DC-Coupled, UCSP 3.125Gbps Equalizer

General Description

The MAX3803 equalizer automatically provides compensation for transmission-medium losses encountered with FR4 stripline and cable in an incredibly small 2 mm $\times 2.5 \mathrm{~mm}$ package. It is ideal for backplane applications requiring up to 40in between the line card and the switch card or up to 10 m of twin ax cable between racks. Its small size provides placement and routing flexibility. The CML inputs and outputs are DC-coupled and can be terminated to a supply as low as +1.1 V . The MAX3803 operates from $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and consumes 160 mW at +3.3 V .

Applications

Backplane Interconnect
Rack-to-Rack Interconnect
Common-Mode Voltage Translation
(LVDS, PECL, or CML)

Features

- DC-Coupled Input and Output to Terminations as Low as +1.1V
- $2 \mathrm{~mm} \times 2.5 \mathrm{~mm}$ UCSP ${ }^{\text {TM }}$
- 1Gbps to 3.2Gbps Operating Range
- Spans 40in (1m) of FR4
- Spans 10m, 28AWG Twin Ax
- Receive Equalization to Reduce ISI

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3803UBP-T	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5×4 UCSP

Pin Configuration appears at end of data sheet.
UCSP is a trademark of Maxim Integrated Products, Inc.

Typical Application Circuit

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

DC-Coupled, UCSP 3.125Gbps Equalizer

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, $\mathrm{V}_{\mathrm{Cc}}, \mathrm{V}_{\mathrm{TI}}$, and $\mathrm{V}_{\mathrm{TO}} \ldots . ~$
V to +6 V
Continuous Output Current.................... 25 mA to +25 mA $\mathrm{IN} \pm$, OUT \pm, EN -0.5 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\right)$

Operating Ambient Temperature Range $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Ambient Temperature Range................. $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	$\mathrm{V}_{\text {cc }}$		3.0	3.3	3.6	V
Input Termination Voltage	$\mathrm{V}_{\text {TI }}$		1.1		VCC	V
Output Termination Voltage	VTO		1.1		Vcc	V
Supply Noise Tolerance		$10 \mathrm{~Hz} \leq \mathrm{f}<100 \mathrm{~Hz}$		100		mVP-P
		$100 \mathrm{~Hz} \leq \mathrm{f}<1 \mathrm{MHz}$	40			
		$1 \mathrm{MHz} \leq \mathrm{f} \leq 2.5 \mathrm{GHz}$		10		
Operating Ambient Temperature			0	25	85	${ }^{\circ} \mathrm{C}$
Bit Rate		NRZ data	2.488		3.125	Gbps
CID		Consecutive identical digits			100	bits

ELECTRICAL CHARACTERISTICS

(Typical values are at +3.3 V and at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Specifications guaranteed over specified operating conditions.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current (Note 1)		EN = high		45	65	mA
		EN = low		14	30	
Output Driver Supply Current		(Note 2)		9	14	mA
Input Swing (Note 1)		Measured differentially at point A (Figure 1)	400		1000	$m V_{P-P}$
Input Common-Mode Voltage Range		(Note 1)	$\begin{aligned} & \mathrm{V}_{\mathrm{TI}}- \\ & 0.25 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{\mathrm{TI}}-$	V
Input Return Loss		100 MHz to 2.5 GHz		10		dB
Input Resistance		Single ended (Note 1)	42.5	50	57.5	Ω
Output Swing (Notes 1, 3)		EN = high	400	450	600	mVP-P
		EN = low		30		
Output Common-Mode Voltage				$\begin{aligned} & \text { VTO }^{-} \\ & 0.112 \mathrm{~V} \end{aligned}$		V
Output Resistance		Single ended (Note 1)	42.5	50	57.5	Ω
Output Return Loss		100 MHz to 2.5 GHz		10		dB
Output Transition Time	t_{r}, t_{f}	20\% to 80\% (Notes 2, 4)	40	70	100	ps
Differential Skew		Difference in 50% crossing between OUT+ and OUT-		10		ps

DC-Coupled, UCSP 3.125Gbps Equalizer

ELECTRICAL CHARACTERISTICS (continued)

(Typical values are at +3.3 V and at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Specifications guaranteed over specified operating conditions.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Residual Deterministic Jitter Output (2.5Gbps, CJTPAT) (Notes 2, 5)		Oin, 6-mil FR4		0.01	0.10	UI
		10in, 6-mil FR4		0.04	0.10	
		20in, 6-mil FR4		0.05	0.10	
		30in, 6-mil FR4		0.05	0.15	
		40in, 6-mil FR4		0.07	0.15	
		3 m Tensolite cable		0.03	0.10	
		5 m Tensolite cable		0.1	0.20	
		10 m Tensolite cable		0.14	0.25	
Residual Deterministic Jitter Output (2.5Gbps, 2^{7} PRBS + 100 CID) (Notes 2, 6)		Oin, 6-mil FR4		0.01	0.10	UI
		10in, 6-mil FR4		0.06	0.10	
		20in, 6-mil FR4		0.11	0.15	
		30in, 6-mil FR4		0.15	0.20	
		3 m Tensolite cable		0.09	0.15	
Residual Deterministic Jitter Output (3.125Gbps, CJTPAT) (Notes 2, 7)		Oin, 6-mil FR4		0.01	0.10	UI
		10in, 6-mil FR4		0.02	0.10	
		20in, 6-mil FR4		0.03	0.15	
		30in, 6-mil FR4		0.06	0.15	
		40in, 6-mil FR4		0.11	0.25	
		3 m Tensolite cable		0.05	0.10	
		5 m Tensolite cable		0.16	0.25	
Random Jitter Output		(Notes 2, 4)		2	3	psRMS
Latency		From IN to OUT		0.3		ns
Low-Frequency Cutoff				15		kHz
LVTTL Input High Voltage	V_{IH}	(Note 1)	1.5			V
LVTTL Input Low Voltage	$\mathrm{V}_{\text {IL }}$	(Note 1)			0.5	V
LVTTL Input High Current	IIH	(Note 1)			10	$\mu \mathrm{A}$
LVTTL Input Low Current	I/L	(Note 1)			10	$\mu \mathrm{A}$

Note 1: Production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by design and characterization.
Note 2: Specifications are guaranteed by design and characterization.
Note 3: Measured differentially at point C with $50 \Omega \pm 1 \%$ at each side (Figure 1).
Note 4: Using a 0000011111 or equivalent pattern at selected bit rate. Measured at 600 mVP -p input voltage, 10 m cable or 40 in FR4, at 2.5 Gbps and within 2in of output pins.
Note 5: Difference in peak-to-peak deterministic jitter between reference points A and C in Figure 1. Evaluated at 2.5 Gbps with CJTPAT.
Note 6: Difference in peak-to-peak deterministic jitter between reference points A and C in Figure 1. Evaluated at 2.5Gbps with a PRBS 2^{7} with 100 CIDs input pattern.
Note 7: Difference in peak-to-peak deterministic jitter between reference points A and C in Figure 1. Evaluated at 3.125Gbps with CJTPAT.

DC-Coupled, UCSP 3.125Gbps Equalizer

100ps/div
SUPPLY CURRENT vs. AMBIENT TEMPERATURE

RANDOM JITTER vs. INPUT AMPLITUDE (40in, 6-mil FR4 STRIPLINE, PATTERN = K28.7)

100ps/div

RANDOM JITTER vs. LENGTH
($\operatorname{IN} \pm=400 \mathrm{mV}$ P-p, PATTERN $=\mathbf{K 2 8 . 7}$)

DETERMINISTIC JITTER vs. BIT RATE (30in, 6-mil FR4 STRIPLINE, IN $\pm=1000 \mathrm{mV}$ P-p)

680ps/div

RANDOM JITTER vs. LENGTH ($\operatorname{IN} \pm=800 \mathrm{mV}$ P.p, PATTERN $=\mathbf{K 2 8 . 7}$)

DETERMINISTIC JITTER vs. BIT RATE (33ft, 28AWG TENSOLITE CABLE, $\mathbf{I N} \pm=400 \mathrm{mV}$ P-p)

DC-Coupled, UCSP 3.125Gbps Equalizer

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{TI}}=+1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{TO}}=+1.1 \mathrm{~V}\right.$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Pin Description

PIN	NAME	
A1	$V_{T O}$	Output Termination Voltage
A2	EN	Enable. Connect to VCC to enable the equalizer core. Connect to GND to disable the equalizer core, TTL. Do not leave unconnected.
A3, A4	N.C.	No Connection
A5	$V_{T I}$	Input Termination Voltage
B1	OUT+	Positive Data Output, CML
B5	IN+	Positive Data Input, CML
C1	OUT-	Negative Data Output, CML
C5	IN-	Negative Data Input, CML
D1, D5	GND	Supply Ground
D2, D3, D4	VCC	Core Supply Voltage

DC-Coupled, UCSP 3.125Gbps Equalizer

Detailed Description and Applications Information

The MAX3803 is an adaptive equalizer designed to extend the reach of transmission lines in high-frequency backplane and rack-to-rack interconnect applications. The MAX3803 automatically adjusts to attenuation caused by skin-effect and dielectric losses. Although optimized for coded and scrambled data between 2.488Gbps and 3.125Gbps, the MAX3803 provides effective compensation for rates between 1 Gbps and 3.2Gbps.
The MAX3803 consists of low common-mode input and output buffers, an equalizer core, a DC-offset-correction loop, and a limiting amplifier (Figure 2).

Low Common-Mode Input and Output The MAX3803 permits DC-coupling to CML transmitters and receivers that require termination voltages as low as 1.1 V and as high as V_{CC}. Use the V_{T} and V_{TO} pins to maintain compatible common-mode levels between the data source and load. V_{T} and V_{TO} are independent and can be used to bridge two common-mode requirements without the use of DC-blocking capacitors. See Figure 3 and Figure 4 for the equivalent input and output structures.

$\leq 40 i n$ EDGE-COUPLED TRANSMISSION LINE ON FR4 OR $\leq 10 \mathrm{~m}$ 28AWG TWIN AX CABLE

Figure 1. Backplane Interconnect

Figure 2. Functional Diagram

Media Equalization
Equalization at the input compensates for high-frequency loss encountered with FR4 stripline (edge-coupled) or 28AWG twin ax. The equalizer core is an amplifier with a self-adjusting frequency response.

DC Cancellation Loop
The DC cancellation loop removes the pulse-width distortion caused by internal offsets. The closed-loop response creates a low-frequency cutoff of approximately 15 kHz , below which the offset control tracks the AC signal. This also sets the limit on the maximum time

Figure 3. CML Input Structure

Figure 4. CML Output Structure

DC-Coupled, UCSP 3.125Gbps Equalizer

required to reach a balanced mark/space ratio (i.e., 50%). This permits the use of scrambled data as found in SONET and SDH transmissions.

Limiting Amplifier
The limiting amplifier limits the outputs of the equalizer so all frequencies are at the same output voltage level.

Enable Function

Connect the EN pin to V_{CC} to enable the equalizer core. Connect the EN pin to GND to disable the equalizer core when valid data is not present to save power. When EN is low, the outputs are static with approximately 30 mV p-p differential. This pin must be connected to VCC or GND.

Packaging

The MAX3803 is packaged in a $2.5 \mathrm{~mm} \times 2 \mathrm{~mm}, 5 \times 4$ chip-scale package (USCP). The six center ball positions (B2, B3, B4, C2, C3, C4) are not populated, leaving fourteen perimeter balls. This package does not require underfill over an ambient temperature range of $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Thermal dissipation is provided through the GND connection. Go to Maxim's website, www.maximic.com, for the latest packaging information and details about UCSP layout and handling.

Layout Techniques

For best performance, use good high-frequency layout techniques. Filter voltage supplies, keep ground connections short, and use multiple vias where possible. Use controlled-impedance transmission lines to interface with the MAX3803 high-speed inputs and outputs. Power-supply decoupling should be placed as close to the V_{CC} as possible. To reduce feedthrough, isolate input signals from output signals.

DC-Coupled, UCSP 3.125Gbps Equalizer

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2003 Maxim Integrated Products
Printed USA
MAXINI is a registered trademark of Maxim Integrated Products.

