HS1C Series Full Size Solenoid Locking Switches

HS1C features:

- Rugged Aluminum Die-cast Housing
- With the actuator mounted on a movable door, and the switch on a machine, the door can be mechanically locked when closed.
- Greater Safety: The door is unlocked by a solenoid lock-release signal from a PLC or another source after the machine has stopped.
- In the event of power failure or for machine maintenance, the door can be unlocked using a special tool.
- Flexible Installation: The actuator can be accessed from two directions.
- Select from four different circuit configurations.
- IP67 Protection

HS1C Series Functionality

TORX is a registered trademark of Camcar Textron.

Part Numbers

Actuator Keys \& Accessories

| Sart Number | Description |
| :--- | :--- | :--- |
| Straight Actuator | |
| (Mainly for sliding doors) | |
| Right-angle Actuator | |
| (Mainly for rotating doors) | |

Specifications

Conforming to Standards		EN1088, IEC60947-5-1, EN60947-5-1, GS-ET-19, UL508					
Operating Temperature		-20 to $+40^{\circ} \mathrm{C}$ (no freezing)					
Storage Temperature		-40 to $+80^{\circ} \mathrm{C}$					
Operating Humidity		85% RH maximum (no condensation)					
Altitude		2,000m maximum					
Rated Insulation Voltage (Ui)		300 V (between LED or solenoid and ground: 60V)					
Impulse Withstand Voltage (Uimp)		4 kV (between LED or solenoid and ground: 2.5 kV)					
Insulation Resistance		Between live and dead metal parts: $100 \mathrm{M} \Omega$ minimum Between live metal part and ground: $100 \mathrm{M} \Omega$ minimum Between live metal parts: $\quad 100 \mathrm{M} \Omega$ minimum Between terminals of the same pole: $100 \mathrm{M} \Omega$ minimum					
Electric Shock Protection Class		Class 1 (IEC61140)					
Pollution Degree		3 (IEC60947-5-1)					
Degree of Protection		IP67 (IEC60529)					
Vibration Resistance	Operating Extremes	10 to 55 Hz , amplitude 0.5 mm					
	Damage Limits	$60 \mathrm{~m} / \mathrm{sec}^{2} \text { (approx. 6G) }$					
Shock Resistance		1,000 m/s ${ }^{2}$ (approx. 100G)					
Actuator Tensile Strength when Locked		$1,500 \mathrm{~N}$ minimum					
Operating Speed		$1 \mathrm{~m} / \mathrm{sec}$ maximum					
Positive Opening Travel		11 mm minimum					
Positive Opening Force		20N minimum					
Thermal Current (lth)		Main circuit: 10A, Auxiliary circuit: 3A					
Rated Operating Current (le)		Operating Voltage (Ue)			30 V	125 V	250 V
		$\frac{\text { 들 }}{\sqrt{3}}$	AC	Resistive load (AC12) Inductive load (AC15)	$\begin{aligned} & 10 \mathrm{~A} \\ & 10 \mathrm{~A} \end{aligned}$	$\begin{gathered} 10 \mathrm{~A} \\ 5 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 6 \mathrm{~A} \\ & 3 \mathrm{~A} \end{aligned}$
		DC	Resistive load (DC12) Inductive load (DC13)	$\begin{aligned} & 6 \mathrm{~A} \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{gathered} - \\ 0.9 \mathrm{~A} \end{gathered}$	-	
			AC	Resistive load (AC12) Inductive load (AC15)	-	$3 \mathrm{~A}$	$\begin{aligned} & 3 A \\ & 3 A \end{aligned}$
		DC	Resistive load (DC12) Inductive load (DC13)	$3 A$ -	$\begin{gathered} - \\ 0.9 \mathrm{~A} \end{gathered}$	-	

Main circuit: 1.7 mm max., Auxiliary circuit: 1.2 mm min.
900 operations/hour max.
1,000,000 operations
100,000 operations (rated load)
100A (IEC60947-5-1)
250V, 10A fuse (Type D01 based on IEC60269-1, 60269-2)
24V DC
415 mA
58Ω (at $20^{\circ} \mathrm{C}$)
Rated voltage $x 85 \%$ maximum (at $20^{\circ} \mathrm{C}$)
Rated voltage $\times 10 \%$ minimum (at $20^{\circ} \mathrm{C}$)
Rated voltage x 110\%
Not specifically limited
Class B
24V DC
10 mA
LED lamp
Red or Green (12 mm dia. Lens)
Approx. 660g

Part Number Key

Solenoid and LED Voltage
4 (24V DC)

Circuit Code

	Main Circuit	Auxiliary Circuit
Blank:	(1NC+1NC	$\begin{aligned} & \text { Nofin } \\ & \text { iNO } \end{aligned}$
$2:$	iNC + +1NC	NC + +1NC
3 3:	$1 \mathrm{NC}+1 \mathrm{NC}$	1 NC

Dimensions (mm)

HS1C-R44R-* - using the straight actuator (HS9Z-A1)

HS1C-R44R-* - using the Right-angle actuator (HS9Z-A2)

Accessories

Straight Actuator (mainly for sliding doors)

HS9Z-A1

Right-angle Actuator (mainly for hinged doors)
HS9Z-A2

Adjustable Actuator

- The actuator angle is adjustable (0° to 20°) for hinged doors.
- The minimum radius of the door opening can be as small as 100 mm .

For HS1/HS2 Series (HS9Z-A3)

Safety Precautions

- In order to avoid electric shock or a fire, turn the power off before installation, removal, wire connection, maintenance, or inspection of the switch.
- If relays are used in the circuit between the safety switch and the load, consider degrees of the danger and use safety relays, since welded or sticking contacts of standard relays may invalidate the functions of the safety switch.
- Do not place a PLC in the circuit between the safety switch and the load. The safety security can be endangered in the event of a malfunction of the PLC.
- Do not disassemble or modify the switch. It may cause a breakdown or an accident.

Operation Precautions - for all series

- Regardless of door types, do not use the safety switch as a door stop. Install a mechanical door stop at the end of the door to protect the safety switch against excessive force.
- Do not apply excessive shock to the switch when opening or closing the door.
- A shock to the door exceeding $1,000 \mathrm{~m} / \mathrm{sec}^{2}$ (approx. 100 G) may cause the contacts of the switch to chatter, and a malfunction of the switch may occur.
- For connection of wires, unscrew the cover. Unnecessary loosening of other screws may cause a malfunction of the switch.
- Prevent foreign objects such as dust and liquids from entering the switch while connecting conduit or wiring.
- If the operating atmosphere is contaminated, use a protective cover to prevent the entry of foreign objects into the switch through the actuator entry slots.
- Entry of a considerable amount of foreign objects into the switch may affect the mechanism of the switch and cause a breakdown.
- Do not store the switches in a dusty, humid, or organic-gas atmosphere.

HS5E/HS5B Precautions

For Rotating Head Directions

- The heads of the HS5E/HS5B can be rotated in 90° increments after removing the 4 screws on the corners of the head. Prevent entry of foreign objects into the switch during removal of the head. Tighten these screws with torque designated in the instruction sheet. Improper torque may cause errors.

Minimum Radius of Hinged Doors

- When using the interlock switch on hinged doors, refer to the minimum radius of doors shown below. When using on doors with small minimum radius, use the angle adjustable actuator (HS9Z-A55).

Note: Because deviation or dislocation of hinged doors may occur in actual applications, make sure of the correct operation before installation.

When using the HS9Z-A52 Actuator

- When the door hinge is on the extension line of the interlock switch surface:

- When door hinge is on the extension line of the actuator mounting surface:

HS2B Precautions

Wire Connection

- The HS2B has 3 conduit ports, which are closed as a part of the molded switch housing.
- Make an opening for wire connection by breaking one of the conduit-port knockouts on the switch housing using a screwdriver.
- When breaking the conduit port, take care not to damage the contact block or other parts inside the switch.
- Cracks or burrs on the conduit entry may deteriorate the housing protection against water.
- When changing to another conduit port, close the unused opening with an optional plug (Part No. HS9Z-P1).

HS1E Precautions

Wire Connection

- Make an opening for wire connection by breaking one of the conduit-port knockouts on the switch housing using a screwdriver.
- Before breaking the knockout, temporarily remove the connector-fixing lock nut from the switch.
- When breaking the knockout, take care not to damage the contact block or other parts inside the switch.
- Cracks or burrs on the conduit entry may deteriorate the housing protection.
- When changing to the other conduit port, close the unused opening with an optional plug (accessory).

Plug
Type No. HS9Z-P1

Manual Unlocking

- Remove the screw located on the unlocking entry at the side of the switch using the key wrench included with the switch. Then insert a small screwdriver into the switch to push the lever inside of the switch toward the indicator until the actuator is unlocked (refer to the diagram on the right).
- Insert a small screwdriver into the elliptical hole on the back of the switch, then push the lever inside of the switch toward the indicator until the actuator is unlocked (refer to the diagram on the right).

HS1C Precautions

- Regardless of door type, do not use the safety switch as a locking device. Install a locking device independently, for example, using a metal latch (also applicable to HS1E).
- The safety switch cover can be only removed with the special key wrench supplied with the switch or with the optional screwdriver (also applicable to HS1B and HS1E).
- Remove the screw located on the unlocking entry at the side of the switch using the key wrench included with the switch. Then insert a small screwdriver into the switch to push the lever inside of the switch toward the indicator until the actuator is unlocked (refer to the diagram on the right).

Caution: After the unlocking operation, put the screw back into the unlocking entry for safety.

1. This unlocking method is intended for an escape from a machine when a person is locked in. For access to the unlocking entry, an access hole should be opened on the mounting panel. When opening the hole, apply proper protection against water or other foreign objects.
2. Caution: After the unlocking operation, put the screw back into the unlocking entry for safety.

Operation Precautions

Applicable Crimping Terminals

- (Refer to the Crimping Terminal 1 or 2 shown in the drawing below.)
- HS1C

Terminals No. 1 to 6: Use solid or stranded wires only (crimping terminals not applicable).
Terminals No. 7 and 8: Crimping Terminal 1
Ground Terminal: Crimping Terminal 2

- HS1B

Ground Terminal: Crimping Terminal 2
Other Terminals: Crimping Terminal 1
HS2B, HS5B, and HS1E
Crimping Terminal 1

Crimping Terminal 2

Use an insulation tube on the crimping terminal.

Installation Examples (see the diagrams below)

Applicable Connectors (As shown below)

- Use connectors which maintain the IP67 protection.
- Applicable Connector Dimensions
- Flex Conduit: VF03 (Japan Flex) www.nipolex.co.jp
- Steel Connector (G1/2): ALC-103
(PF13.5): RBC-103PG13.5

Recommended Screw Tightening Torque

- HS1C: $5.0 \pm 0.5 \mathrm{~N}-\mathrm{m}$ (approx. $50 \pm 5 \mathrm{kgf-cm}$) (4 or 6 pcs of M5 hex socket head cap screws)
- HS1B: $5.0 \pm 0.5 \mathrm{~N}-\mathrm{m}$ (approx. $50 \pm 5 \mathrm{kgf-cm}$) (2 or 4 pcs. of M5 hex socket head cap screws)
- HS2B: $5.0 \pm 0.5 \mathrm{~N}-\mathrm{m}$ (approx. $50 \pm 5 \mathrm{kgf-cm}$) (2 pcs of M5 hex socket head cap screws)
- HS5B: $4.0 \pm 0.4 \mathrm{~N}-\mathrm{m}$ (approx. $40 \pm 4 \mathrm{kgf-cm}$) (2 pcs of M4 hex socket head cap screws)
- HS1E: 5.0 $\pm 0.5 \mathrm{~N}-\mathrm{m}$ (approx. $50 \pm 5 \mathrm{kgf-cm}$) (4 or 6 pcs of M5 hex socket head cap screws)
- Actuator (HS9Z-A1/A2) $5.0 \pm 0.5 \mathrm{~N}-\mathrm{m}$ (approx. $50 \pm 5 \mathrm{kgf} \cdot \mathrm{cm}$)
- (2 pcs. of M6 hex socket head cap screws) Actuator (HS9Z-A51/A52)
- $2.0 \pm 0.2 \mathrm{~N}-\mathrm{m}$ (approx. $20 \pm 2 \mathrm{kgf} \mathrm{cm}$)
(2 pcs of M4 hex socket head cap screws)
- $1.0 \pm 0.2 \mathrm{~N}-\mathrm{m}$ (approx. $10 \pm 2 \mathrm{kgf} \cdot \mathrm{cm}$) (2 pcs of M4 Phillips screws)

1. The screws are supplied by the user.

Applicable Wire Size

- HS1C: 0.5 to 0.75 mm² 2 (Terminals No.1, 2, 5 to 8)
1.0 to $1.25 \mathrm{~mm}^{2}$ (Terminals No.3, 4, and grounding terminal)
- HS5B: 0.5 to $1.25 \mathrm{~mm}^{2}$
- HS1E: 0.5 to $1.25 \mathrm{~mm}^{2}$

Actuator Angle Adjustment

- Using the screw (M3 hex socket head screw), the actuator angle can be adjusted (refer to the dimensional drawing). Adjustable angle: (0°) to 20°
- The larger the adjusted angle of the actuator, the smaller the applicable radius of the door opening.
- After installing the actuator, open the door. Then adjust the actuator so that its edge can be inserted properly into the entry slot of the safety switch.
- Recommended tightening torque: $0.8 \mathrm{~N}-\mathrm{m}$ (approx. $8.0 \mathrm{kgf-cm}$)
- After adjusting the actuator angle, apply loctite or the like to the adjustment screw so as to prevent its loosening.

Minimum Radius of Hinged Door

- When using the interlock switch on hinged doors, refer to the minimum radius of doors shown below. When using on doors with small minimum radius, use the angle adjustable actuator (HS9Z-A55).
Note: Because deviation or dislocation of hinged doors may occur in actual applications, make sure of the correct operation before installation.

When using the HS9Z-A52 Actuator

- When the door hinge is on the extension line of the interlock switch surface:

- When door hinge is on the extension line of the actuator mounting surface:

When using the HS9Z-A55 Angle Adjustable Actuator

- When door hinge is on the extension line of the interlock switch surface: 50 mm
- When door hinge is on the extension line of the actuator mounting surface: 70 mm

Actuator Angle Adjustment for the HS9Z-A55

- Using the angle adjustment screw, the actuator angle can be adjusted (see figures on page 370 . Adjustable angle: 0 to 20°
- The larger the adjusted angle of the actuator, the smaller the applicable radius of the door opening.
- After installing the actuator, open the door. Then adjust the actuator so that its edge can be inserted properly into the actuator entry slot of the interlock switch.
- After adjusting the actuator angle, apply Loctite to the adjustment screw so that the screw will not loosen.

Use a cable gland with a degree of protection IP67
all dimensions in mm

When Using Flexible Conduits (Example)

Flexible conduit example: VF-03 (Nihon Flex)

Conduit Port Size	Plastic Cable Gland	Metal Cable Gland
G1/2	-	RLC-103 (Nihon Flex)
PG13.5	-	RBC-103PG13.5 (Nihon Flex)
M20	-	RLC-103EC20 (Nihon Flex)

Applicable Cable Glands

