

Photodiode arrays combined with a signal processing circuit chip

S6493 and S6494 series are Si photodiode arrays efficiently combined with a signal processing circuit. The signal processing circuit is formed on a single chip by the CMOS process, and includes a shift register, clamp circuit, hold circuit and charge amplifier array, thus allowing a simplified external circuit configuration.

The photocurrent from the photodiode array is fed to the charge amplifier connected to each element and is converted into a voltage.

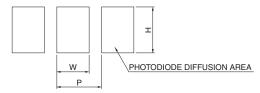
The signal voltage is then sent to the clamp circuit and hold circuit, and is finally read out from the shift register in turn as a sequential video signal. The signal readout is performed by means of the charge storage method, so the output is proportional to the amount of light exposure (the product of incident light level and integration time). The vide output is a boxcar waveform which is low noise and easy to handle.

In addition, the readout gain can be selected from two levels by changing the voltage to the external input terminal. (The "high" gain is 10 times that of the "low" gain.) S6493 and S6494 series ensure easy operation since they can operate from a 5 V supply, and yet offer a maximum data rate of 250 kHz.

Features

- Four types are available S6493-64: 0.8 mm pitch × 64 ch S6493-128: 0.4 mm pitch × 128 ch S6494-64: 1.6 mm pitch × 64 ch S6494-128: 0.8 mm pitch × 128 ch
- Simultaneous integration by using a charge amplifier array
- Sequential readout with a shift register
- Integrated clamp circuit allows low noise and wide dynamic range
- Two gain levels can be selected
- Operates from single 5 V supply input
- S6493 series:
 - Long active area can be configured by use of multiple arrays phosphor screen type is also available for X-ray detection
- Custom designed element size and pitch available
- Dedicated driver circuits are available

Applications


• Image or pattern recognition system

■ Mechanical specifications

Parameter	Symbol *1	S6493-64	S6493-128	S6494-64	S6494-128	Unit
Element pitch	Р	0.8	0.4	1.6	0.8	
Element diffusion width	W	0.6	0.25	1.3	0.6	mm
Element height	Н	0.8	0.4	1.6	0.8	
Number of elements	-	64	128	64	128	-
Active area length	-	5′	1.2	10	2.4	mm

^{*1:} Refer to following figure

■ Detail of elements

KMPDC0072EA

■ Absolute maximum ratings

- 7 tb30late maximum ratings			
Parameter	Symbol	Value	Unit
Supply voltage	Vdd		
Gain selection terminal voltage	Vgain		
Clock pulse voltage	Vφ1, Vφ2		
Start pulse voltage	Vøst	0.245 17.0	\ /
Reset pulse voltage	Vøreset	-0.3 to +7.0	V
Hold pulse voltage	Vφhold		
Sample pulse voltage	Vφsample		
Clamp pulse voltage	Vøclamp		
Operating temperature *2	Topr	-5 to +60	°C
Storage temperature	Tstg	-10 to +70	<u> </u>

^{*2:} No condensation

■ Recommended terminal voltage

Parameter		Symbol	Min.	Тур.	Max.	Unit
Supply voltage		Vdd	4.8	5	5.2	
Gain selection	Low gain	Vgain (L)	Vdd-0.2	Vdd	Vdd+0.2	
terminal voltage	High gain	Vgain (H)	0	-	0.4	
Cleak pulse veltage	High level	\/+4 \/+0	Vdd-0.2	Vdd	Vdd+0.2	
Clock pulse voltage	Low level	Vφ1, Vφ2	0	-	0.4	
Ctart mulas valtars	High level		Vdd-0.2	Vdd	Vdd+0.2	
Start pulse voltage	Low level	Vøst	0	-	0.4	
Deact mules valtage	High level	\/+recet	Vdd-0.2	Vdd	Vdd+0.2	V
Reset pulse voltage	Low level	V∳reset	0	-	0.4	
Hold pulse voltage	High level	\/\delabald	Vdd-0.2	Vdd	Vdd+0.2	
noid pulse voltage	Low level	Vφhold	0	-	0.4	
Cample pulse veltage	High level	\/+aamanla	Vdd-0.2	Vdd	Vdd+0.2	
Sample pulse voltage	Low level	V∳sample	0	-	0.4	
Clamp pulse veltage	High level	\/	Vdd-0.2	Vdd	Vdd+0.2	
Clamp pulse voltage	Low level	V∳clamp	0	-	0.4	

■ Electrical characteristics (Ta=25 °C, Vdd=5 V, V\phi1=V\phi2=V\phireset=V\phihold=V\phiclamp=V\phisample=5 V)

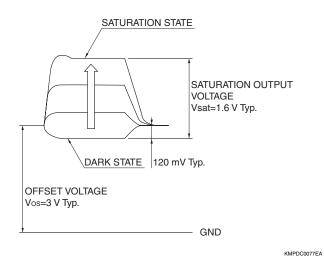
Parameter	Symbol	Symbol \$6493-64			S6493-128, S6494-128			Unit
Falanetei	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Offic
Clock pulse frequency (video data rate)	fφ1, fφ2	15	-	250	15	-	250	kHz
Integration time	Ts	0.3	-	10	0.6	-	10	ms
Clock pulse line capacitance	Cφ1, Cφ2	-	15	-	-	30	-	pF
Video line capacitance	Cv	-	20	-	-	40	-	þΓ
Output impedance	Zo	-	3	-	-	3	-	kΩ
Current consumption	ldd	-	20	-	-	40	-	mA

■ Electrical and optical characteristics

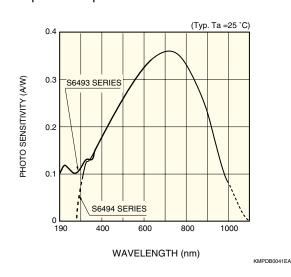
Doromot		Symbol	S	6493-6	64	S	6493-1	28	S	6494-6	64	S	5494-1	28	Unit
Paramet	Parameter		Min.	Тур.	Max.	Ullit									
Spectral response	range	λ	20	0 to 10	000	20	0 to 10	00	32	0 to 10	00	32	0 to 10	000	nm
Peak sensitivity wa	velength	λр	-	720	-	-	720	-	-	720	-	-	720	-	
Dark output	High gain	Vd	-	0.4	4	-	0.2	2	-	0.8	8	-	0.4	4	mV
voltage *3	Low gain	Vu	-	0.04	0.4	-	0.02	0.2	-	0.08	0.8	-	0.04	0.4	IIIV
Saturation output v	oltage *3	Vsat	1.3	1.6	-	1.3	1.6	-	1.3	1.6	-	1.3	1.6	-	V
Saturation	High gain	Esat	-	1.2	-	-	5.8	-	-	0.28	-	-	1.2	-	m <i>lx</i> ⋅s
exposure *4, 5	Low gain	LSat	-	12	-	-	58	1	-	2.8	1	-	12	ı	111111111111111111111111111111111111111
Photo sensitivity *5	High gain	S	-	1300	-	-	270	ı	-	5700	1	-	1300	-	V/lx⋅s
T Hoto Schistivity	Low gain	3	-	130	-	-	27	-	-	570	-	-	130	-	V/lx·S
Photo response non-u	ıniformity *6	PRNU	-	-	20	-	-	20	-	-	20	-	-	20	%
Noise *7	High gain	N	-	0.2	-	-	0.2	-	-	0.3	-	-	0.3	-	mVrms
NOISC	Low gain	IN	-	0.2	-	-	0.2	-	-	0.2	•	-	0.2	-	IIIVIIIS
Output offset voltage	ge *8	Vos	2.5	3	3.5	2.5	3	3.5	2.5	3	3.5	2.5	3	3.5	V

[Ta=25 °C, Vdd=5 V, Vφ1=Vφ2=Vφreset =Vφhold =Vφclamp =Vφsample=5 V, Vgain=5 V (Low gain), 0 V (High gain),

Data rate: 200 kHz]


- *4: Saturation output voltage and exposure are determined by the upper limit of the charge amplifier.
- *5: Measured with a 2856 K tungsten lamp.
- *6: When the photodiode array is exposed to uniform light which is 50 % of the saturation exposure, the Photo Response Non-Uniformity (PRNU) is defined as follows:

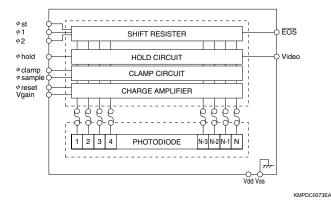
PRNU = (Vmax - Vmin)/Vaverage × 100 (%)


where Vaverage is the average output of all elements, Vmax is the output of the element that provides the maximum output, Vmin is the output of the element that provides the minimum output.

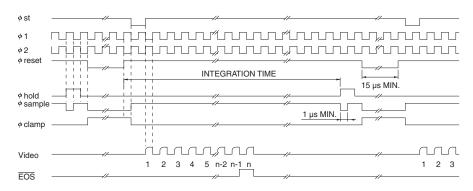
- *7: Measured at a data rate of 50 kHz and integration time of 5 ms under dark condition.
- *8: The output offset voltage is defined as shown in following figure (Output waveform of one element).

■ Output waveform of one element

■ Spectral response


■ Driver circuit consideration

The following points must be taken into account when you use a driver circuit.


- The input pulse must meet the pulse conditions at the input terminal. Each pulse should be amplified by the buffer at a position as close to the input terminal as possible.
- The video output should undergo non-inverting amplification at the external readout circuit.
- Use of a JFET input type op amp is recommended. Make offset adjustment as necessary. In this case, it should be
 noted that the dark output level appears on the lower voltage side relative to the output offset voltage.

^{*3:} Integration time ts=1 ms

■ Block diagram

■ Recommended timing chart

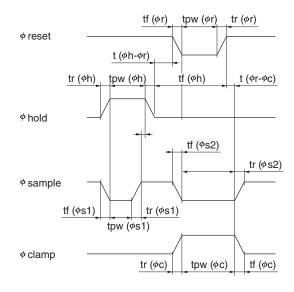
KMPDC0078E

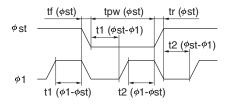
The operations of the S6493 and S6494 series devices can be divided into charge integration and readout operations, as follows:

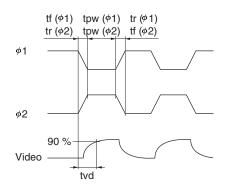
Charge integration operation

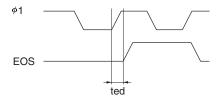
- (1) When a φreset pulse is input, all elements in the integration amplifier are reset to start integration.
- (2) When a φhold pulse is input, output from all elements of the integration amplifier is simultaneously sent to the output hold circuit.
- (3) The charge integration time is equal to the time interval from the φreset pulse input to the φhold input.
- (4) When another oreset pulse is input, the next integration starts.
- (5) The ϕ clamp and ϕ sample pulses are needed to operate the clamp circuit.

Readout operation

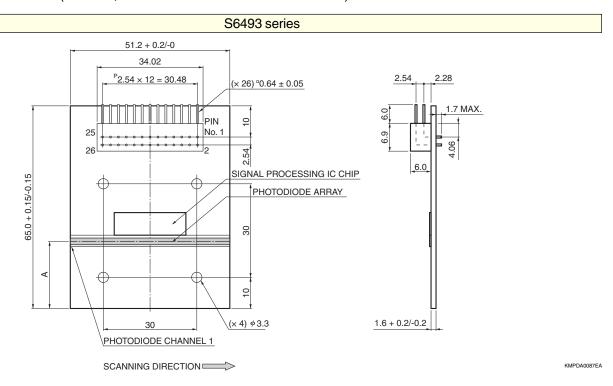

- (1) Under the condition that complimentary clock pulse $\phi 1$ and $\phi 2$ are being supplied, the shift register starts operation when a ϕst pulse is loaded. At this point, the $\phi 1$ pulse must rise only once while the ϕst is low.
- (2) The shift register generates an address pulse train, and the output signal accumulated in the hold circuit is read out in turn from the first element, as a sequential signal from the Video terminal.
- (3) The video signal is obtained as a boxcar waveform in synchronization with the positive-going edge of φ2.
- (4) The φhold pulse cannot be loaded during readout operation (shift register operation).
- (5) The EOS (end-of-scan) signal is output in synchronization with the negative-going edge of φ1 immediately before the output timing of the last element.


Serial readout for multistage arrangement (S6493 series)

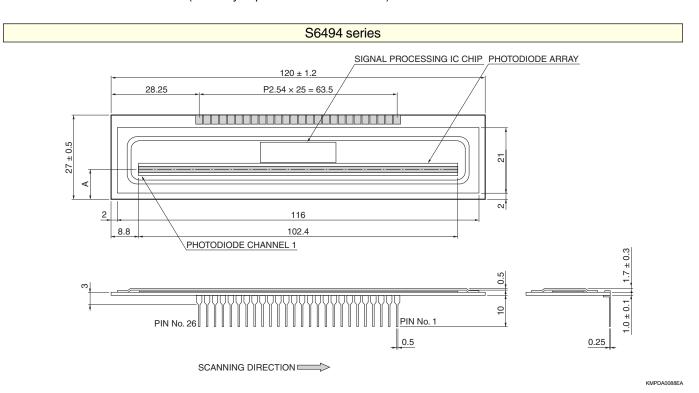

When multiple photodiode arrays are used in a serial arrangement, charge integration of each board can be performed at the same time, but the shift register of each board should be operated in sequence. The EOS pulse can be used as a start pulse for the next stage when it is inverted.


The video output terminal from all boards should be combined as one line via an analog switch and then connected to the external readout circuit. The analog switch should be used to select the video output only of the board being read out.

■ Timing chart



KMPDC0079EA


Parameter	Symbol	Min.	Тур.	Max.	Unit
Start pulse width	tpw (\pst)	300	-	-	
Rise/fall time of start pulse	tr (φst), tf (φst)	0	20	100	ns
Clock pulse (\phi1, \phi2) width	tpw (φ1, 2)	200	-	-	113
Rise/fall time of clock pulse (\phi1, \phi2)	tr (\phi1, 2), tf (\phi1, 2)	0	20	100	
Hold pulse width	tpw (φh)	1	-	-	μs
Rise/fall time of hold pulse	tr (φh), tf (φh)	0	20	100	ns
Reset pulse width	tpw (φr)	15	-	-	μs
Rise/fall time of reset pulse	tr (φr), tf (φr)	0	20	100	
Sample pulse (1) width	tpw (\$s1)	500	-	-	ns
Rise/fall time of sample pulse (1)	tr (φs1), tf (φs1)	0	20	100	
Sample pulse (2) width	tpw (\$s2)	tpw (\psi r)	-	-	μs
Rise/fall time of sample pulse (2)	tr (φs2), tf (φs2)	0	20	100	ns
Clamp pulse width	tpw (\psi c)	tpw (\psi r)	-	-	μs
Rise/fall time of clamp pulse	tr (φc), tf (φc)	0	20	100	
Sample pulse (1) - hold pulse timing	t (φs1-φh)	0	-	-	
Hold pulse - reset pulse timing	t (øh-ør)	0	-	-	
Reset pulse - clamp pulse timing	t (ør-øc)	0	-	-	ns
Start pulse - clock pulse (\phi1, \phi2) timing 1	t1 (øst-ø1)	0	-	-	115
Start pulse - clock pulse (\phi1, \phi2) timing 2	t2 (\$st-\$1)	0	-	-	
Clock pulse (\phi1, \phi2) - start pulse timing 1	t1 (\phi1-\phist)	0	-	-	
Clock pulse (\phi1, \phi2) - start pulse timing 2	t2 (\phi1-\phist)	0	-	-	
Video delay time	tvd	-	1	-	μs
EOS pulse delay time	ted	-	100	-	ns

■ Dimensional outlines (unit: mm, tolerance unless otherwise noted: ±0.2)

A: Distance from the bottom of the board to the center of the active area $6493-64:21.15\pm0.2$, $6493-128:21.35\pm0.2$ Board: G10 glass epoxy

Connector: PS-26PE-D4LT1-PN1 (made by Japan Aviation Electronics)

A: Distance from the bottom of the board to the center of the active area $86494-64:9.35\pm0.2$, $86494-128:9.05\pm0.2$

Board: white ceramic Window: borosilicate glass

■ Pin connections

S6	493 series	•	S64	494 series
No.	Symbol		No.	Symbol
1	Vdd		1	Vss
3	Vdd		2	Vdd
3	Vss		3	Vdd
4	NC		4	Vdd
5	Video	_	5	Vss
6	Vss		6	Video
7	NC	_	7	Vss
8	φ1		8	φ1
9	NC		9	Vdd
10	NC		10	Vss
11	Vdd	_	11	EOS
12	Vss		12	φ1
13	EOS	_	13	φ2
14	φ1		14	Vdd
15	φ2		15	φst
16	Vdd		16	Vss
17	φst		17	φ1
18	Vss		18	φhold
19	φ1		19	φ1
20	φhold		20	φclamp
21	φ1		21	φsample
22	φclamp		22	φreset
23	φsample		23	Vgain
24	φreset		24	Vdd
25	Vgain	_	25	Vdd
26	Vss		26	Vss

■ Pin assignment

Symbol	Assignment	Description		
Vdd	Supply voltage	Voltage input		
Vss	Ground			
φst	Start pulse	Negative-going pulse input		
φ1	Clock pulse 1	Pulse input		
φ2	Clock pulse 2	Pulse input _{\phi1}		
φreset	Reset pulse	Negative-going pulse input		
φhold	Hold pulse	Positive-going pulse input		
φsample	Sample pulse	Negative-going pulse input		
φclamp	Clamp pulse	Positive-going pulse input		
Vgain	Gain selection terminal voltage	Voltage input Vdd : low gain setting Vss : high gain setting		
Video	Video output	Positive-going output from positive potential, boxcar waveform		
EOS	End of scan	Positive-going pulse output		

■ Precautions for use

- (1) The signal processing circuit chips of the S6493 and S6494 series are protected against static electricity. However, in order to prevent possible damage to the chip, implement electrostatic countermeasures such as grounding of the operator, work table and tools. Furthermore, the devices must be protected against surge voltages from external equipment.
- (2) S6493 series

Since the photodiode array chip is not protected, handle it carefully so it will not become contaminated or scratched. Photodiode array performance may deteriorate if operated at high temperatures and humidity, so the housing should be designed to be airtight. The signal processing circuit chip and its wire bonding are covered with a resin coating for protection, but never touch these portions. In addition, take care when installing the board so that it does not warp.

(3) S6494 series

If the input window becomes dirty or scratched, the output uniformity may deteriorate. Avoid touching the window with bare hands. Cleaning the window surface before use with cloth, cotton swab or paper moistened with ethyl alcohol is advised. Wiping the window with dry cloth may generate static electricity and therefore should be avoided.

Driver circuit for photodiode array with amplifier C6785, C6495

Drive a photodiode array with amplifier by simple signal inputs

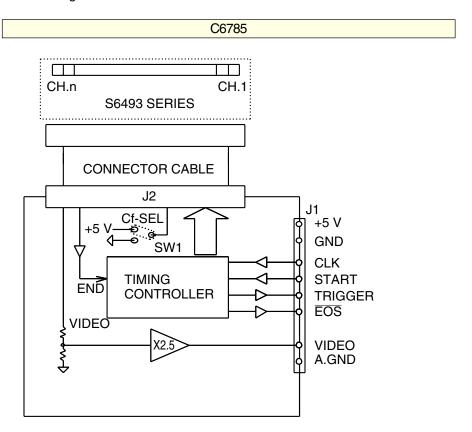
The C6785 and C6495 are driver circuits specifically designed for use with Hamamatsu photodiode arrays with amplifier. (The C6785 is for the S6493 series and the C6495 is for the S6494 series.) Both the C6785 and C6495 include a signal generator that provides timing pulses used to drive the sensor and a signal processing circuit that performs video signal amplification and DC restoration. The signal inputs required are start pulse (START), clock pulse (CLK) and +5 V.

Features

Applications

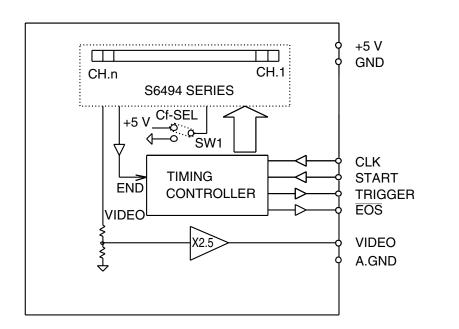
- Ideally suited for use with a photodiode array with amplifier
 Operation of a photodiode array with amplifier
 C6785: for S6493 series
 C6495: for S6494 series
- Simple operation (with start pulse, clock pulse and +5 V)
- Can be installed on the reverse side of a photodiode array with amplifier
- Compact size
- Gain of a photodiode array with amplifier is selectable from PC board

Absolute maximum ratings


Parameter	Symbol	Value	Unit
Supply voltage	Vd	7	V
Operating temperature	Topr	50	°C
Storage temperature	Tstg	60	°C

■ Electrical characteristics

	Parameter	Symbol	Min.	Тур.	Max.	Unit
	Supply Voltage (for digital circuit)	Vd	4.9	5	5.5	V
	Start pulse (start) valtage	Vst (H)	3.5	1	-	V
	Start pulse (start) voltage	Vst (L)	•	•	1.5	V
	Start pulse width	tpw-st	1/f-CLK	-	-	S
lanut	Start pulse rise/fall time	tr-st, tf-st	•	•	500	ns
Input	'	Vclk (H)	3.5	-	-	V
	Clock pulse (clk) voltage	Vclk (L)	-	-	1.5	V
	Clock pulse frequency	f-CLK	30	1	500	kHz
	Clock pulse width	Tpw-CLK	30	1	-	ns
	Clock pulse rise/fall time	tr-c, tf-c	•	•	500	ns
	Triagor pulso (triagor) voltago	Vtrig (H)	4.5	5	5.5	V
outout.	Trigger pulse (trigger) voltage	Vtrig (L)	0	-	0.8	V
output	Trigger pulse rise /fall time	tr-tri, tf-tri	-	-	500	ns
	Data video data rate	DVRATE	-	100	250	kHz



■ Block diagram

KACCC0056EA

C6495

KACCC0057EA

Driver circuit for photodiode array with amplifier C6785, C6495

■ Pin connections

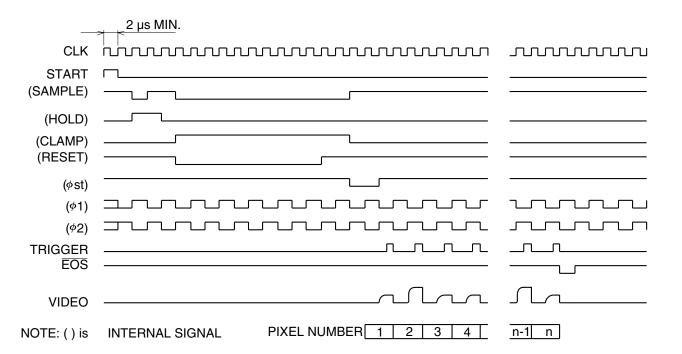
● J1, CN1: 5483-08AX (made by Molex)

Pin No.	Signal	Input/Output	Description
1	CLK	Input	HCMOS compatible pulse for synchronizing the circuit and sensor
2	START	Input	HCMOS compatible positive logic pulse for initializing the circuit
3	TRIGGER	Output	HCMOS compatible positive logic pulse for A/D conversion
4	EOS	Output	HCMOS compatible negative logic pulse used as end-of-scan signal
5	+5 V	Input	Supply voltage: +5 V Max. 70 mA
6	GND	-	Circuit ground
7	VIDEO	Output	Video signal output positive-going pulse
8	A.GND	-	Circuit ground used to ground the coaxial line of VIDEO

A connector 5480-08 that mates with the 5483-08AX connector is supplied with the C6785 and C6495.

● J2: XG4C-2634 (made by OMRON)

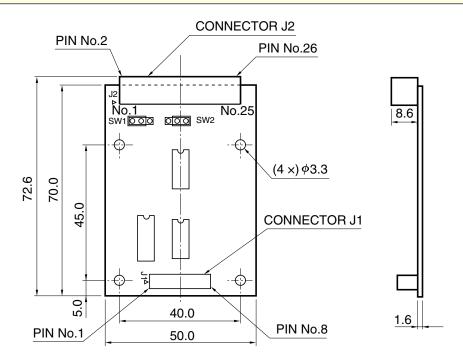
Pin No.	Signal	Input/Output	Description
1	Vdd	Output	Sensor: supply voltage for CMOS IC
2	Vdd	Output	Sensor: supply voltage for CMOS IC
3	Vss	Output	Sensor ground
4	NC	-	No connection
5	Video	Input	Sensor video signal output
6	Vss	Output	Sensor ground
7	NC	-	No connection
8	φ1	Output	Sensor: clock pulse for shift register scan, HCMOS compatible
9	NC	-	No connection
10	NC	-	No connection
11	Vdd	Output	Sensor: supply voltage for CMOS IC
12	Vss	Output	Sensor ground
13	EOS	Input	Sensor: end-of-scan signal
14	φ1	Output	Sensor: clock pulse for shift register scan, HCMOS compatible
15	φ2	Output	Output sensor: clock pulse for shift register scan, HCMOS compatible
16	Vdd	Output	Output sensor: supply voltage for CMOS IC
17	φst	Output	Output sensor: video signal output start pulse, HCMOS compatible
18	Vss	-	Sensor ground
19	φ1	Output	Sensor: clock pulse for shift register scan, HCMOS compatible
20	φhold	Output	Sensor: charge amplifier output hold signal, HCMOS compatible
21	φ1	Output	Sensor: clock pulse for shift register scan, HCMOS compatible
22	φclamp	Output	Sensor: charge amplifier output clamp signal, HCMOS compatible
23	φsample	Output	HCMOS compatible, positive logic pulse for initializing the circuit
24	φreset	Output	Sensor: charge amplifier output reset signal, HCMOS compatible
25	Vgain	Output	Sensor gain switching: H=gain "low", L=gain "high"
26	Vss	-	Sensor ground


A connector XG4M-2630-T that mates with the XG4C-2634 connector is supplied with the C6785 and C6495.

Driver circuit for photodiode array with amplifier C6785, C6495

CN2: XR2C (made by OMRON)

Pin No.	Signal	Input/Output	Description
1	Vss	-	Sensor ground
2	Vdd	Output	Sensor: supply voltage for CMOS IC
3	Vdd	Output	Sensor: supply voltage for CMOS IC
4	Vdd	Output	Sensor: supply voltage for CMOS IC
5	Vss	1	Sensor ground
6	Video	Input	Sensor video signal output
7	Vss	-	Sensor ground
8	φ1	Output	Sensor: clock pulse for shift register scan
9	Vdd	Output	Sensor: supply voltage for CMOS IC
10	Vss	•	Sensor ground
11	EOS	Input	Sensor: end-of-scan signal
12	φ1	Output	Sensor: clock pulse for shift register scan
13	φ2	Output	Sensor: clock pulse for shift register scan
14	Vdd	Output	Sensor: supply voltage for CMOS IC
15	φst	Output	Sensor: shift register scan start pulse
16	Vss	-	Sensor ground
17	φ1	Output	Sensor: clock pulse for shift register scan
18	φhold	Output	Sensor: charge amplifier output hold signal
19	φ1	Output	Sensor: clock pulse for shift register scan
20	φclamp	Output	Sensor: charge amplifier output clamp signal
21	φsample	Output	Sensor: charge amplifier output sample signal
22	φreset	Output	Sensor: charge amplifier output reset signal
23	Vgain	Output	Sensor gain switching: H=gain "low", L=gain "high"
24	Vdd	Output	Sensor: supply voltage for CMOS IC
25	Vpd	Output	Reverse voltage for photodiode array
26	Vss		Sensor ground


■ Pulse timing

KACCC0058EA

■ Dimensional outlines (unit: mm, tolerance unless otherwise noted: ±0.2)

C6785

KACCA0048EA

C6495

COMPONENT SIDE

KACCA0049EA

Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2001 Hamamatsu Photonics K.K. HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Hamamatsu City, 435-8558 Japan, Telephone: (81) 053-434-3311, Fax: (81) 053-434-5184, http://www.hamamatsu.com U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P.O.Box 6910, Bridgewater, N.J. 08807-0910, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218 Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 08152-3750, Fax: (49) 08152-2658 Trance: Hamamatsu Photonics France S.A.R.L.: 8, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 10 United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-325777 North Europe: Hamamatsu Photonics Norden AB: Smidesvägen 12, SE-171 41 Solna, Sweden, Telephone: (46) 8-509-031-01 [ax: 46] 8-509-031-01 [ax: 47] 11 (2020 Arese, (Milano), Italy, Telephone: (39) 02-935-81-733, Fax: (39) 02-935-81-741

Cat. No. KMPD1020E03