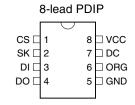
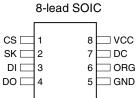
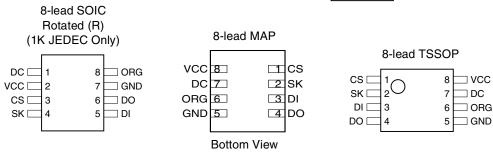
Features


- Low-voltage and Standard-voltage Operation
 - $-2.7 (V_{CC} = 2.7V \text{ to } 5.5V)$
 - $-2.5 (V_{CC} = 2.5V \text{ to } 5.5V)$
 - $-1.8 (V_{CC} = 1.8V \text{ to } 5.5V)$
- · User-selectable Internal Organization
 - 1K: 128 x 8 or 64 x 16
 - 2K: 256 x 8 or 128 x 16
 - 4K: 512 x 8 or 256 x 16
- 3-wire Serial Interface
- 2 MHz Clock Rate (5V)
- Self-timed Write Cycle (10 ms max)
- High Reliability
 - Endurance: 1 Million Write Cycles
 - Data Retention: 100 Years
- Automotive Grade, Extended Temperature and Lead-Free Devices Available
- 8-lead PDIP, 8-lead JEDEC SOIC, 8-lead EIAJ SOIC, 8-lead MAP and 8-lead TSSOP Packages


Description


The AT93C46/56/66 provides 1024/2048/4096 bits of serial electrically erasable programmable read only memory (EEPROM) organized as 64/128/256 words of 16 bits each, when the ORG pin is connected to VCC and 128/256/512 words of 8 bits each when it is tied to ground. The device is optimized for use in many industrial and commercial applications where low power and low voltage operations are essential. The AT93C46/56/66 is available in space-saving 8-lead PDIP, 8-lead JEDEC SOIC, 8-lead EIAJ SOIC, 8-lead MAP and 8-lead TSSOP packages. (continued)

Pin Configurations

Pin Name	Function		
CS	Chip Select		
SK	Serial Data Clock		
DI	Serial Data Input		
DO	Serial Data Output		
GND	Ground		
VCC	Power Supply		
ORG	Internal Organization		
DC	Don't Connect		

3-wire Serial EEPROMs

1K (128 x 8 or 64 x 16)

2K (256 x 8 or 128 x 16)

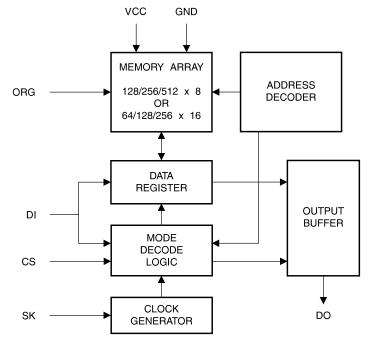
4K (512 x 8 or 256 x 16)

AT93C46 AT93C56 AT93C66

Rev. 0172S-SEEPR-01/03

The AT93C46/56/66 is enabled through the Chip Select pin (CS), and accessed via a 3-wire serial interface consisting of Data Input (DI), Data Output (DO), and Shift Clock (SK). Upon receiving a READ instruction at DI, the address is decoded and the data is clocked out serially on the data output pin DO. The WRITE cycle is completely self-timed and no separate ERASE cycle is required before WRITE. The WRITE cycle is only enabled when the part is in the ERASE/WRITE ENABLE state. When CS is brought "high" following the initiation of a WRITE cycle, the DO pin outputs the READY/BUSY status of the part.

The AT93C46/56/66 is available in 2.7V to 5.5V and 1.8V to 5.5V versions.


Absolute Maximum Ratings*

Operating Temperature55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground1.0V to +7.0V
Maximum Operating Voltage 6.25V
DC Output Current

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

Block Diagram

Note:

2

- 1. When the ORG pin is connected to VCC, the x 16 organization is selected. When it is connected to ground, the x 8 organization is selected. If the ORG pin is left unconnected and the application does not load the input beyond the capability of the internal 1 Meg ohm pullup, then the x 16 organization is selected. The feature is not available on the 1.8V devices.
- 2. For the AT93C46, if x 16 organization is the mode of choice and Pin 6 (ORG) is left unconnected, Atmel recommends using the AT93C46A device. For more details, see the AT93C46A datasheet.

Pin Capacitance⁽¹⁾

Applicable over recommended operating range from $T_A = 25^{\circ}C$, f = 1.0 MHz, $V_{CC} = +5.0V$ (unless otherwise noted).

Symbol	Test Conditions	Max	Units	Conditions
C _{OUT}	Output Capacitance (DO)	5	pF	V _{OUT} = 0V
C _{IN}	Input Capacitance (CS, SK, DI)	5	pF	$V_{IN} = 0V$

Note: 1. This parameter is characterized and is not 100% tested.

DC Characteristics

Applicable over recommended operating range from: T_{AI} = -40°C to +85°C, V_{CC} = +1.8V to +5.5V, T_{AE} = -40°C to +125°C, V_{CC} = +1.8V to +5.5V (unless otherwise noted).

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
V _{CC1}	Supply Voltage			1.8		5.5	V
V _{CC2}	Supply Voltage			2.5		5.5	V
V _{CC3}	Supply Voltage			2.7		5.5	V
V_{CC4}	Supply Voltage			4.5		5.5	V
1	Cumply Current	V 5 0V	READ at 1.0 MHz		0.5	2.0	mA
I _{CC}	Supply Current	V _{CC} = 5.0V	WRITE at 1.0 MHz		0.5	2.0	mA
I _{SB1}	Standby Current	V _{CC} = 1.8V	CS = 0V		0	0.1	μΑ
I _{SB2}	Standby Current	V _{CC} = 2.5V	CS = 0V		6.0	10.0	μΑ
I _{SB3}	Standby Current	V _{CC} = 2.7V	CS = 0V		6.0	10.0	μΑ
I _{SB4}	Standby Current	V _{CC} = 5.0V	CS = 0V		17	30	μΑ
I _{IL}	Input Leakage	V _{IN} = 0V to V _{CC}	V _{IN} = 0V to V _{CC}		0.1	1.0	μΑ
I _{OL}	Output Leakage	V _{IN} = 0V to V _{CC}			0.1	1.0	μΑ
V _{IL1} ⁽¹⁾ V _{IH1} ⁽¹⁾	Input Low Voltage Input High Voltage	2.7V ≤ V _{CC} ≤ 5.5V		-0.6 2.0		0.8 V _{CC} + 1	V
V _{IL2} ⁽¹⁾ V _{IH2} ⁽¹⁾	Input Low Voltage Input High Voltage	1.8V ≤ V _{CC} ≤ 2.7V		-0.6 V _{CC} x 0.7		V _{CC} x 0.3 V _{CC} + 1	V
V _{OL1}	Output Low Voltage	0.71/ 4.1/ 4.5.51/	I _{OL} = 2.1 mA			0.4	V
V _{OH1}	Output High Voltage	$2.7V \le V_{CC} \le 5.5V$	I _{OH} = -0.4 mA	2.4			V
V _{OL2}	Output Low Voltage	101/21/2071	I _{OL} = 0.15 mA			0.2	V
V _{OH2}	Output High Voltage	$1.8V \le V_{CC} \le 2.7V$	I _{OH} = -100 μA	V _{CC} - 0.2			V

Note: 1. V_{IL} min and V_{IH} max are reference only and are not tested.

AC Characteristics

Applicable over recommended operating range from T_{AI} = -40°C to + 85°C, T_{AE} = -40°C to +125°C, V_{CC} = As Specified, CL = 1 TTL Gate and 100 pF (unless otherwise noted).

Symbol	Parameter	Test Condition		Min	Тур	Max	Units
f _{sk}	SK Clock Frequency	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 1.8 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \end{array}$		0 0 0 0		2 1 0.5 0.25	MHz
t _{sкн}	SK High Time	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 1.8 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \end{array}$		250 250 500 1000			ns
t _{SKL}	SK Low Time	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 1.8 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \end{array}$		250 250 500 1000			ns
t _{cs}	Minimum CS Low Time	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 1.8 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \end{array}$		250 250 500 1000			ns
t _{css}	CS Setup Time	Relative to SK	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 1.8 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \end{array}$	50 50 100 200			ns
t _{DIS}	DI Setup Time	Relative to SK	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 1.8 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \end{array}$	100 100 200 400			ns
t _{CSH}	CS Hold Time	Relative to SK		0			ns
t _{DIH}	DI Hold Time	Relative to SK	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 1.8 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \end{array}$	100 100 200 400			ns
t _{PD1}	Output Delay to '1'	AC Test	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 1.8 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \end{array}$			250 250 500 1000	ns
t _{PD0}	Output Delay to '0'	AC Test	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 1.8 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \end{array}$			250 250 500 1000	ns
t _{sv}	CS to Status Valid	AC Test	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 1.8 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \end{array}$			250 250 500 1000	ns
t _{DF}	CS to DO in High Impedance	AC Test CS = V _{IL}	$\begin{array}{c} 4.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 2.5 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \\ 1.8 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V} \end{array}$			100 100 200 400	ns
+	Write Cycle Time					10	ms
t _{WP}	vville Cycle Time		$4.5V \le V_{CC} \le 5.5V$		3		ms
Endurance ⁽¹⁾	5.0V, 25°C, Page Mo	de		1M			Write Cycles

Note: 1. This parameter is characterized and is not 100% tested.

Instruction Set for the AT93C46

		Op	Address		Data		
Instruction	SB	Code	x 8	x 16	x 8	x 16	Comments
READ	1	10	A ₆ - A ₀	A ₅ - A ₀			Reads data stored in memory, at specified address.
EWEN	1	00	11XXXXX	11XXXX			Write enable must precede all programming modes.
ERASE	1	11	A ₆ - A ₀	A ₅ - A ₀			Erase memory location A _n - A ₀ .
WRITE	1	01	A ₆ - A ₀	A ₅ - A ₀	D ₇ - D ₀	D ₁₅ - D ₀	Writes memory location A _n - A ₀ .
ERAL	1	00	10XXXXX	10XXXX			Erases all memory locations. Valid only at $V_{CC} = 4.5V$ to 5.5V.
WRAL	1	00	01XXXXX	01XXXX	D ₇ - D ₀	D ₁₅ - D ₀	Writes all memory locations. Valid only at $V_{CC} = 4.5V$ to 5.5V.
EWDS	1	00	00XXXXX	00XXXX			Disables all programming instructions.

Functional Description

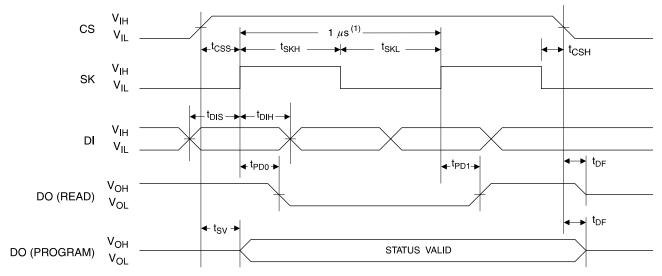
The AT93C46/56/66 is accessed via a simple and versatile 3-wire serial communication interface. Device operation is controlled by seven instructions issued by the host processor. **A valid instruction starts with a rising edge of CS** and consists of a Start Bit (logic "1") followed by the appropriate Op Code and the desired memory Address location.

READ (READ): The Read (READ) instruction contains the Address code for the memory location to be read. After the instruction and address are decoded, data from the selected memory location is available at the serial output pin DO. Output data changes are synchronized with the rising edges of serial clock SK. It should be noted that a dummy bit (logic "0") precedes the 8- or 16-bit data output string.

ERASE/WRITE (EWEN): To assure data integrity, the part automatically goes into the Erase/Write Disable (EWDS) state when power is first applied. An Erase/Write Enable (EWEN) instruction must be executed first before any programming instructions can be carried out. Please note that once in the Erase/Write Enable state, programming remains enabled until an Erase/Write Disable (EWDS) instruction is executed or V_{CC} power is removed from the part.

ERASE (ERASE): The Erase (ERASE) instruction programs all bits in the specified memory location to the logical "1" state. The self-timed erase cycle starts once the ERASE instruction and address are decoded. The DO pin outputs the READY/BUSY status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). A logic "1" at pin DO indicates that the selected memory location has been erased, and the part is ready for another instruction.

WRITE (WRITE): The Write (WRITE) instruction contains the 8 or 16 bits of data to be written into the specified memory location. The self-timed programming cycle, t_{WP} , starts after the last bit of data is received at serial data input pin DI. The DO pin outputs the READY/BUSY status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). A logic "0" at DO indicates that programming is still in progress. A logic "1" indicates that the memory location at the specified address has been written with the data pattern contained in the instruction and the part is ready for further instructions. A READY/BUSY status cannot be obtained if the CS is brought high after the end of the self-timed programming cycle, t_{WP} .


ERASE ALL (ERAL): The Erase All (ERAL) instruction programs every bit in the memory array to the logic "1" state and is primarily used for testing purposes. The DO pin outputs the READY/BUSY status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). The ERAL instruction is valid only at $V_{CC} = 5.0V \pm 10\%$.

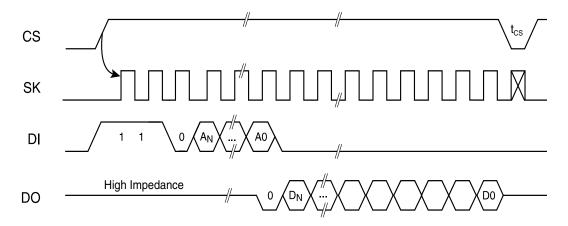
WRITE ALL (WRAL): The Write All (WRAL) instruction programs all memory locations with the data patterns specified in the instruction. The DO pin outputs the READY/BUSY status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). The WRAL instruction is valid only at $V_{CC} = 5.0V \pm 10\%$.

ERASE/WRITE DISABLE (EWDS): To protect against accidental data disturb, the Erase/Write Disable (EWDS) instruction disables all programming modes and should be executed after all programming operations. The operation of the READ instruction is independent of both the EWEN and EWDS instructions and can be executed at any time.

Timing Diagrams

Synchronous Data Timing

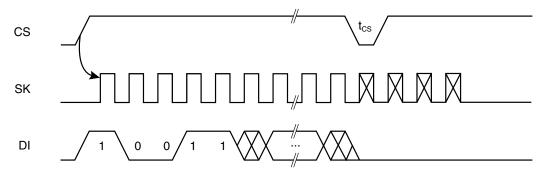
Note: 1. This is the minimum SK period.

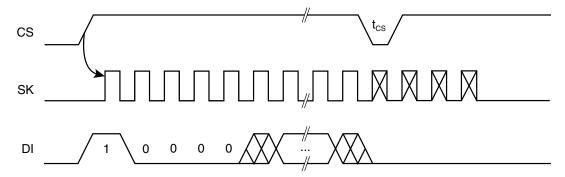

Organization Key for Timing Diagrams

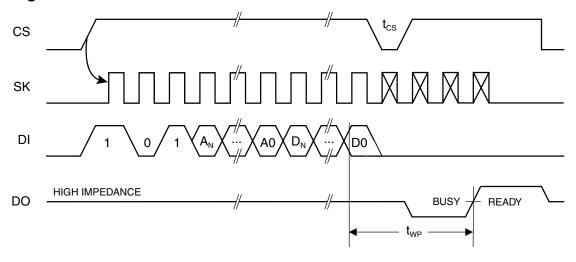
	AT93C46 (1K)		AT93C56 (2K)		AT93C66 (4K)	
I/O	x 8	x 16	x 8	x 16	x 8	x 16
A_N	A ₆	A ₅	A ₈ ⁽¹⁾	A ₇ ⁽²⁾	A ₈	A ₇
D_N	D ₇	D ₁₅	D ₇	D ₁₅	D ₇	D ₁₅

Notes: 1. A₈ is a DON'T CARE value, but the extra clock is required.

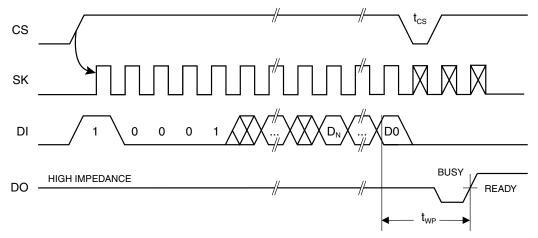
2. A_7 is a DON'T CARE value, but the extra clock is required.


READ Timing

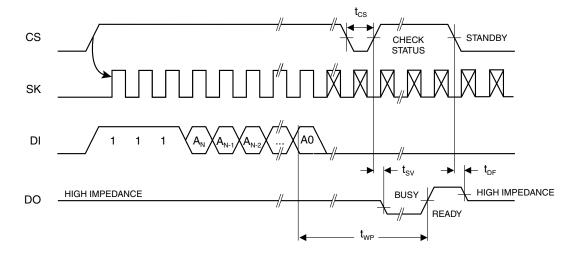



EWEN Timing

EWDS Timing

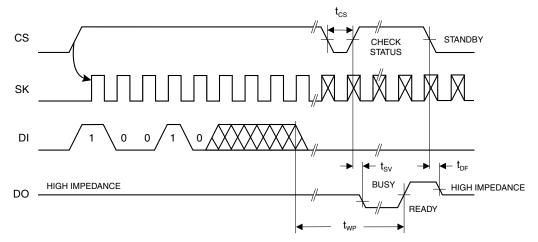


WRITE Timing


8

WRAL Timing⁽¹⁾

Note: 1. Valid only at $V_{CC} = 4.5V$ to 5.5V.


ERASE Timing

ERAL Timing⁽¹⁾

Note: 1. Valid only at $V_{CC} = 4.5V$ to 5.5V.

AT93C46 Ordering Information

Ordering Code	Package	Operation Range
AT93C46-10PI-2.7	8P3	Industrial
AT93C46-10SI-2.7	8S1	(-40°C to 85°C)
AT93C46R-10SI-2.7	8S1	
AT93C46W-10SI-2.7	8S2	
AT93C46-10TI-2.7	8A2	
AT93C46Y1-10YI-2.7	8Y1	
AT93C46-10PI-1.8	8P3	Industrial
AT93C46-10SI-1.8	8S1	(-40°C to 85°C)
AT93C46R-10SI-1.8	8S1	
AT93C46W-10SI-1.8	8S2	
AT93C46-10TI-1.8	8A2	
AT93C46Y1-10YI-1.8	8Y1	
AT93C46-10SJ-2.7	8S1	Lead-Free/Industrial Temperature
AT93C46-10SJ-1.8	8S1	(-40°C to 85°C)
AT93C46-10SE-2.7	8S1	High Grade/Extended Temperature (-40°C to 125°C)

Note: For 2.7V devices used in the 4.5V to 5.5V range, please refer to performance values in the AC and DC characteristics table.

	Package Type				
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)				
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)				
8S2	8-lead, 0.200" Wide, Plastic Gull Wing Small Outline (EIAJ SOIC)				
8A2	8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)				
8Y1	8-lead, 4.90 mm x 3.00 mm Body, Dual Footprint, Non-leaded, Miniature Array Package (MAP)				
	Options				
-2.7	Low-voltage (2.7V to 5.5V)				
-1.8	Low-voltage (1.8V to 5.5V)				
R	Rotated Pinout				

AT93C56 Ordering Information

Ordering Code	Package	Operation Range
AT93C56-10PI-2.7	8P3	Industrial
AT93C56-10SI-2.7	8S1	(-40°C to 85°C)
AT93C56W-10SI-2.7	8S2	
AT93C56-10TI-2.7	8A2	
AT93C56Y1-10YI-2.7	8Y1	
AT93C56-10PI-1.8	8P3	Industrial
AT93C56-10SI-1.8	8S1	(-40°C to 85°C)
AT93C56W-10SI-1.8	8S2	
AT93C56-10TI-1.8	8A2	
AT93C56Y1-10YI-1.8	8Y1	
AT93C56-10SJ-2.7	8S1	Lead-Free/Industrial Temperature
AT93C56-10SJ-1.8	8S1	(-40°C to 85°C)
AT93C56-10SE-2.7	8S1	High Grade/Extended Temperature
		(-40°C to 125°C)

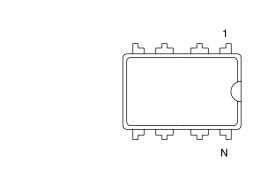
Note: For 2.7V devices used in the 4.5V to 5.5V range, please refer to performance values in the AC and DC characteristics table.

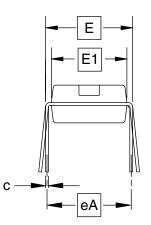
	Package Type				
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)				
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)				
8S2	8-lead, 0.200" Wide, Plastic Gull Wing Small Outline (EIAJ SOIC)				
8A2	8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)				
8Y1	8-lead, 4.90 mm x 3.00 mm Body, Dual Footprint, Non-leaded, Miniature Array Package (MAP)				
	Options				
-2.7	Low-voltage (2.7V to 5.5V)				
1.8	Low-voltage (1.8V to 5.5V)				

AT93C66 Ordering Information

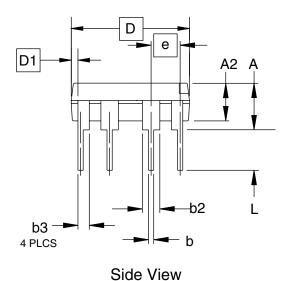
Ordering Code	Package	Operation Range
AT93C66-10PI-2.7	8P3	Industrial
AT93C66-10SI-2.7	8S1	(-40°C to 85°C)
AT93C66W-10SI-2.7	8S2	
AT93C66-10TI-2.7	8A2	
AT93C66Y1-10YI-2.7	8Y1	
AT93C66-10PI-1.8	8P3	Industrial
AT93C66-10SI-1.8	8S1	(-40°C to 85°C)
AT93C66W-10SI-1.8	8S2	
AT93C66-10TI-1.8	8A2	
AT93C66Y1-10YI-1.8	8Y1	
AT93C66-10SJ-2.7	8S1	Lead-Free/Industrial Temperature
AT93C66-10SJ-1.8	8S1	(-40°C to 85°C)
AT93C66-10SE-2.7	8S1	High Grade/Extended Temperature (-40°C to 125°C)

Note: For 2.7V devices used in the 4.5V to 5.5V range, please refer to performance values in the AC and DC characteristics table.


	Package Type			
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)			
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)			
8S2	8-lead, 0.200" Wide, Plastic Gull Wing Small Outline (EIAJ SOIC)			
8A2	8A2 8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)			
8Y1	8-lead, 4.90 mm x 3.00 mm Body, Dual Footprint, Non-leaded, Miniature Array Package (MAP)			
	Options			
-2.7	Low-voltage (2.7V to 5.5V)			
-1.8	Low-voltage (1.8V to 5.5V)			



Packaging Information


8P3 - PDIP

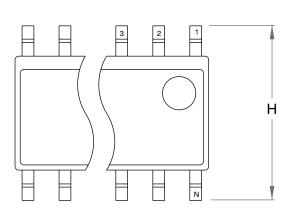
Top View

End View

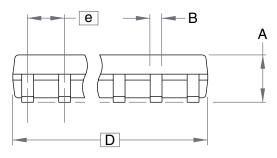
COMMON DIMENSIONS

(Unit of Measure = inches)

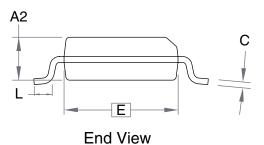
SYMBOL	MIN	NOM	MAX	NOTE
Α			0.210	2
A2	0.115	0.130	0.195	
b	0.014	0.018	0.022	5
b2	0.045	0.060	0.070	6
b3	0.030	0.039	0.045	6
С	0.008	0.010	0.014	
D	0.355	0.365	0.400	3
D1	0.005			3
E	0.300	0.310	0.325	4
E1	0.240	0.250	0.280	3
е	0.100 BSC			
eA	0.300 BSC			4
L	0.115 0.130 0.15			2


14

- 1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA for additional information.
 2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
- 3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
- 4. E and eA measured with the leads constrained to be perpendicular to datum.
- 5. Pointed or rounded lead tips are preferred to ease insertion.
- 6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).


01/09/02

l	<u></u>	TITLE	DRAWING NO.	REV.
	2325 Orchard Parkway San Jose, CA 95131	8P3, 8-lead, 0.300" Wide Body, Plastic Dual In-line Package (PDIP)	8P3	В


8S1 - JEDEC SOIC

Top View

Side View

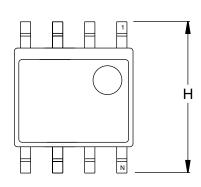
COMMON DIMENSIONS

(Unit of Measure = mm)

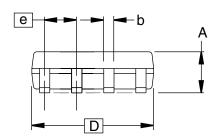
SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	1.75	
В	_	_	0.51	
С	_	_	0.25	
D	_	-	5.00	
Е	-	_	4.00	
е	1.27 BSC			
Н	_	_	6.20	
L	-	_	1.27	

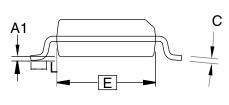
Note: This drawing is for general information only. Refer to JEDEC Drawing MS-012 for proper dimensions, tolerances, datums, etc.

10/10/01


2325 Orchard Parkway San Jose, CA 95131 **TITLE 8S1**, 8-lead (0.150" Wide Body), Plastic Gull Wing Small Outline (JEDEC SOIC)

DRAWING NO. REV. 8S1 A




8S2 - EIAJ SOIC

Top View

Side View

End View

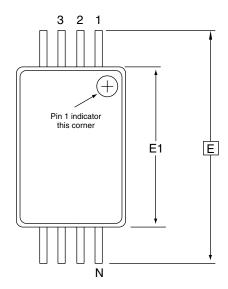
COMMON DIMENSIONS

(Unit of Measure = mm)

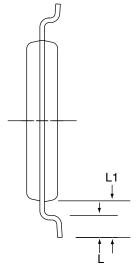
SYMBOL	MIN	NOM	MAX	NOTE
Α	1.78		2.03	
A1	0.05		0.33	
b	0.35		0.51	5
С	0.18		0.25	5
D	5.13		5.38	
Е	5.13		5.41	2, 3
Н	7.62		8.38	
L	0.51		0.89	
е	1.27 BSC			4

Notes: 1. This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information.
2. Mismatch of the upper and lower dies and resin burrs aren't included.

3. It is recommended that upper and lower cavities be equal. If they are different, the larger dimension shall be regarded.

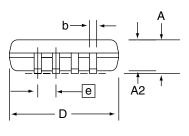

4. Determines the true geometric position.

5. Values b,C apply to pb/Sn solder plated terminal. The standard thickness of the solder layer shall be 0.010 +0.010/-0.005 mm.


5/2/02

	TITLE	DRAWING NO.	REV.
2325 Orchard Parkway San Jose, CA 95131	8S2, 8-lead, 0.209" Body, Plastic Small Outline Package (EIAJ)	8S2	В

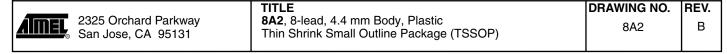
8A2 - TSSOP


Top View

End View

COMMON DIMENSIONS

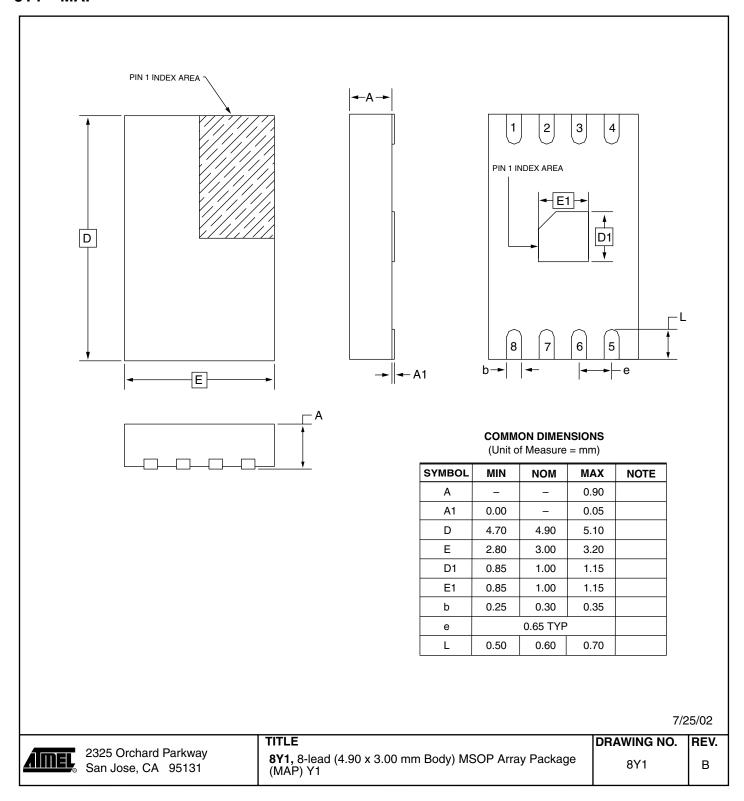
(Unit of Measure = mm)


Side View

SYMBOL	MIN	NOM	MAX	NOTE
D	2.90	3.00	3.10	2, 5
Е	6.40 BSC			
E1	4.30	4.40	4.50	3, 5
Α	_	-	1.20	
A2	0.80	1.00	1.05	
b	0.19	_	0.30	4
е	0.65 BSC			
L	0.45	0.60	0.75	
L1	1.00 REF			

Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MO-153, Variation AA, for proper dimensions, tolerances, datums, etc.

- 2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusions and gate burrs shall not exceed 0.15 mm (0.006 in) per side.
- 3. Dimension E1 does not include inter-lead Flash or protrusions. Inter-lead Flash and protrusions shall not exceed 0.25 mm (0.010 in) per side.
- 4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the b dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. Minimum space between protrusion and adjacent lead is 0.07 mm.
- 5. Dimension D and E1 to be determined at Datum Plane H.


5/30/02

8Y1 - MAP

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail literature@atmel.com

Web Site http://www.atmel.com

© Atmel Corporation 2003.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL® is the registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

