ and $\overline{\text{WR}}$ simultaneously low. This sets the start flip-flop (F/F) and the resulting "1" level resets the 8-bit shift register, resets the Interrupt (INTR) F/F and inputs a "1" to the D flop, F/F1, which is at the input end of the 10-bit shift register. Internal clock signals then transfer this "1" to the Q output of F/F1. The AND gate, G1, combines this "1" output with a clock signal to provide a reset signal to the start F/F. If the set signal is no longer present (either \overline{WR} or \overline{CS} is a "1") the start F/F is reset and the 10-bit shift register then can have the "1" clocked in, which allows the conversion process to continue. If the set signal were to still be present, this reset pulse would have no effect and the 10-bit shift register would continue to be held in the reset mode. This logic therefore allows for wide $\overline{\text{CS}}$ and WR signals and the converter will start after at least one of these signals returns high and the internal clocks again provide a reset signal for the start F/F.

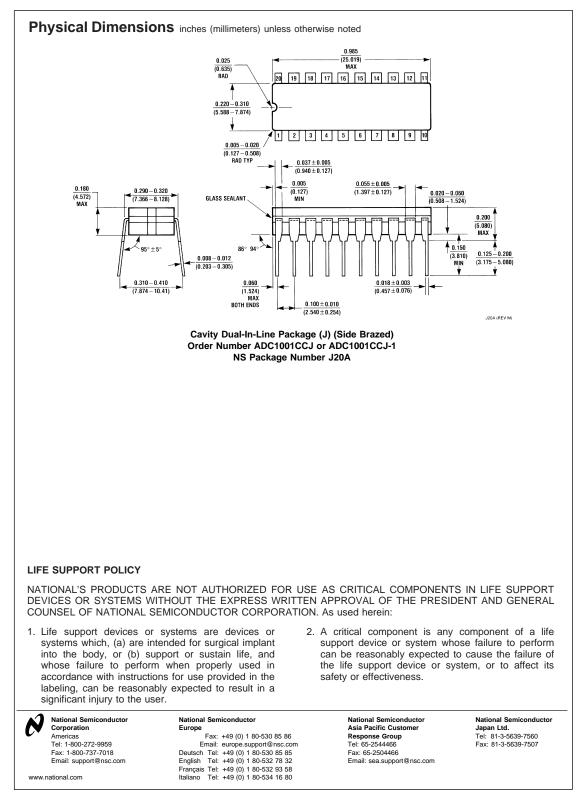
After the "1" is clocked through the 10-bit shift register (which completes the SAR search) it causes the new digital word to transfer to the TRI-STATE output latches. When this XFER signal makes a high-to-low transition the one shot fires, setting the INTR F/F. An inverting buffer then supplies the INTR output signal.

Note that this $\overline{\text{SET}}$ control of the INTR F/F remains low for aproximately 400 ns. If the data output is continuously enabled ($\overline{\text{CS}}$ and $\overline{\text{RD}}$ both held low), the INTR output will still signal the end of the conversion (by a high-to-low transition),

www.national.com


because the $\overline{\text{SET}}$ input can control the Q output of the INTR F/F even though the RESET input is constantly at a "1" level. This $\overline{\text{INTR}}$ output will therefore stay low for the duration of the $\overline{\text{SET}}$ signal.


When data is to be read, the combination of both $\overline{\text{CS}}$ and $\overline{\text{RD}}$ being low will cause the INTR F/F to be reset and the TRI-STATE output latches will be enabled.


Zero and Full-Scale Adjustment

Zero error can be adjusted as shown in Figure 1. V_{IN}(+) is forced to +2.5 mV (+½ LSB) and the potentiometer is adjusted until the digital output code changes from 00 0000 0000 0000 to 00 0000 0001.

Full-scale is adjusted as shown in Figure 2, with the $V_{REF}/2$ input. With V_{1N} (+) forced to the desired full-scale voltage less 1% LSBs ($V_{FS}-1\%$ LSBs), $V_{REF}/2$ is adjusted until the digital output code changes from 11 1111 1110 to 11 1111 1111 to 11 1111

