High-Voltage OVP with Battery Switchover

Abstract

General Description The MAX4959/MAX4960 overvoltage protection controllers protect low-voltage systems against high-voltage faults of up to +28 V . When the input voltage exceeds the overvoltage lockout (OVLO) threshold, these devices turn off an external pFET to prevent damage to the protected components. The undervoltage lockout (UVLO) threshold holds the external pFET off until the input voltage rises to the correct level. An additional safety feature latches off the pFET when an incorrect low-power adapter is plugged in. The MAX4959/MAX4960 control an external battery switchover pFET (P2) (see Figures 4 and 6) that switches in the battery when the AC adapter is unplugged. The undervoltage and overvoltage trip levels can be adjusted with external resistors. The input is protected against $\pm 15 \mathrm{kV}$ HBM ESD when bypassed with a $1 \mu \mathrm{~F}$ ceramic capacitor to ground. All devices are available in a small 10-pin ($2 \mathrm{~mm} \times 2 \mathrm{~mm}$) $\mu \mathrm{DFN}$ and $10-\mathrm{pin} \mu \mathrm{MAX}$ packages and are specified for operation over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications Notebooks Laptops Camcorders Ultra-Mobile PCs

Features

- Overvoltage Protection Up to $\mathbf{+ 2 8 V}$
- $\pm \mathbf{2 . 5 \%}$ Accurate Externally Adjustable OVLO/UVLO Thresholds
- Battery Switchover pFET Control
- Protection Against Incorrect Power Adapter
- Low (100нA Typ) Supply Current
- 25ms Input Debounce Timer
- 25ms Blanking Time
- 10-Pin ($2 \mathrm{~mm} \times 2 \mathrm{~mm}$) $\mu \mathrm{DFN}$ and 10-Pin $\mu \mathrm{MAX}$ Packages

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK	PKG CODE
		$10 \mu \mathrm{DFN}$	AAO	L1022- 1
MAX4959EUB $+^{\star}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-	U10-1
MAX4960ELB +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{DFN}$	AAP	L1022-1
MAX4960EUB ${ }^{\star}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$	-	U10-1

+Denotes a lead-free package.
*Future product-Contact factory for availability.

TOP VIEW

μ DFN
() MAX4960 ONLY.

Typical Operating Circuits appear at end of data sheet.

For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

High-Voltage OVP with Battery Switchover

ABSOLUTE MAXIMUM RATINGS

IN, SOURCE1, GATE1, GATE2, to GND-0.3V to +30V	
$V_{\text {DD }}$ to GND.	-0.3V to +6V
UVS, OVS, CB to GND ..-0.3V to +6V	
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
10-pin μ DFN (derate $5.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	403 mW
10-pin $\mu \mathrm{MAX}$ (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	444mW

Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{I N}=+19 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted, $\mathrm{CVDD}=100 \mathrm{nF}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1$)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
IN						
Input Voltage Range	VIN		4		28	V
Overvoltage Adjustable Trip Range	OVLO	(Note 2)	6		28	V
Overvoltage Comp Reference	OVREF	VIN rising edge	1.18	1.228	1.276	V
OVS Input Leakage Current	OVILKG		-100		+100	nA
Overvoltage Trip Hysteresis	OV HYS			1		\%
Undervoltage Adjustable Trip Range	UVLO	(Note 2)	5		28	V
Undervoltage Comp Reference	UVREF	VIN falling edge	1.18	1.228	1.276	V
UVS Input Leakage Current	UVILKG		-100		+100	nA
Undervoltage Trip Hysteresis	UVHYS			1		\%
Internal Undervoltage Trip Level	INTUVREF	VIN falling edge	4.1	4.4	4.7	V
Internal Undervoltage Trip Hysteresis	INTUV ${ }_{\text {HYS }}$			1		\%
Power-On Trip Level	POTL	$V_{D D}>+3 \mathrm{~V}$, IN rising edge	0.5	0.75	1	V
Power-On Trip Hysteresis	POTLHYS			10		\%
IN Supply Current	IIN	$V_{I N}=+19 \mathrm{~V}, \mathrm{~V}_{\text {OVS }}<\mathrm{OV}_{\text {REF }}$ and VUVS > UVREF		100	300	$\mu \mathrm{A}$
VDD						
VDD Voltage Range	VDD		2.7		5.5	V
VDD Undervoltage Lockout	VDDUVLO	VDD falling edge	1.55		2.40	V
VDD Undervoltage Lockout Hysteresis	VDDUVLOHYS			50		mV
VDD Supply Current	IVDD	$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$			10	$\mu \mathrm{A}$
GATE						
GATE1 Open-Drain MOS RON Resistance	Ron	$V_{C B}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=19 \mathrm{~V}, \mathrm{~V}_{\text {OVS }}<\mathrm{O}_{\text {REF }}$ and VUVS $>$ UV REF, $^{\text {IGATE }}=0.5 \mathrm{~mA}($ MAX4959 $)$			1	k Ω
GATE2 Open-Drain MOS RON Resistance	Ron	$\mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V}, \mathrm{IGATE}_{-}=0.5 \mathrm{~mA}$			1	$\mathrm{k} \Omega$

High-Voltage OVP with Battery Switchover

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N}=+19 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted, $\mathrm{C}_{\mathrm{VDD}}=100 \mathrm{nF}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1$)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
GATE1 Leakage Current	G11LKG	$V_{\text {OVS }}>0 V_{\text {REF, }}$ VUVS $<U V_{\text {REF, }}$ or $V_{C B}=+5 \mathrm{~V}$	-1		+1	$\mu \mathrm{A}$
GATE2 Leakage Current	G2lıKG	$V_{C B}=0 \mathrm{~V}$	-1		+1	$\mu \mathrm{A}$
CB						
Logic-Level High	V_{IH}		1.5			V
Logic-Level Low	$\mathrm{V}_{\text {IL }}$				0.4	V
CB Pulldown Resistor	RCBPD		1	2	3	$\mathrm{M} \Omega$
TIMING						
Debounce Time	tDEB	Vovp > VIN > VUVP for greater than tDEB for GATE1 to go low	10	25	40	ms
GATE1 Assertion Delay from CB Pin	t1gate	$\begin{aligned} & \mathrm{CB}=+3 \mathrm{~V} \text { to } 0 \\ & \text { rise time }=\text { fall time }=5 \mathrm{~ns} \text { (} \text { (ote 3) } \end{aligned}$		50		ns
GATE2 Assertion Delay from CB Pin	t2GAtE	$\begin{aligned} & \mathrm{CB}=0 \text { to }+3 \mathrm{~V} \\ & \text { rise time }=\text { fall time }=5 \mathrm{~ns}(\text { Note } 3) \end{aligned}$		50		ns
Blanking Time	tBLANK		10	25	40	ms
MAX4960						
SOURCE1/GATE1 Resistance	RSG	(MAX4960)	140	200	260	k Ω
GATE1/Ground Resistance	RGG	GATE1 Asserted (MAX4960)	140	200	260	k Ω

Note 1: Operation is tested at $T_{A}=+25^{\circ} \mathrm{C}$ and guaranteed by design for $\mu \mathrm{DFN}$ package. Operation over specified temperature range is tested for μ MAX package.
Note 2: Do not exceed absolute maximum rating; the ratio between the externally set OVLO and UVLO threshold must not exceed 4, [OVLO/UVLO]MAX ≤ 4.
Note 3: Assertion delay starts from switching of CB pin to reaching of 80% of GATE1/GATE2 transition. This delay is measured without external capacitive load.

Typical Operating Characteristics

$\left(\mathrm{V}_{\text {OVLO }}=22.2 \mathrm{~V}\right.$ and $\mathrm{V}_{\text {UVLO }}=10.1 \mathrm{~V}, \mathrm{R} 1=887 \mathrm{k} \Omega, \mathrm{R} 2=66.5 \mathrm{k} \Omega, \mathrm{R} 3=54.9 \mathrm{k} \Omega$, all resistors $1 \%, O \mathrm{~V}_{\text {REF }}=U \mathrm{~V}_{\text {REF }}=1.228 \mathrm{~V}$. $)$

High-Voltage OVP with Battery Switchover

High-Voltage OVP with Battery Switchover

PIN		NAME	FUNCTION
MAX4959	MAX4960		
1	1	GATE1	pFET Gate Drive Output Open Drain. GATE1 is actively driven low, except during fault (OVP or UVP) condition (the external PFET is turned off). When VUVLO < VIN < VovLO, GATE1 is driven low (the external PFETP1 is turned on).
2, 9	9	N.C.	No Connection. Not internally connected. (Connect to ground or leave unconnected.)
-	2	SOURCE1	pFET Source Output. An internal resistor is connected between SOURCE1 and GATE1.
3	3	IN	Voltage Input. IN is both the power-supply input and the overvoltage/undervoltage sense input. Bypass IN to GND with a $1 \mu \mathrm{~F}$ ceramic capacitor to get a $\pm 15 \mathrm{kV}$ protected input. A minimum $0.1 \mu \mathrm{~F}$ ceramic capacitor is required for proper operation.
4	4	UVS	Undervoltage Threshold Set Input. Connect UVS to an external resistive divider from IN to GND to set the undervoltage lockout threshold. (See Typical Operating Circuits.)
5	5	OVS	Overvoltage Threshold Set Input. Connect OVS to an external resistive divider from IN to GND to set the overvoltage lockout threshold. (See Typical Operating Circuits.)
6	6	$V_{D D}$	Internal Power-Supply Output. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ minimum capacitor. VDD powers the internal power-on reset circuits. (See the VDD Capacitor Selection section.)
7	7	CB	Battery Switchover Control Input. When CB is high, GATE1 is high (P1 is off), and GATE2 is low (P2 is on). When CB is low, GATE1 is controlled by internal logic and GATE2 is high (P 2 is off). GATE1 is controlled by CB only if $\mathrm{V}_{\mathrm{ULO}}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {OVLO }}$.
8	8	GND	Ground
10	10	GATE2	pFET Gate Drive Output, Open Drain. When CB is high, GATE2 is low (P2 is on). When CB is low, GATE2 is high impedance (P2 is off).

Detailed Description

The MAX4959/MAX4960 provide up to +28 V overvoltage protection for low-voltage systems. When the input voltage exceeds the overvoltage trip level, the MAX4959/ MAX4960 turn off an external pFET to prevent damage to the protected components.
The MAX4959/MAX4960 feature a control bit (CB) pin that controls an external battery-switchover function that switches in the battery when the adapter is unconnected. The host system detects when the battery switchover must take place and pulls CB high to turn on P2. The load current is not interrupted during battery switchover as the body diode of P2 conducts until the CB line is driven high (see the MAX4959 Typical Operating Circuit 1, Figure 4).
An additional safety feature latches off pFET P1 when a low-power adapter is plugged in. This protects the system from seeing repeated adapter insertions and removals when an incorrect low-power adapter is plugged in that cannot provide sufficient current.

Undervoltage Lockout (UVLO)

The MAX4959/MAX4960 have an adjustable undervoltage lockout threshold ranging from +5 V to +28 V . When VIN is less than the VUVLO, the device waits for a blanking time, tBLANK, to see if the fault still exists. If the fault does not exist at the end of tBLANK, P1 remains on. If VIN is less than VUVLO for longer than the blanking time, the device turns P1 off and P1 does not turn on again until VIN $<0.75 \mathrm{~V}$. See Figure 1.

Overvoltage Lockout (OVLO) The MAX4959/MAX4960 have an adjustable overvoltage lockout threshold ranging from +6 V to +28 V . When VIN is greater than the VOVLO, the device turns P1 off immediately. When VIN drops below VOVLO, P1 turns on again after the debounce time has elapsed.

Device Operation
 High-Voltage Adapter (VIN > VoVLO)

 If an adapter with a voltage higher than VOVLO is plugged in, the MAX4959/MAX4960 is in an OVP condition, so P1 is kept off or immediately turned off. There is
High-Voltage OVP with Battery Switchover

Functional Diagrams

Functional Diagram for the MAX4959

no blanking time for OVP, but the debounce time applies once the IN voltage falls below Vovio but above VuvLO. When the voltage at IN is higher than Vovio, the CB pin does not control P1.

Correct Adapter (VUVLO < VIN < VOVLO) In this case, when the adapter is plugged in, the device goes through a 20 ms (typ) debounce time and ensures that the voltage at IN is between VuVLO and Vovio before P1 is turned on. In this state, the CB pin controls both P1 and P2.

Low-Power Adapter or Glitch Condition

If the adapter has the correct voltage but not enough power (incorrect low-power adapter), the MAX4959/ MAX4960 protect pFET P1 from oscillation. When the adapter is first plugged in, P 1 is off so the voltage is correct. When P1 is turned on after the debounce time, the low-power adapter is dragged down to below VUVLO. The device waits for a 10 ms blanking time to make sure it is not a temporary glitch, and, if a fault still exists, it latches off P1. P1 does not turn on again until the adapter is unplugged (V IN $<\sim 0.75 \mathrm{~V}$) and plugged in again. This feature can work without the battery present

High-Voltage OVP with Battery Switchover

Functional Diagrams (continued)

Functional Diagram for the MAX4960

only if the backup capacitor on $V_{D D}$ is large enough to maintain power for greater than the 10ms blanking time. The detection that the adapter is unplugged and plugged in again is implemented by monitoring the VIN signal. The adapter is unplugged when VIN drops below VIN $=\sim 0.75 \mathrm{~V}$, and it is plugged in when VIN becomes greater than $\mathrm{V}_{\mathrm{IN}}=\sim 0.75 \mathrm{~V}$. To ensure the monitoring of this lower threshold, an external storage capacitor at the VDD pin is necessary. When the input voltage VIN drops below 4V, power for some internal VIN monitoring circuitry is supplied by the external capacitor at the VDD pin.

This capacitor is supplied by V_{IN} through a diode and is internally limited to 5.5 V .

Adapter Not Present (VIN < VUVLO) When the input voltage V_{IN} drops below 4.4 V , P 1 is turned off automatically and P1 does not turn on again until the adapter is unplugged ($\mathrm{V}_{\mathrm{IN}}<\sim 0.75 \mathrm{~V}$) and plugged in again. When the adapter is not present, P1 is kept off with the gate-source resistor (which is internal for the MAX4960 and external for the MAX4959), and the CB pin controls the battery switchover pFET P2.

High-Voltage OVP with Battery Switchover

Figure 1. Timing Diagram

The following table lists the different modes of operations:

IN RANGE	P1 STATE	P2 STATE
VIN $>$ V OVLO	P1 OFF (not affected by CB)	$\begin{aligned} & C B=1->P 2 \text { is } O N \\ & C B=0->P 2 \text { is } O F F \end{aligned}$
VUVLO < VIN < VoVLO (debounce timeout ongoing)	P1 OFF (not affected by CB)	
VUVLO < VIN < VOVLO (debounce timeout elapsed)	$\begin{aligned} & C B=1-P P 1 \text { is } \mathrm{OFF} \\ & \mathrm{CB}=0-\mathrm{P} 1 \text { is } \mathrm{ON} \end{aligned}$	
Vintuvref < Vin < Vovlo (blanking timeout ongoing)	$\begin{aligned} & C B=1->P 1 \text { is OFF } \\ & C B=0->P 1 \text { is } O N \end{aligned}$	
VINTUVREF < VIN < VOVLO (blanking timeout elapsed)	P1 OFF (not affected by CB). P1 does not turn on again until adapter is unplugged ($\mathrm{V}_{\mathrm{IN}}<\sim 0.75 \mathrm{~V}$) and plugged in again.	
VIN $<$ VINTUVREF	P1 OFF (not affected by CB). P1 does not turn on again until adapter is unplugged ($\mathrm{V}_{\mathrm{IN}}<\sim 0.75 \mathrm{~V}$) and plugged in again.	

High-Voltage OVP with Battery Switchover

Applications Information

MOSFET Configuration and Selection

The MAX4959/MAX4960 are used with a single MOSFET configuration as shown in the Typical Operating Circuits to regulate voltage as a low-cost solution.
The MAX4959/MAX4960 are designed with pFETs. For lower on-resistance, the external MOSFET can be multiple pFETs in parallel. In most situations, MOSFETs with RDS(ON) specified for a VGS of 4.5 V work well. Also, MOSFETs (with VDS $\geq 30 \mathrm{~V}$) withstand the full +28 V IN range of the MAX4959/MAX4960.

Resistor Selection for Overvoltage/Undervoltage Window

The MAX4959/MAX4960 include undervoltage and overvoltage comparators for window detection (see Figure 4). GATE1 is enhanced and after the debounce time, the pFET is turned on when the monitored voltage is within the selected window.

The resistor values R1, R2, and R3 can be calculated as follows:

$$
\begin{aligned}
& V_{\text {UVLO }}=(\mathrm{UV} \text { REF })\left(\frac{R_{\text {TOTAL }}}{R 2+R 3}\right) \\
& V_{\text {OVLO }}=\left(O V_{\text {REF }}\right)\left(\frac{R_{\text {TOTAL }}}{R_{3}}\right)
\end{aligned}
$$

where RTOTAL $=\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3$.
Use the following steps to determine the values for R1, R2, and R3:

1) Choose a value for Rtotal, the sum of R1, R2, and R3. Because the MAX4959/4960 have very high input impedance, Rtotal can be up to $5 \mathrm{M} \Omega$.
2) Calculate R3 based on Rtotal and the desired VoVLO trip point:

$$
R 3=\frac{O V_{R E F} \times R_{T O T A L}}{V_{\text {OVLO }}}
$$

3) Calculate R2 based on Rtotal, R3, and the desired VUVLO trip point:

$$
R 2=\left[\frac{U V_{R E F} \times R_{T O T A L}}{V_{U V L O}}\right]-R 3
$$

4) Calculate R1 based on Rtotal, R2, and R3:
R1 = RTOTAL - R2 - R3

Note that the ratio between the externally set OVLO and UVLO threshold must not exceed:

4 [Vovlo / Vuvlo]max ≤ 4)

Vdd Capacitor Selection

VDD is regulated to +5 V by a linear regulator. Since the minimum external adjustable UVLO trip threshold is +5 V , the V DD range is +5 V to +28 V and the value at $V_{D D}$ is:

$$
\begin{array}{ll}
\text { VDD }=\mathrm{V}_{\text {IN }}-0.8 \mathrm{~V} & \text { where } \mathrm{V} \text { IN }=5 \mathrm{~V} \text { to } 5.8 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V} & \text { where } \mathrm{V} \text { IN }>5.8 \mathrm{~V}
\end{array}
$$

The capacitor at VDD must be large enough to provide power to the device for an external settable time, thold, when VIN drops to OV. The capacitor value to have a minimum time of thOLD is:
C = (IVDD x thold) / (VDD - VDDUVLO)

The worst case scenario is where $\mathrm{V}_{\mathrm{IN}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{IN}}$ $-0.8 \mathrm{~V}=+4.2 \mathrm{~V}, \operatorname{IVDD}=10 \mu \mathrm{~A}(\mathrm{max})$. For a thold time of $20 \mathrm{~ms}, \mathrm{C}=(10 \mu \mathrm{~A} \times 20 \mathrm{~ms}) /(4.2 \mathrm{~V}-2.2 \mathrm{~V})=100 \mathrm{nF}$.
Note: The capacitor must be greater than 100nF for the internal regulator to be stable, and needs to have low ESR and low leakage current, for example, a ceramic capacitor.

IN Bypass Considerations

For most applications, bypass IN to GND with a $1 \mu \mathrm{~F}$ ceramic capacitor. If the power source has significant inductance due to long lead length, take care to prevent overshoots due to the LC tank circuit, and provide protection if necessary to prevent exceeding the +30 V absolute maximum rating on V_{IN}.
The MAX4959/MAX4960 provide protection against voltage faults up to +28 V , but this does not include negative voltages. If negative voltages are a concern, connect a Schottky diode from IN to GND to clamp negative input voltages.

ESD Test Conditions

The MAX4959/MAX4960 are protected from $\pm 15 \mathrm{kV}$ Human Body Model ESD on IN when IN is bypassed to ground with a $1 \mu \mathrm{~F}$ ceramic capacitor.

Human Body Model

Figure 2 shows the Human Body Model and Figure 3 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100 pF capacitor charged to the ESD voltage of interest that is then discharged into the device through a $1.5 \mathrm{k} \Omega$ resistor.

High-Voltage OVP with Battery Switchover

Figure 2. Human Body ESD Test Model

Figure 3. Human Body Current Waveform

Chip Information

PROCESS: BiCMOS

High-Voltage OVP with Battery Switchover

Figure 4. MAX4959 Typical Operating Circuit 1

High-Voltage OVP with Battery Switchover

Figure 5. MAX4959 Typical Operating Circuit 2

High-Voltage OVP with Battery Switchover

Figure 6. MAX4960 Typical Operating Circuit 1

High-Voltage OVP with Battery Switchover

Figure 7. MAX4960 Typical Operating Circuit 2

High-Voltage OVP with Battery Switchover

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

High-Voltage OVP with Battery Switchover

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS				
SYMBOL	MIN.	NOM.	MAX.	
A	0.70	0.75	0.80	
A1	0.15	0.20	0.25	
A2	0.020	0.025	0.035	
D	1.95	2.00	2.05	
E	1.95	2.00	2.05	
L	0.30	0.40	0.50	
L1	0.10 REF.			

PACKAGE VARIATIONS				
PKG. CODE	N	e	b	$(\mathrm{N} / 2-1) \mathrm{xe}$
L622-1	6	0.65 BSC	0.30 ± 0.05	1.30 REF.
L822-1	8	0.50 BSC	0.25 ± 0.05	1.50 REF.
L1022-1	10	0.40 BSC	0.20 ± 0.03	1.60 REF.

NOTES:

1. ALL DIMENSIONS ARE $\mathbb{N} \mathrm{mm}$. ANGLES IN DEGREES.
2. COPLANARITY SHALL NOT EXCEED 0.08 mm .
3. WARPAGE SHALL NOT EXCEED 0.10 mm .
4. PaCkage length/package width are considered as SPECIAL CHARACTERISTIC(S).
5. " N " IS THE TOTAL NUMBER OF LEADS
6. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
-DRAWING NOT TO SCALE-

High-Voltage OVP with Battery Switchover

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

