Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23

Abstract

General Description The MAX4014/MAX4017/MAX4019/MAX4022 are precision, closed-loop, gain of +2 (or -1) buffers featuring high slew rates, high output current drive, and low differential gain and phase errors. These single-supply devices operate from +3.15 V to +11 V , or from $\pm 1.575 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supplies. The input voltage range extends 100 mV beyond the negative supply rail and the outputs swing Rail-to-Rail ${ }^{\circledR}$. These devices require only 5.5 mA of quiescent supply current while achieving a $200 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth and a $600 \mathrm{~V} / \mu \mathrm{s}$ slew rate. In addition, the MAX4019 has a disable feature that reduces the supply current to $400 \mu \mathrm{~A}$. Input voltage noise for these parts is only $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ and input current noise is only $1.3 \mathrm{pA} / \sqrt{\mathrm{Hz}}$. This buffer family is ideal for low-power/low-voltage applications that require wide bandwidth, such as video, communications, and instrumentation systems. For space-sensitive applications, the MAX4014 comes in a tiny 5-pin SOT23 package.

Selector Guide

PART	NO. OF AMPS	ENABLE	PIN-PACKAGE
MAX4014	1	No	5-Pin SOT23
MAX4017	2	No	8-Pin SO/MMAX
MAX4019	3	Yes	14-Pin SO, 16-Pin QSOP
MAX4022	4	No	14-Pin SO, 16-Pin QSOP

Applications
Portable/Battery-Powered Instruments
Video Line Driver
Analog-to-Digital Converter Interface
CCD Imaging Systems
Video Routing and Switching Systems

Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.

Features

- Internal Precision Resistors for Closed-Loop Gains of +2 or -1
- High Speed:

200MHz -3dB Bandwidth
30 MHz 0.1 dB Gain Flatness (6 MHz min) $600 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate

- Single 3.3V/5.0V Operation
- Outputs Swing Rail-to-Rail
- Input Voltage Range Extends Beyond VEE

L Low Differential Gain/Phase: 0.04\%/0.02 ${ }^{\circ}$

- Low Distortion at 5MHz:
-78dBc Spurious-Free Dynamic Range
-75dB Total Harmonic Distortion
- High Output Drive: $\pm 120 \mathrm{~mA}$
- Low, 5.5mA Supply Current
- 400 1 A Shutdown Supply Current
- Space-Saving SOT23-5, μ MAX, or QSOP Packages

PART	TEMP. RANGE	PIN- PACKAGE	SOT TOP MARK
MAX4014EUK	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5	ABZQ
MAX4017ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4017EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	-
MAX4019ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	-
MAX4019EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	-
MAX4022ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO	-
MAX4022EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	-

Typical Operating Circuit

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to V_{EE}) \qquad ..$\left(V_{E E}-0.3 \mathrm{~V}\right)$ to $(\mathrm{V} C \mathrm{CC}+0.3 \mathrm{~V})$
IN -, IN +, OUT, EN \qquad Output Short-Circuit Duration to V_{CC} or V_{EE}. \qquad ..Continuous Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
5 -pin SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). \qquad .571 mW
8 -pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad .471 mW

8-pin μ MAX (derate $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 330 mW pin SO (derate 8.3 mW C above +70 C) 16-pin QSOP (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots667 \mathrm{~mW}$ $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10sec) \qquad $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, I \mathrm{~N}_{-}=0 \mathrm{~V}, \mathrm{EN}_{-}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty\right.$ to ground, $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} / 2$, noninverting configuration, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{IN}_{-}=0 \mathrm{~V}, \mathrm{EN}_{-}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega\right.$ to ground, noninverting configuration, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BWSS	VOUT $=20 \mathrm{mV}$-p		200		MHz
Large-Signal -3dB Bandwidth	BWLS	Vout $=2 \mathrm{Vp}$-p		140		MHz
Bandwidth for 0.1dB Gain Flatness	BW0.1dB	Vout $=20 \mathrm{mVp}-\mathrm{p}($ Note 4)		630		MHz
Slew Rate	SR	VOUT $=2 \mathrm{~V}$ step		600		V/ $/ \mathrm{s}$
Settling Time to 0.1\%	ts	VOUT $=2 \mathrm{~V}$ step		45		ns
Rise/Fall Time	$t_{\text {R }}, \mathrm{t}_{\mathrm{F}}$	VOUT $=100 \mathrm{mVp}-\mathrm{p}$		1		ns
Spurious-Free Dynamic Range	SFDR	$\mathrm{fc}^{\text {c }}=5 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{Vp}-\mathrm{p}$		-78		dBc
Harmonic Distortion	HD	$\begin{aligned} & \text { VOUT }=2 V p-p, \\ & f C=5 M H z \end{aligned}$	Second harmonic	-78		dBc
			Third harmonic	-82		
			Total harmonic distortion	-75		
Third-Order Intercept	IP3	$\mathrm{f}=10.0 \mathrm{MHz}$		35		dBm
Input 1dB Compression Point		$\mathrm{fc}=10 \mathrm{MHz}, \mathrm{AvCL}=+2 \mathrm{~V} / \mathrm{V}$		11		dBm
Differential Phase Error	DP	NTSC, RL = 150Ω		0.02		degrees
Differential Gain Error	DG	NTSC, RL $=150 \Omega$		0.04		\%
Input Noise Voltage Density	e_{n}	$\mathrm{f}=10 \mathrm{kHz}$		10		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density	in	$\mathrm{f}=10 \mathrm{kHz}$		1.3		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Capacitance	CIN			1		pF
Disabled Output Capacitance	Cout(OFF)	MAX4019, $\mathrm{EN}_{-}=0 \mathrm{~V}$		2		pF
Output Impedance	Zout	$\mathrm{f}=10 \mathrm{MHz}$		6		Ω
Buffer Enable Time	ton	MAX4019		100		ns
Buffer Disable Time	tofF	MAX4019		1		$\mu \mathrm{s}$
Buffer Gain Matching		MAX4017/MAX4019/MAX4022, $\mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=20 \mathrm{mVp}-\mathrm{p}$		0.1		dB
Buffer Crosstalk	Xtalk	MAX4017/MAX4019/MAX4022, $\mathrm{f}=10 \mathrm{MHz}$, Vout $=2 \mathrm{Vp}-\mathrm{p}$		-95		dB

Note 1: The MAX4014EUK is 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature limits are guaranteed by design.
Note 2: Tested with VOUT = +2.5V.
Note 3: PSRR for single +5 V supply tested with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+4.5 \mathrm{~V}$ to +5.5 V ; for dual $\pm 5 \mathrm{~V}$ supply with $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$ to -5.5 V , $\mathrm{V}_{\mathrm{CC}}=+4.5 \mathrm{~V}$ to +5.5 V ; and for single +3 V supply with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+3.15 \mathrm{~V}$ to +3.45 V .
Note 4: Guaranteed by design.

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{AVCL}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

HARM ONIC DISTORTION

LARGE-SIGNAL GAIN vs. FREQUENCY

HARM ONIC DISTORTION vs. FREQUENCY

MAX4019

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{AVCL}^{2}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{AVCL}^{2}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

IRE

TIME (20ns/div)
$V_{C M}=0.9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ to GROUND

TIME (20ns/div)
$V_{C M}=1.25 \mathrm{~V}, R_{L}=100 \Omega$ to GROUND

TIME (20ns/div)
$V_{C M}=1.75 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=100 \Omega$ to GROUND

SM ALL-SIGNAL PULSE RESPONSE

TIME (20ns/div)

ENABLE RESPONSE TIME

6

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23

Pin Description

PIN						NAME	FUNCTION
MAX4014	MAX4017	MAX4019		MAX4022			
SOT23-5	SO/uMAX	SO	QSOP	SO	QSOP		
-	-	-	8, 9	-	8, 9	N.C.	No Connect. Not internally connected. Tie to ground or leave open.
1	-	-	-	-	-	OUT	Amplifier Output
2	4	11	13	11	13	VEE	Negative Power Supply or Ground (in single-supply operation)
3	-	-	-	-	-	$\mathrm{IN}+$	Noninverting Input
4	-	-	-	-	-	IN-	Inverting Input
5	8	4	4	4	4	VCC	Positive Power Supply
-	1	7	7	1	1	OUTA	Amplifier A Output
-	2	6	6	2	2	INA-	Amplifier A Inverting Input
-	3	5	5	3	3	INA+	Amplifier A Noninverting Input
-	7	8	10	7	7	OUTB	Amplifier B Output
-	6	9	11	6	6	INB-	Amplifier B Inverting Input
-	5	10	12	5	5	INB+	Amplifier B Noninverting Input
-	-	14	16	8	10	OUTC	Amplifier C Output
-	-	13	15	9	11	INC-	Amplifier C Inverting Input
-	-	12	14	10	12	INC+	Amplifier C Noninverting Input
-	-	-	-	14	16	OUTD	Amplifier D Output
-	-	-	-	13	15	IND-	Amplifier D Inverting Input
-	-	-	-	12	14	IND+	Amplifier D Noninverting Input
-	-	1	1	-	-	ENA	Enable Input for Amplifier A
-	-	3	3	-	-	ENB	Enable Input for Amplifier B
-	-	2	2	-	-	ENC	Enable Input for Amplifier C

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23

Abstract

Detailed Description The MAX4014/MAX4017/MAX4019/MAX4022 are sin-gle-supply, rail-to-rail output, voltage-feedback, closedloop buffers that employ current-feedback techniques to achieve $600 \mathrm{~V} / \mu$ s slew rates and 200 MHz bandwidths. These buffers use internal 500Ω resistors to provide a preset closed-loop gain of $+2 \mathrm{~V} / \mathrm{V}$ in the noninverting configuration or $-1 \mathrm{~V} / \mathrm{V}$ in the inverting configuration. Excellent harmonic distortion and differential gain/phase performance make these buffers an ideal choice for a wide variety of video and RF signal-processing applications. Local feedback around the buffer's output stage ensures low output impedance, which reduces gain sensitivity to load variations. This feedback also produces demand-driven current bias to the output transistors for $\pm 120 \mathrm{~mA}$ drive capability, while constraining total supply current to less than 7 mA .

Applications Information

Power Supplies

These devices operate from a single +3.15 V to +11 V power supply or from dual supplies of $\pm 1.575 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$. For single-supply operation, bypass the VCC pin to ground with a $0.1 \mu \mathrm{~F}$ capacitor as close to the pin as possible. If operating with dual supplies, bypass each supply with a $0.1 \mu \mathrm{~F}$ capacitor.

Selecting Gain Configuration

Each buffer in the MAX4014 family can be configured for a voltage gain of $+2 \mathrm{~V} / \mathrm{V}$ or $-1 \mathrm{~V} / \mathrm{V}$. For a gain of

Figure 1a. Noninverting Gain Configuration $(A v=+2 V / V)$
$+2 \mathrm{~V} / \mathrm{V}$, ground the inverting terminal. Use the noninverting terminal as the signal input of the buffer (Figure 1a). Grounding the noninverting terminal and using the inverting terminal as the signal input configures the buffer for a gain of -1V/V (Figure 1b).
Since the inverting input exhibits a 500Ω input impedance, terminate the input with a 56Ω resistor when the device is configured for an inverting gain in 50Ω applications (terminate with 88Ω in 75Ω applications). Terminate the input with a 49.9Ω resistor in the noninverting case. Output terminating resistors should directly match cable impedances in either configuration.

Layout Techniques

Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC board does not degrade the buffer's performance, design it for a frequency greater than 1GHz. Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constant-impedance board, observe the following guidelines when designing the board:

- Don't use wire-wrapped boards. They are too inductive.
- Don't use IC sockets. They increase parasitic capacitance and inductance.
- Use surface-mount instead of through-hole components for better high-frequency performance.
- Use a PC board with at least two layers; it should be as free from voids as possible.
- Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.

Figure 1b. Inverting Gain Configuration $(A v=-1 V / V)$

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23

Figure 2. Enable Logic-Low Input Current vs. Enable LogicLow Threshold

Figure 3. Circuit to Reduce Enable Logic-Low Input Current

Input Voltage Range and Output Swing

The input range for the MAX4014 family extends from (VEE - 100mV) to (VCC - 2.25V). Input ground sensing increases the dynamic range for single-supply applications. The outputs drive a $2 \mathrm{k} \Omega$ load to within 60 mV of the power-suply rails. With heavier loads, the output swing is reduced as shown in the Electrical Characteristics and the Typical Operating Characteristics. As the load increases, the input range is effectively limited by

Figure 4. Enable Logic-Low Input Current vs. Enable LogicLow Threshold with 10k Ω Series Resistor
the output-drive capability, since the buffers have a fixed voltage gain of +2 or -1 .
For example, a 50Ω load can typically be driven from 40 mV above V_{EE} to 1.6 V below V_{C}, or 40 mV to 3.4 V when operating from a single +5 V supply. If the buffer is operated in the noninverting, gain of +2 configuration with the inverting input grounded, the effective input voltage range becomes 20 mV to 1.7 V , instead of the -100 mV to 2.75 V indicated by the Electrical Characteristics. Beyond the effective input range, the buffer output is a nonlinear function of the input, but it will not undergo phase reversal or latchup.

Enable
The MAX4019 has an enable feature (EN_) that allows the buffer to be placed in a low-power state. When the buffers are disabled, the supply current will not exceed $550 \mu \mathrm{~A}$ per buffer.
As the voltage at the EN_pin approaches the negative supply rail, the EN_ input current rises. Figure 2 shows a graph of EN_ input current versus EN_pin voltage. Figure 3 shows the addition of an optional resistor in series with the EN pin, to limit the magnitude of the current increase. Figure 4 displays the resulting EN pin input current to voltage relationship.

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23

Figure 5. Input Protection Circuit

Figure 6. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor

Disabled Output Resistance

The MAX4014/MAX4017/MAX4019/MAX4022 include internal protection circuitry that prevents damage to the precision input stage from large differential input voltages, as shown in Figure 5. This protection circuitry consists of five back-to-back Schottky diodes between IN_+ and $\mathrm{IN}_{\text {_ }}$. These diodes lower the disabled output resistance from $1 \mathrm{k} \Omega$ to 500Ω when the output voltage is 3 V greater or less than the voltage at $\mathrm{IN}_{\mathbf{+}}+$. Under these

Figure 7. Driving a Capacitive Load through an Isolation Resistor
conditions, the input protection diodes will be forward biased, lowering the disabled output resistance to 500Ω.

Output Capacitive Loading and Stability The MAX4014/MAX4017/MAX4019/MAX4022 provide maximum AC performance with no load capacitance. This is the case when the load is a properly terminated transmission line. However, they are designed to drive up 25 pF of load capacitance without oscillating, but with reduced AC performance.
Driving large capacitive loads increases the chance of oscillations occurring in most amplifier circuits. This is especially true for circuits with high loop gains, such as voltage followers. The buffer's output resistance and the load capacitor combine to add a pole and excess phase to the loop response. If the frequency of this pole is low enough to interfere with the loop response and degrade phase margin sufficiently, oscillations can occur.
A second problem when driving capacitive loads results from the amplifier's output impedance, which looks inductive at high frequencies. This inductance forms an L-C resonant circuit with the capacitive load, which causes peaking in the frequency response and degrades the amplifier's gain margin.
Figure 6 shows the frequency response of the MAX4014/ MAX4017/MAX4019/MAX4022 under different capacitive loads. To drive loads with greater than 25 pF of capacitance or to settle out some of the peaking, the output requires an isolation resistor like the one shown in

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23

Figure 8. Capacitive Load vs. Isolation Resistance

Figure 7. Figure 8 is a graph of the optimal isolation resistor versus load capacitance. Figure 9 shows the frequency response of the MAX4014/MAX4017/MAX4019/ MAX4022 when driving capacitive loads with a 27Ω isolation resistor.

Figure 9. Small-Signal Gain vs. Frequency with Load Capacitance and 27Ω Isolation Resistor

Coaxial cables and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the lines' capacitance.

Low-Cost, High-Speed, Single-Supply, Gain of +2 Buffers with Rail-to-Rail Outputs in SOT23

QSOP

Chip Information

PART NUMBER	NO. OF TRANSISTORS
MAX4014	95
MAX4017	190
MAX4019	299
MAX4022	362

SUBSTRATE CONNECTED TO Vee

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

[^0]Printed USA
MAXINI is a registered trademark of Maxim Integrated Products.

[^0]: © 1997 Maxim Integrated Products

