www.DataSheet4U.con





### **General Description**

The MAX3643 burst-mode laser driver provides bias and modulation current drive for PON burst-mode ONT applications. It is specifically designed for use with a low-cost external controller for the APC (and if desired, AMC) loop. A high-speed differential burst-enable input enables the driver to switch the laser from a dark (output off) condition to full on-condition in less than 2ns. When BEN is inactive, typical modulation and bias currents are 5µA each.

Laser modulation current can be set from 10mA to 85mA and bias current can be set from 1mA to 70mA using the MODSET and BIASSET inputs. A sample-and-hold circuit is provided to capture the monitor diode output during short PON bursts, if needed, and the BEN high-speed signal is mirrored on an LVCMOS output to be used by the controller operating the APC/AMC loop.

The MAX3643 burst-mode laser driver is packaged in a 4mm x 4mm, 24-pin thin QFN package. It operates from -40°C to +85°C.

### **Applications**

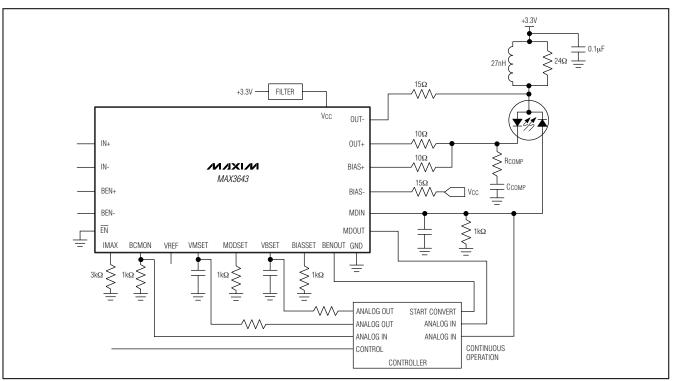
155/622/1244Mbps A/B/GPON ONT Modules

1.25Gbps IEEE EPON ONT Modules

#### \_Features

- 10mA to 85mA Modulation Current
- 1mA to 70mA Bias Current
- Monitor Diode Sample and Hold
- ♦ 45ps Output Transition Time
- 2ns Turn-On/-Off Time
- ♦ Reference Voltage Generator
- LVPECL High-Speed Inputs (Data, Burst Enable)

### **\_Ordering Information**


| PART        | TEMP RANGE     | PIN-<br>PACKAGE | PKG<br>CODE |
|-------------|----------------|-----------------|-------------|
| MAX3643ETG  | -40°C to +85°C | 24 TQFN-EP*     | T2444-3     |
| MAX3643ETG+ | -40°C to +85°C | 24 TQFN-EP*     | T2444-3     |
| * = 5 = 1   |                |                 |             |

\*EP = Exposed paddle.

+Denotes lead-free package.

Pin Configuration appears at end of data sheet.

## **Typical Application Circuit**



### 

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. www.DataSheet4U.com

## **ABSOLUTE MAXIMUM RATINGS**

Supply Voltage V<sub>CC</sub> .....-0.5V to +4.0V Current into BIAS-, BIAS+, OUT-, OUT+ .....-20mA to +150mA Voltage at VMSET, VBSET, IN+, IN-, BEN+, BEN-, EN, MDIN, MDOUT, BENOUT, BIASMON .....-0.5V to (V<sub>CC</sub> + 0.5V) Voltage at MODSET, BIASSET, VREF, IMAX .....-0.5V to +3.0V Voltage at OUT-, OUT+, BIAS-, BIAS+ ....+0.3V to (V<sub>CC</sub> + 0.5V)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### **OPERATING CONDITIONS**

| PARAMETER               | SYMBOL | CONDITIONS | MIN   | ТҮР | МАХ  | UNITS |
|-------------------------|--------|------------|-------|-----|------|-------|
| Supply Turn-On Time     |        | 10% to 90% | 0.001 |     | 1000 | ms    |
| Ambient Temperature     |        |            | -40   |     | +85  | °C    |
| Data Rate               |        |            |       |     | 1250 | Mbps  |
| Voltage at VMSET, VBSET |        |            | 0     |     | 1.4  | V     |
| Voltage at BIASMON      |        |            | 0     |     | 1.4  | V     |
| Voltage at MDIN         |        |            | 0     |     | 2.56 | V     |

### **ELECTRICAL CHARACTERISTICS**

(V<sub>CC</sub> = +3.0V to +3.6V, T<sub>A</sub> = -40°C to +85°C. Typical values are at V<sub>CC</sub> = +3.3V, T<sub>A</sub> = +25°C, I<sub>BIAS</sub> = 20mA, I<sub>MOD</sub> = 30mA, unless otherwise noted.) (Note 1)

| PARAMETER                           | SYMBOL            | CONDITIONS                                                                         | MIN                       | ТҮР                       | MAX                                      | UNITS             |
|-------------------------------------|-------------------|------------------------------------------------------------------------------------|---------------------------|---------------------------|------------------------------------------|-------------------|
| Supply Current                      | Icc               | Excluding laser bias and mode currents, max at $I_{MOD}$ = 85mA, $I_{BIAS}$ = 70mA |                           | 32                        | 51                                       | mA                |
| I/O SPECIFICATIONS                  |                   |                                                                                    |                           |                           |                                          |                   |
| LVPECL Differential Input Voltage   | VIN               | $V_{IN} = (V_{IN+}) - (V_{IN-})$                                                   | 200                       |                           | 1600                                     | mV <sub>P-P</sub> |
| LVPECL Common-Mode Input<br>Voltage | VCM               |                                                                                    | V <sub>CC</sub> -<br>1.49 | V <sub>CC</sub> -<br>1.32 | V <sub>CC</sub> -<br>V <sub>IN</sub> / 4 | V                 |
| LVCMOS Output High Voltage          |                   | I <sub>OH</sub> = -100µА                                                           | V <sub>CC</sub> -<br>0.2  |                           |                                          | V                 |
| LVCMOS Output Low Voltage           |                   | I <sub>OL</sub> = 100μA                                                            |                           |                           | 0.2                                      | V                 |
| BENOUT Propagation Delay            | Td                | $C_L$ = 20pF, from BEN zero crossing to 67% CMOS level                             |                           | 30                        |                                          | ns                |
| LVCMOS Input Pullup Resistance      |                   |                                                                                    | 75                        |                           |                                          | kΩ                |
| LVCMOS Input Current                |                   | $V_{IN} = 0V \text{ or } V_{IN} = V_{CC}$                                          |                           |                           | 50                                       | μA                |
| LVCMOS Input High Voltage           |                   |                                                                                    | 2.0                       |                           | Vcc                                      | V                 |
| LVCMOS Input Low Voltage            |                   |                                                                                    | 0.2                       |                           | 0.8                                      | V                 |
| BIAS GENERATOR SPECIFICATI          | ONS               |                                                                                    |                           |                           |                                          |                   |
| Bias Current Range                  | I <sub>BIAS</sub> | $V_{BIAS+}, V_{BIAS-} \ge 0.6V$                                                    | 1                         |                           | 70                                       | mA                |
| Bias Current, Burst Off             | IBIAS, OFF        | $BEN = low \text{ or } \overline{EN} = high$                                       |                           | 5                         | 50                                       | μA                |
|                                     |                   | $1mA \le I_{BIAS} < 2mA$ , VBSET = VREF                                            |                           | 88                        |                                          |                   |
| BIASSET Current Gain                | GBIAS             | $2mA \le I_{BIAS} < 10mA$ , VBSET = VREF                                           | 70                        | 88                        | 110                                      | mA/mA             |
|                                     |                   | $10\text{mA} \le I_{\text{BIAS}} < 70\text{mA}, \text{VBSET} = \text{VREF}$        | 82.5                      | 88                        | 94.5                                     |                   |



### **ELECTRICAL CHARACTERISTICS (continued)**

(V<sub>CC</sub> = +3.0V to +3.6V, T<sub>A</sub> = -40°C to +85°C. Typical values are at V<sub>CC</sub> = +3.3V, T<sub>A</sub> = +25°C, I<sub>BIAS</sub> = 20mA, I<sub>MOD</sub> = 30mA, unless otherwise noted.) (Note 1)

| PARAMETER                        | SYMBOL            | CONDITIONS                                                                     | MIN   | TYP | MAX   | UNITS             |
|----------------------------------|-------------------|--------------------------------------------------------------------------------|-------|-----|-------|-------------------|
| BIASSET Current Gain Stability   |                   | 5mA ≤ I <sub>BIAS</sub> ≤ 70mA (Note 13)                                       | -4.4  |     | +4.4  | %                 |
| BIASSET Current Gain Linearity   |                   | $5mA \le I_{BIAS} \le 70mA$ (Note 14)                                          | -3.75 |     | +3.75 | %                 |
| Bias Current Overshoot           |                   | V <sub>CC</sub> turn-on/-off < 1s                                              |       |     | 10    | %                 |
| Bias Current Monitor Gain        | G <sub>BSM</sub>  | $2\text{mA} \leq I_{\text{BIAS}} \leq 70\text{mA}, \text{VBSET} = \text{VREF}$ | 11    | 14  | 17    | mA/A              |
| Bias Current Monitor Gain        |                   | 1mA ≤ I <sub>BIAS</sub> < 5mA                                                  |       | ±4  |       | %                 |
| Stability                        |                   | 5mA ≤ I <sub>BIAS</sub> ≤ 70mA                                                 | -5    |     | +5    | /0                |
| BIASSET Resistor                 | R <sub>BIAS</sub> |                                                                                | 40    | 50  | 60    | Ω                 |
| MODULATOR SPECIFICATIONS         | 5                 |                                                                                |       |     |       |                   |
| Modulation Current Range         | IMOD              |                                                                                | 10    |     | 85    | mA                |
| Modulation Current Off           | IMOD, OFF         | $BEN = low \text{ or } \overline{EN} = high \text{ or } V_{IN} = low$          |       | 5   | 120   | μA                |
| Instantanagua Valtaga at OLIT    |                   | $10mA \le I_{MOD} < 60mA$                                                      | 0.6   |     |       | V                 |
| Instantaneous Voltage at OUT+    |                   | $60mA \le I_{MOD} \le 85mA$                                                    | 0.75  |     |       | v                 |
| MODSET Current Gain              | GMOD              | 10mA < I <sub>MOD</sub> < 85mA, VMSET = VREF                                   | 82.5  | 88  | 94.5  | mA/mA             |
| MODSET Current Gain Stability    |                   | (Note 13)                                                                      | -4.4  |     | +4.4  | %                 |
| MODSET Current Gain Linearity    |                   | (Note 14)                                                                      | -2.2  |     | +2.2  | %                 |
|                                  |                   | IBIASSET = 0.15mA, IMODSET = 0.7mA                                             |       | 0.5 |       |                   |
| MODSET, BIASSET Gain             |                   | IMODSET = IBIASSET = 0.15mA                                                    |       |     | 1.7   | %                 |
| Matching (Note 15)               |                   | I <sub>MODSET</sub> = I <sub>BIASSET</sub> = 0.4mA                             |       |     | 1     | %                 |
|                                  |                   | I <sub>MODSET</sub> = I <sub>BIASSET</sub> = 0.55mA                            |       |     | 1     |                   |
| Modulation Current Rise Time     | t <sub>R</sub>    | 20% to 80%                                                                     |       | 45  | 85    | ps                |
| Modulation Current Fall Time     | tF                | 20% to 80%                                                                     |       | 45  | 85    | ps                |
| Deterministic Jitter             |                   | (Note 3)                                                                       |       | 17  | 45    | psp-p             |
| Random Jitter                    |                   | (Note 4)                                                                       |       | 0.8 | 1.4   | ps <sub>RMS</sub> |
| MODSET Resistor                  | R <sub>MOD</sub>  |                                                                                | 40    | 50  | 60    | Ω                 |
| MODSET, BIASSET OPERATION        |                   | ER SPECIFICATIONS                                                              |       |     |       |                   |
| MODSET, BIASSET Voltage<br>Range |                   |                                                                                | 0.005 |     | 1.4   | V                 |
| Voltage Error                    |                   | (Note 5)                                                                       |       |     | ±5    | mV                |
| Input Leakage                    |                   | VMSET and VBSET pins                                                           |       | 0.1 | 1.5   | μA                |
| TURN-OFF/-ON SPECIFICATION       | IS                |                                                                                |       |     |       | •                 |
| Burst-Enable Time                |                   | (Notes 2, 6, 7)                                                                |       |     | 2.3   | ns                |
| Burst-Disable Time               |                   | (Notes 2, 6, 8)                                                                |       |     | 2.0   | ns                |

### **ELECTRICAL CHARACTERISTICS (continued)**

(V<sub>CC</sub> = +3.0V to +3.6V,  $T_A$  = -40°C to +85°C. Typical values are at V<sub>CC</sub> = +3.3V,  $T_A$  = +25°C,  $I_{BIAS}$  = 20mA,  $I_{MOD}$  = 30mA, unless otherwise noted.) (Note 1)

| PARAMETER                                                                                                                                             | SYMBOL                                                               | CONDITIONS                                                                                      | MIN   | TYP   | MAX   | UNITS    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------|-------|-------|----------|
| SAMPLE/HOLD SPECIFICATION                                                                                                                             | S                                                                    |                                                                                                 |       |       |       |          |
| MDIN Voltage Range                                                                                                                                    |                                                                      |                                                                                                 | 0.05  |       | 2.56  | V        |
| MDOUT Settling                                                                                                                                        |                                                                      | Relative to final value at $3\mu s$ , $C_L < 20 pF$                                             |       |       | ±1    | mV       |
| Sample/Hold Droop                                                                                                                                     |                                                                      | After 100µs (Note 9)                                                                            |       |       | ±2.56 | mV       |
| Sampling Error                                                                                                                                        |                                                                      | Final value measured after 10µs<br>(MDOUT - MDIN), burst width > 576ns                          |       | 3     | ±14   | mV       |
| BANDGAP VOLTAGE REFEREN                                                                                                                               | CE SPECIFIC                                                          | ATIONS                                                                                          |       |       |       |          |
| VREF Output                                                                                                                                           |                                                                      | $R_L > 10k\Omega$ , $C_L < 50pF$                                                                | 1.175 | 1.235 | 1.295 | V        |
| MODULATION/BIAS CURRENT D                                                                                                                             | ISABLE                                                               |                                                                                                 |       |       |       |          |
| Enable Time                                                                                                                                           |                                                                      | $5mA < I_{BIAS}$ , $10mA < I_{MOD}$ (Note 10)                                                   |       |       | 5.5   | μs       |
| Disable Time                                                                                                                                          |                                                                      | (Notes 2, 11)                                                                                   |       |       | 375   | ns       |
| R <sub>IMAX</sub> Range                                                                                                                               |                                                                      |                                                                                                 | 3     |       | 15    | kΩ       |
|                                                                                                                                                       |                                                                      | $R_{IMAX} = 3k\Omega$                                                                           | 155   |       |       |          |
| Current Limit (Tested with I <sub>BIAS</sub> = I <sub>MOD</sub> )                                                                                     | IBIAS+IMOD                                                           | $R_{IMAX} = 5k\Omega$                                                                           | 100   |       | 150   | mA       |
| MOD)                                                                                                                                                  |                                                                      | $R_{IMAX} = 10k\Omega$                                                                          | 50    |       | 75    |          |
| OPTICAL EVALUATION                                                                                                                                    |                                                                      |                                                                                                 |       |       |       |          |
| Eye Margin                                                                                                                                            |                                                                      | 1.25Gbps (Note 12)                                                                              |       | 33    |       | %        |
| AC parameters are guara<br><b>lote 2:</b> For 10mA ≤ I <sub>MOD</sub> ≤ 85mA<br><b>lote 3:</b> Deterministic jitter measu<br>LVPECL inputs terminated | nteed by designand $4mA \le IB$<br>red with a cond<br>d by the netwo | $I_{AS} \leq 70$ mA.<br>tinuous pattern of 2 <sup>7</sup> -1 PRBS, 80 ones, 2 <sup>7</sup> -1 P |       |       |       | and both |

**Note 5:** Voltage difference between VMSET and MODSET or VBSET and BIASSET excluding IR drops. The maximum operating voltage at VMSET or VBSET must be less than 1.4V for proper operation.

Note 6: Turn-on/-off time is when the BEN+/BEN- LVPECL inputs are used to control modulation and bias currents.

**Note 7:** Burst-enable delay is measured between the time at which the rising edge of the differential burst-enable input reaches the midpoint, and the time at which the combined output currents (bias plus modulation) reach 90% of their final level.

Note 8: Burst-disable delay is measured between the time at which the falling edge of the differential burst-enable input reaches the midpoint, and the time at which the combined output currents (bias plus modulation) fall below 10% of the bias-on current.
Note 9: Droop measured with sample/hold output load of 10MΩ.

**Note 10:** Enable delay is measured between the time at which the falling edge of the  $\overline{EN}$  input reaches  $\leq 0.8V$ , and the time at which the combined output currents (bias plus modulation) reach 90% of their final level.

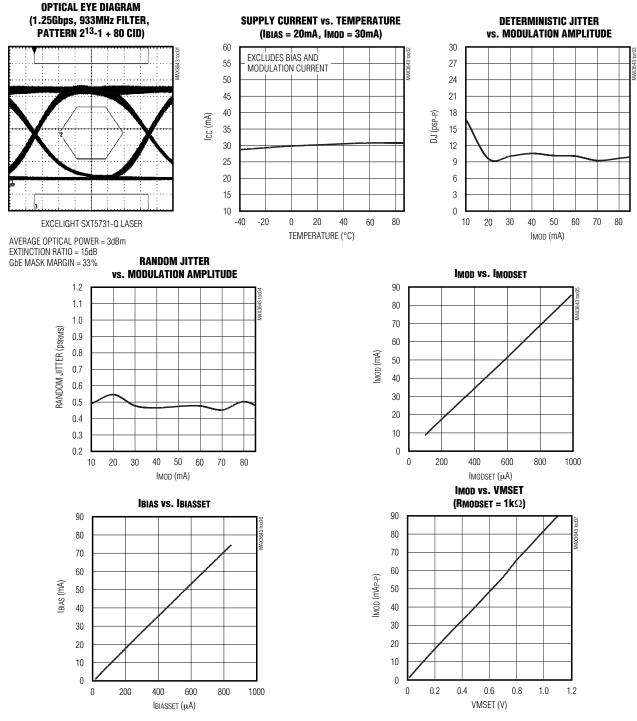
Note 11: Disable delay is measured between the time at which the rising edge of the EN input reaches ≥ 2V, and the time at which the combined output currents (bias plus modulation) fall below 10% of the bias-on current.

Note 12: Excelight SXT5731-Q laser.

Note 13: Current gain stability = [(Gain – nominal Gain) / nominal Gain], nominal Gain at  $V_{CC}$  = 3.3V,  $T_A$  = +25°C.

#### Note 14: Gain linearity = (Gainmax – Gainmin), Gainavg = Gainmax - Gainmin

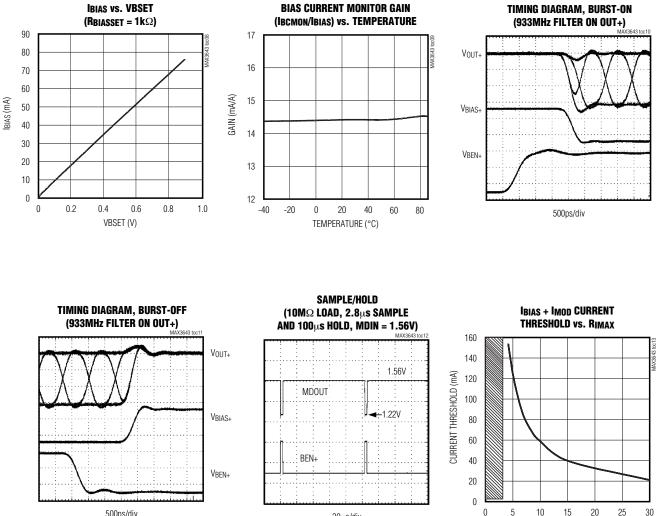
|                          | Gainavg/2            | 2                        |                                            |
|--------------------------|----------------------|--------------------------|--------------------------------------------|
| Note 15: Gain matching = | Gainmod / Gainbias - | Gainmodnom / Gainbiasnom | nominal at $V_{CC}$ = 3.3V, $T_A$ = +25°C. |
|                          | Gainmodn             | om / Gainbiasnom         |                                            |




M/X/M

# **Burst-Mode Laser Driver**

### **Typical Operating Characteristics**


(Typical values are at V<sub>CC</sub> = +3.3V, T<sub>A</sub> = +25°C, data pattern = 2<sup>7</sup>-1 PRBS + 80 ones + 2<sup>7</sup>-1 PRBS + 80 zeros, unless otherwise noted.)



**MAX3643** 

### **Typical Operating Characteristics (continued)**

(Typical values are at V<sub>CC</sub> = +3.3V, T<sub>A</sub> = +25°C, data pattern = 2<sup>7</sup>-1 PRBS + 80 ones + 2<sup>7</sup>-1 PRBS + 80 zeros, unless otherwise noted.)



20µs/div

500ps/div



 $R_{IMAX}(k\Omega)$ 

www.DataSheet4U.com

## **Pin Description**

| PIN    | NAME    | FUNCTION                                                                                                                                         |
|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | VCCA    | Analog Supply Voltage                                                                                                                            |
| 2      | IN+     | Noninverted Data Input, LVPECL Compatible                                                                                                        |
| 3      | IN-     | Inverted Data Input, LVPECL Compatible                                                                                                           |
| 4      | Vccs    | Signal Supply Voltage                                                                                                                            |
| 5      | BEN+    | Noninverted Burst-Enable Input, LVPECL Compatible                                                                                                |
| 6      | BEN-    | Inverted Burst-Enable Input, LVPECL Compatible                                                                                                   |
| 7      | BENOUT  | Burst-Enable Output, LVCMOS. Signal replicates BEN input.                                                                                        |
| 8      | ĒN      | Enable Input LVCMOS. Active low enables BIAS± and MOD± outputs.                                                                                  |
| 9      | BCMON   | Bias Current Monitor. Current out of this pin develops a ground-referenced voltage across an external resistor proportional to the bias current. |
| 10     | IMAX    | Current-Limit Reference. Connect a resistor from IMAX to GND to set maximum IBIAS plus IMOD.                                                     |
| 11     | MDOUT   | Monitor Diode Out. Analog Output for sample/hold.                                                                                                |
| 12     | MDIN    | Monitor Diode In. Analog Input for sample/hold.                                                                                                  |
| 13     | BIAS-   | Connect BIAS- to V <sub>CC</sub> Through a 15 $\Omega$ Resistor (or 5 $\Omega$ Resistor and Switching Diode)                                     |
| 14     | BIAS+   | Laser Bias Current Output. Modulation current flows into this pin when BEN input is high.                                                        |
| 15, 18 | Vcco    | Output Supply Voltage                                                                                                                            |
| 16     | OUT+    | Laser Modulation Current Output. Modulation current flows into this pin when both BEN and IN inputs are high.                                    |
| 17     | OUT-    | Connect OUT- to V <sub>CC</sub> Through a 15 $\Omega$ Resistor (or 5 $\Omega$ Resistor and Switching Diode)                                      |
| 19     | GND     | Supply Ground. This pin must be connected to ground.                                                                                             |
| 20     | MODSET  | Modulation Current Set. Current from this pin to ground sets the laser modulation current.                                                       |
| 21     | VMSET   | MODSET Reference. A ground-referenced voltage at this point establishes the MODSET reference.                                                    |
| 22     | VREF    | Reference Voltage Output. May be used for VMSET, VBSET.                                                                                          |
| 23     | VBSET   | BIASSET Reference. A ground-referenced voltage at this point establishes the BIASSET reference.                                                  |
| 24     | BIASSET | Bias Current Set. Current from this pin to ground sets the laser bias current.                                                                   |
| EP     | EP      | Exposed Paddle (Ground). The exposed pad must be soldered to the circuit board ground for proper thermal and electrical operation.               |



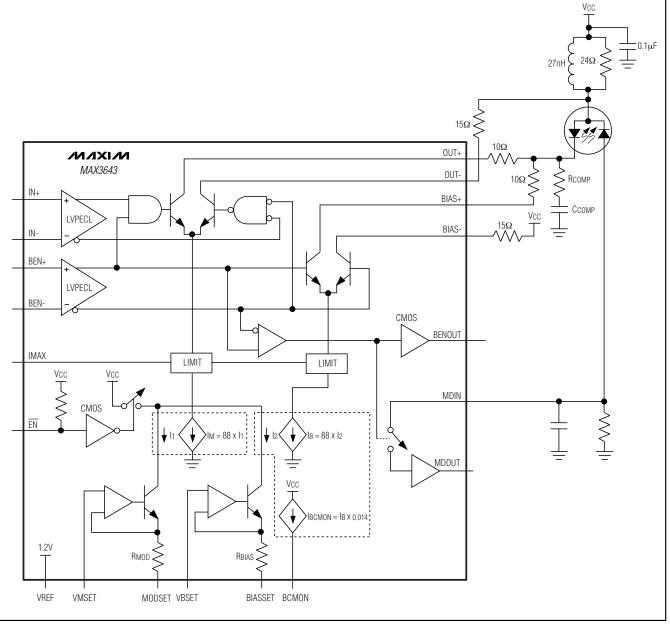



Figure 1. Functional Diagram



## **Detailed Description**

The MAX3643 laser driver includes a bias current generator, bias current monitor, modulation current generator, laser drive outputs, and monitor diode sample and hold. LVPECL-compatible inputs are provided for both high-speed data and burst enable. The high-speed burst-enable input signal is replicated on an LVCMOS output for use by the controller.

#### Laser Diode Modulation and Bias Current Generators

Laser diode modulation current amplitude is controlled by the current out of the MODSET pin, and bias current by the current out of the BIASSET pin, according to:

> IMOD = IMODSET x 88 IBIAS = IBIASSET x 88

A voltage source and two op amps are provided to enable IMODSET and IBIASSET to be set using either a resistor to ground or a current digital-to-analog converter (DAC). The high-impedance op amp reference input can be externally controlled, so that the modulation and bias currents can also be set using voltage DACs.

#### Laser Diode Modulation and Bias Current Limiter

Typical laser diodes have an absolute maximum rating of 150mA. To reduce the possibility of laser damage, the modulation current and bias current are shut off if the sum  $I_{MOD}$  +  $I_{BIAS}$  attempts to exceed the limit set by  $R_{IMAX}$ ; see the *Typical Operating Characteristics*.

#### **Bias Current Monitor**

The laser diode bias current can be monitored by measuring the voltage across an external load resistor connected from BCMON to ground. For example, a  $1k\Omega$  resistor from BCMON to ground gives the following relationship:

$$V_{BCMON} = I_{BIAS} \times G_{BSM} \times 1 k\Omega$$

The voltage at BCMON must be below 1.4V for proper operation.

#### **Output Drivers**

The modulation current ranges from 10mA to 85mA, as set by the current through MODSET. The laser modula-

tion current output OUT+ is optimized to drive a 15 $\Omega$  load, and must be DC-coupled. A damping resistor, RD, provides impedance matching to the laser diode. The combined value of the series damping resistor and the laser diode equivalent series resistance should be close to 15 $\Omega$ . An RC shunt network, RCOMP/CCOMP, should also be provided to reduce optical output aberrations and duty-cycle distortion. The values of RCOMP and CCOMP can be adjusted to match the laser and PC board layout characteristics for optimal optical eye performance. The OUT- pin is normally connected through a 15 $\Omega$  resistor to VCC or through a switching diode and series resistor to VCC. With some laser diodes, the use of a switching diode at OUT can improve the optical output eye by better matching the laser characteristics.

The bias current ranges from 1mA to 70mA, as set by the current through BIASSET. Current in the BIAS output also switches at high speed when bursting; therefore, the BIAS+ pin should be connected directly through a resistor, equal to Rp as determined above, to the laser cathode. The BIAS- pin must also be connected through a 15 $\Omega$  resistor or through a switching diode and series resistor to V<sub>CC</sub>.

When the BEN input is high, the laser driver sinks bias and modulation current according to the settings at MODSET and BIASSET. When the BEN input is low, the BIAS+ and OUT+ currents both shut off within 2ns. Note that when BEN is low, the bias current is shunted through the BIAS- output and the modulation current through the OUT- output.

#### Monitor Diode Sample and Hold

Laser monitor diode current is only generated when there is an optical output (BEN is active). When BEN is inactive, the monitor current is zero, reflecting the fact that the laser is off. A sample-and-hold circuit, triggered by the state of the BEN input, is provided in the MAX3643. During the burst-enable active period, the voltage present at MDIN is stored on an internal sample-and-hold capacitor; and during the burst-enable inactive period, that voltage is output on MDOUT; see the timing diagram in Figure 2.

While the internal sample-and-hold is sampling (BEN active), MDOUT voltage takes a 1.2V reference level.



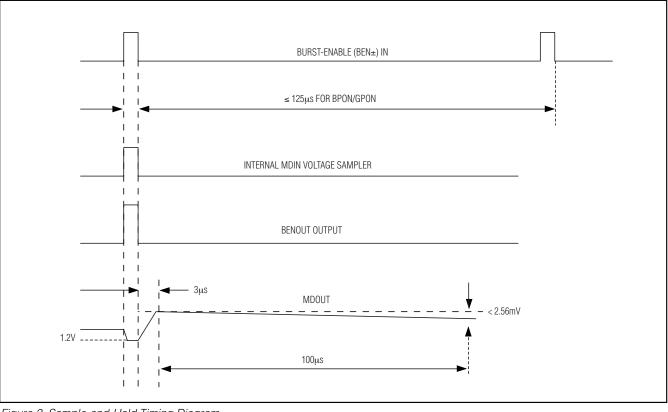



Figure 2. Sample-and-Hold Timing Diagram

#### Enable Input

An LVCMOS input,  $\overline{\text{EN}}$ , is provided to disable both bias and modulation currents under external control. The maximum time to disable laser current with the  $\overline{\text{EN}}$  control is 375ns.

#### **Setting the Current Limit**

A current limiter is provided to protect the laser diode by shutting down both bias and modulation currents when total current exceeds a value set by the resistor connected from IMAX to ground. Do not use less than  $3k\Omega$  I<sub>MAX</sub>. See the I<sub>BIAS</sub> + I<sub>MOD</sub> Current Threshold vs. RIMAX graph in the *Typical Operating Characteristics*.

#### Programming the MODSET and BIASSET Inputs

To program the laser modulation current using a current DAC, connect VMSET to VREF, attach the DAC to the MODSET pin and set the current according to:

#### IMOD = IMODSET x 88

To program the laser modulation current using a resistor or digital potentiometer, connect VMSET to VREF, attach a resistor from the MODSET pin to ground, and set the current according to:

$$I_{MOD} = \frac{1.2V}{R_{MODSET} + R_{MOD}} \times 88$$

To program the laser modulation current using a PWM voltage DAC (requiring a high-impedance load), attach a DAC output to the VMSET pin, connect a resistor from the MODSET pin to ground as shown in the *Typical Applications Circuit*, and set the current according to:

$$I_{MOD} = \frac{V_{DAC}}{R_{MODSET} + R_{MOD}} \times 88$$



This approach can also be used for a conventional voltage DAC output, if desired. In all cases, the voltage at MODSET must be kept  $\leq$  1.4V, which limits the range of acceptable values for R<sub>MODSET</sub> depending on the maximum modulation current.

Laser diode bias current is set in the same manner as modulation current.

#### LVPECL Data/Burst-Enable Inputs

The MAX3643 data and BEN inputs are biased with an on-chip, high-impedance network. When DC-coupled, the MAX3643 operates properly with signals that meet the EC table input-swing and common-mode requirements, including LVPECL and most CML.

See Figure 3 for a termination network that can be used to connect the data and BEN inputs to LVPECL data outputs. Other termination networks may also be used, as long as both the input swing and common limits are met.

#### Sample-and-Hold Operation

When the MAX3643 internal sample-and-hold is not required, the MDIN pin should be connected to ground and the MDOUT pin unconnected. If the internal sampleand-hold is required, then it is necessary to ensure that the time constant resulting from the monitor diode load resistance and the total load capacitance is compatible with the desired minimum burst interval. It is also necessary to make certain that the load at MDOUT does not exceed the capability of the MDOUT pin.

Because the voltage at MDIN is not reflected to MDOUT until after the end of the laser burst, systems using the internal sample-and-hold alone cannot support continuous mode operation, often a required feature for module calibration. In this case, the voltage at MDIN can also be connected directly to a mux input as shown in the *Typical Applications Circuit*. As long as the total capacitance (including monitor diode intrinsic capacitance, MDIN capacitance, mux off-capacitance, and wiring parasitics) is less than 50pF, and the monitor diode load resistor is less than 2k $\Omega$ , then the sample-and-hold captures a 576ns minimum burst. The MAX3643 typical MDIN capacitance is 5pF, typical monitor diode maximum capacitance is 25pF, and the typical capacitance of a mux input in the off-state is 3pF to 5pF. When the

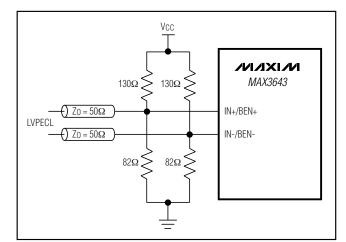



Figure 3. LVPECL High-Speed Inputs

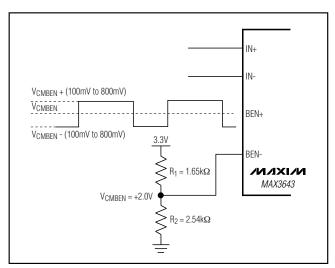



Figure 4. Single-Ended Biasing for Burst Enable

mux is in the on-state, the capacitance at the input is typically 10pF to 20pF.

If the minimum burst duration is longer than 576ns, it may be useful to connect an external capacitor in parallel with the monitor diode load to limit the effects of the data pattern on the monitor diode output.

## \_Applications Information

#### **Running Burst-Enable Single-Ended**

See Figure 5 for setting up the single-ended LVTTL or LVCMOS biasing for burst enable.

#### **Layout Considerations**

To minimize inductance, keep the connections between the MAX3643 output pins and laser diode as close as possible. Optimize the laser diode performance by placing a bypass capacitor as close as possible to the laser anode. Take extra care to minimize stray parasitic capacitance on the BIAS and MD pins. Use good high-frequency layout techniques and multilayer boards with uninterrupted ground planes to minimize EMI and crosstalk.

#### Laser Safety and IEC 825

Using the MAX3643 laser driver alone does not ensure that a transmitter design is compliant with IEC 825. The entire transmitter circuit and component selections must be considered. Each user must determine the level of fault tolerance required by the application, recognizing that Maxim products are neither designed nor authorized for use as components in systems intended for surgical implant into the body, for applications intended to support or sustain life, or for any other application in which the failure of a Maxim product could create a situation where personal injury or death can occur.

#### Exposed-Paddle Package

The exposed paddle on the 24-pin TQFN provides a very low thermal resistance path for heat removal from the IC. The pad is also electrical ground on the MAX3643 and must be soldered to the circuit board ground for proper thermal and electrical performance. Refer to Maxim Application Note *HFAN-08.1: Thermal Considerations for QFN and Other Exposed-Paddle Packages* for additional information.

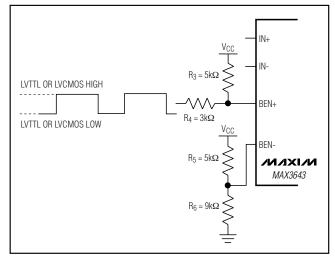



Figure 5. Single-Ended LVCMOS or LVTTL Biasing for Burst Enable

### Interface Model

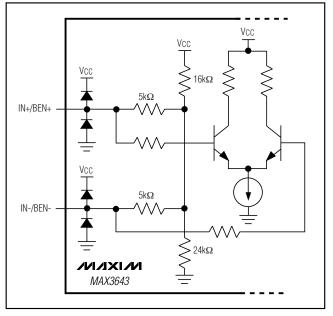
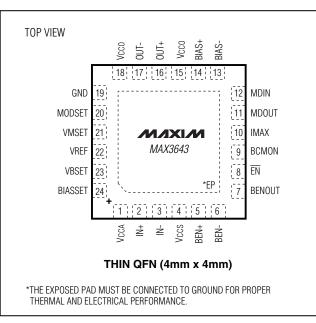
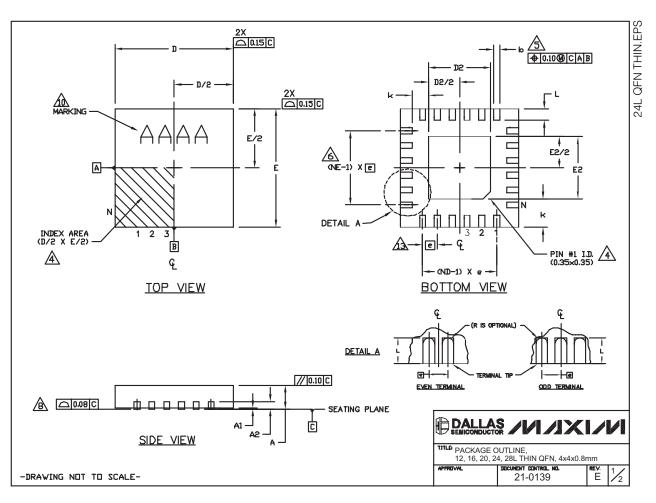




Figure 6. Simplified Input Circuit Schematic






## Pin Configuration

### Chip Information

TRANSISTOR COUNT: 2771 PROCESS: SiGe BiPOLAR

### **Package Information**

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)







Г

## **Burst-Mode Laser Driver**

### \_Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      | MDN                                                                                                                                       | DIME                                                                                                                                    | INSI                                                                                                 | SNC                                                                                          |                                                                                             |                                                                           |                                            |                                                         |                                                         |                                      |               |   | E             | XPDS | ΕD   | PAD              | VAR  | IATI   | ONS  |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------|---------------|---|---------------|------|------|------------------|------|--------|------|---------------|
| PKG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                    | 2L 4x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                                                                                                                                                   | 5L 4x                                                                                                                                     | 4                                                                                                                                       | 20                                                                                                   | )L 4×                                                                                        | 4                                                                                           | 2                                                                         | 4L 4>                                      | (4                                                      | 21                                                      | BL 4×                                | <b>&lt;</b> 4 |   | PKG.          |      | D2   |                  |      | E5     |      | DOWN<br>BONDS |
| REF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MIN.                                                                                                                                  | NDM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAX.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MIN.                                                                                                                                                 | NDM.                                                                                                                                      | MAX.                                                                                                                                    | MIN.                                                                                                 | NDM.                                                                                         | MAX.                                                                                        | MIN.                                                                      | NDM.                                       | MAX.                                                    | MIN.                                                    | NDM.                                 | MAX.          |   | PKG.<br>CODES | MIN. | NDM. | MAX.             | MIN. | NDM.   | MAX. | ALLOVED       |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.70                                                                                                                                  | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70                                                                                                                                                 | 0.75                                                                                                                                      | 0.80                                                                                                                                    | 0.70                                                                                                 | 0.75                                                                                         | 0.80                                                                                        | 0.70                                                                      | 0.75                                       | 0.80                                                    | 0.70                                                    | 0.75                                 | 0.80          |   | T1244-3       | 1.95 | 2.10 | 2.25             | 1.95 | 2.10   | 2.25 | YES           |
| A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                  | 20.0                                                                                                                                      | 0.05                                                                                                                                    | 0,0                                                                                                  | 0.02                                                                                         | 0.05                                                                                        | 0,0                                                                       | 0.02                                       | 0.05                                                    | 0.0                                                     | 20.0                                 | 0.05          |   | T1244-4       | 1.95 | 2.10 | 2.25             | 1.95 | 2.10   | 2.25 | ND            |
| A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                     | .20 RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                    | 20 RE                                                                                                                                     | F                                                                                                                                       | 0                                                                                                    | 20 RE                                                                                        | F                                                                                           | 0                                                                         | .20 RE                                     | F                                                       | 0                                                       | 20 RE                                | F             | 1 | T1644-3       | 1.95 | 2.10 | 2.25             | 1.95 | 2.10   | 2.25 | YES           |
| b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.25                                                                                                                                  | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25                                                                                                                                                 | 0.30                                                                                                                                      | 0.35                                                                                                                                    | 0.20                                                                                                 | 0.25                                                                                         | 0.30                                                                                        | 0.18                                                                      | 0.23                                       | 0.30                                                    | 0.15                                                    | 0.20                                 | 0.25          |   | T1644-4       | 1.95 | 2.10 | 2.25             | 1.95 | 2.10   | 2.25 | ND            |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,90                                                                                                                                  | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.90                                                                                                                                                 | 4.00                                                                                                                                      | 4.10                                                                                                                                    | 3.90                                                                                                 | 4.00                                                                                         | 4.10                                                                                        | 3.90                                                                      | 4.00                                       | 4.10                                                    | 3.90                                                    | 4.00                                 | 4.10          | 1 | T2044-2       | 1.95 | 2.10 | 2.25             | 1.95 | 2.10   | 2.25 | YES           |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.90                                                                                                                                  | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.90                                                                                                                                                 | 4.00                                                                                                                                      | 4.10                                                                                                                                    | 3.90                                                                                                 | 4.00                                                                                         | 4.10                                                                                        | 3.90                                                                      | 4.00                                       | 4.10                                                    | 3.90                                                    | 4.00                                 | 4.10          |   | T2044-3       | 1.95 | 2.10 | 2.25             | 1.95 | 2.10   | 2.25 | ND            |
| e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       | 0.80 BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      | .65 BS                                                                                                                                    |                                                                                                                                         | -                                                                                                    | .50 BS                                                                                       |                                                                                             |                                                                           | 0.50 BS                                    | 1                                                       |                                                         | ).40 BS                              | -             |   | T2444-2       | 1.95 | 2.10 | 2.25             | 1.95 | 2.10   | 2.25 | YES           |
| ĸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.25                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.25                                                                                                                                                 | -                                                                                                                                         | -                                                                                                                                       | 0.25                                                                                                 | -                                                                                            | -                                                                                           | 0.25                                                                      | -                                          | -                                                       | 0.25                                                    | -                                    | -             | 4 | T2444-3       | 2.45 | 2.60 | 2.63             | 2.45 | 2.60   | 2.63 | YES           |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.45                                                                                                                                  | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.45                                                                                                                                                 | 0.55                                                                                                                                      | 0.65                                                                                                                                    | 0.45                                                                                                 | 0.55                                                                                         | 0.65                                                                                        | 0.30                                                                      | 0.40                                       | 0.50                                                    | 0.30                                                    | 0.40                                 | 0.50          | 4 | T2444-4       | 2.45 | 2.60 | 2.63             | 2.45 | 2.60   | 2.63 | ND            |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      | 16                                                                                                                                        |                                                                                                                                         |                                                                                                      | 20                                                                                           |                                                                                             |                                                                           | 24                                         |                                                         |                                                         | 28                                   |               | 4 | T2844-1       | 2.50 | 2.60 | 2.70             | 2.50 | 2.60   | 2.70 | ND            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      | 4                                                                                                                                         |                                                                                                                                         |                                                                                                      | 5                                                                                            |                                                                                             |                                                                           | 6                                          |                                                         | <u> </u>                                                | 7                                    |               | - |               |      |      |                  |      |        |      |               |
| NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      | 4                                                                                                                                         |                                                                                                                                         |                                                                                                      | 5                                                                                            |                                                                                             |                                                                           | 6                                          |                                                         |                                                         | 7                                    |               | 4 |               |      |      |                  |      |        |      |               |
| edec<br>/ar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       | VGGB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      | WGGC                                                                                                                                      |                                                                                                                                         | 1                                                                                                    | /GGD-:                                                                                       | <u>ا</u>                                                                                    |                                                                           | WGGD-                                      | -2                                                      |                                                         | WGGE                                 |               |   |               |      |      |                  |      |        |      |               |
| 3. N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IST                                                                                                                                   | Mension<br>He tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns are<br>Tal nui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in M<br>Mener (                                                                                                                                      | ing CC<br>Illimeti<br>DF Ter                                                                                                              | ERS. AN<br>MINALS.                                                                                                                      | IGLES                                                                                                | ARE IN                                                                                       | DEGR                                                                                        | EES.                                                                      |                                            |                                                         |                                                         |                                      |               |   |               |      |      |                  |      |        |      |               |
| 3. N<br>A<br>J<br>T<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i is ti<br>He te<br>ESD 9<br>He ZC<br>DIMENS                                                                                          | Mensio<br>He tot<br>Rminal<br>5—1 Si<br>Xne ine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NS ARE<br>IAL NUI<br>. #1 IC<br>PP-012<br>DICATEC<br>APPLIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : IN M<br>MBER (<br>MENTIFIE<br>2. DETA<br>), THE                                                                                                    | ILUMET                                                                                                                                    | ers. A<br>Minals.<br>Termi<br>Termi<br>IAL #1                                                                                           | NGLES<br>NAL NU<br>IAL #1<br>IDENTI                                                                  | are in<br>Jmberii<br>Identi<br>Fier M                                                        | ng Coi<br>Fier Ai<br>Ay Bie                                                                 | ees.<br>Nventik<br>Re opt<br>Eithef                                       | rional,<br>₹ A MC                          | BUT N                                                   | ust be<br>Marki                                         | E LOCAT                              | TURE.         |   | ı             |      |      |                  |      |        |      |               |
| 3. N<br>A<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HE TE<br>ESD 9<br>HE ZO<br>MENS<br>ROM 1<br>ID ANI                                                                                    | MENSION<br>HE TOT<br>RMINAL<br>5-1 SI<br>NE INC<br>NE INC<br>ION 6<br>TERMIN<br>D NE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NS ARE<br>TAL NUI<br>PP-012<br>DICATED<br>APPLIE<br>AL TIP.<br>REFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E IN M<br>MBER (<br>MENTIFIE<br>2. DETA<br>2. THE<br>2. THE<br>3. TO 1<br>15 TO 1<br>16 THE                                                          | ilumeti<br>Df ter<br>Ter and<br>NLS of<br>Termin<br>Metalu                                                                                | ERS. AN<br>MINALS.<br>TERMIN<br>TERMIN<br>IAL #1<br>ZED TE<br>ER OF                                                                     | NAL NU<br>NAL NU<br>NAL ∯1<br>IDENTI<br>RMINAI<br>TERMII                                             | ARE IN<br>IMBERII<br>IDENTI<br>FIER M<br>. AND<br>NALS C                                     | I DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IS MEA                                    | ees,<br>Nventik<br>Re opt<br>Eithef<br>Sured                              | rional,<br>R A MC<br>D BETW                | BUT M<br>XLD OR<br>EEN 0.:                              | UST BE<br>MARKI<br>25 mm                                | ed fea<br>ND Fea                     | TURE.         |   | ı             |      |      |                  |      |        |      |               |
| 3. N<br>3. T<br>5<br>7<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i is ti<br>He te<br>ESD 9<br>He zo<br>Dimens<br>Rom 1<br>Id Ani<br>Depopi                                                             | Mension<br>He tot<br>15—1 si<br>DNE ind<br>10N b<br>Termin,<br>D ne f<br>Ulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS ARI<br>TAL NUI<br>PP-012<br>DICATED<br>APPLIE<br>AL TIP.<br>REFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in M<br>MBER (<br>2. Deta<br>2. Deta<br>3. The<br>5. To 1<br>5. To 1<br>5. Sto 1<br>5. Sto 1<br>5. Sto 1                                             | LUMETI<br>DF TER<br>R AND<br>NLS OF<br>TERMIN<br>METALU                                                                                   | ers. A<br>minals.<br>Termin<br>termin<br>ial #1<br>Zed te<br>er of<br>symme                                                             | NGLES<br>NAL NU<br>IAL #1<br>IDENTI<br>IRMINAI<br>TERMIN                                             | ARE IN<br>Identi<br>Fier M<br>AND<br>NALS C<br>Fashik                                        | I DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IS MEA<br>IN EAC<br>DN.                   | ees.<br>Nventik<br>Re opt<br>Eithef<br>Sured<br>H d A                     | rional,<br>R A MC<br>D Betwi<br>ND E S     | BUT M<br>OLD OR<br>EEN 0.:<br>SIDE RE                   | UST BE<br>MARKI<br>25 mm<br>ESPECTI                     | E LOCAT<br>ED FEA<br>1 AND<br>IVELY. | TURE.         |   | ı             |      |      |                  |      |        |      |               |
| 3. N<br>3. T<br>5. T<br>5. D<br>6. N<br>7. D<br>6. N<br>7. D<br>6. N<br>7. D<br>6. N<br>7. D<br>6. N<br>7. D<br>6. N<br>7. D<br>7. D | i is ti<br>He te<br>ESD 9<br>He zo<br>Dimens<br>Rom 1<br>Depopi<br>Coplan                                                             | Mension<br>He tot<br>Rminal<br>5-1 Si<br>Nne ine<br>ion 6<br>Termin,<br>D ne f<br>Ulation<br>Varity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NS ARI<br>TAL NUI<br>PP-012<br>DICATED<br>APPLIE<br>AL TIP.<br>REFER<br>N IS PC<br>APPLIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in M<br>Meder (<br>Mentifie<br>2. Deta<br>2. Deta<br>3. The<br>3. To 1<br>5. To 1<br>5. To 1<br>5. To 1                                              | illimeti<br>DF Ter<br>And<br>NLS OF<br>Termin<br>Metalli<br>E NUMB<br>E IN A                                                              | ers. A<br>minals.<br>Termin<br>termin<br>al #1<br>Zed te<br>er of<br>symme<br>posed                                                     | NGLES<br>NAL NI<br>IDENTI<br>IDENTI<br>IRMINAI<br>TERMII<br>TRICAL<br>HEAT                           | ARE IN<br>Identi<br>Fier M<br>AND<br>NALS C<br>FASHIK<br>SINK S                              | I DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IN EAC<br>DN.<br>LUG A                    | ees.<br>Nventik<br>Re opt<br>Eithef<br>Sured<br>H D A<br>S Well           | rional,<br>R A MC<br>D Betwi<br>ND E S     | BUT M<br>XLD OR<br>EEN 0.:<br>SIDE RE                   | UST BE<br>MARKI<br>25 mm<br>ESPECTI                     | E LOCAT<br>ED FEA<br>1 AND<br>IVELY. | TURE.         |   | ı             |      |      |                  |      |        |      |               |
| 3. N<br>3. T<br>5. T<br>5. D<br>6. N<br>7. D<br>6. N<br>7. D<br>6. N<br>7. D<br>6. N<br>7. D<br>6. N<br>7. D<br>6. N<br>7. D<br>7. D | i is ti<br>The te<br>Iesd 9<br>The ZC<br>Dimens<br>Rom 1<br>Id Ani<br>Depopi<br>Depopi<br>Coplan<br>Drawin                            | MENSION<br>HE TOT<br>RMINAL<br>5-1 SI<br>XNE INC<br>ION 6<br>TERMIN<br>D NE F<br>ULATION<br>VARITY<br>IG CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NS ARE<br>TAL NUL<br>PP-012<br>DICATED<br>APPLIE<br>APPLIE<br>N IS PO<br>APPLIE<br>IFORMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E IN M<br>MBER (<br>ENTIFIE<br>2. DETA<br>2. DETA<br>3. THE<br>3. TO 1<br>5. TO 1<br>5. TO 1<br>TO JE                                                | ILLINETI<br>DF TER<br>AND<br>NLS OF<br>TERMIN<br>METALLI<br>E NUMB<br>E IN A<br>THE EX<br>CDEC M                                          | ERS. AI<br>MINALS.<br>TERMIN<br>TERMIN<br>IAL #1<br>ZED TE<br>ER OF<br>SYMME<br>POSED<br>0220,                                          | NGLES<br>NAL NU<br>NAL #1<br>IDENTI<br>IDENTI<br>RMINAI<br>TERMI<br>TERMI<br>TRICAL<br>HEAT<br>EXCEP | ARE IN<br>IMBERI<br>IDENTI<br>FIER M<br>AND<br>AALS C<br>FASHK<br>SINK S<br>F FOR            | I DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IN EAC<br>DN.<br>LUG A<br>12444           | ees.<br>Nventik<br>Re opt<br>Eithef<br>Sured<br>H D A<br>S Well           | rional,<br>R A MC<br>D Betwi<br>ND E S     | BUT M<br>XLD OR<br>EEN 0.:<br>SIDE RE                   | UST BE<br>MARKI<br>25 mm<br>ESPECTI                     | E LOCAT<br>ED FEA<br>1 AND<br>IVELY. | TURE.         |   | 4             |      |      |                  |      |        |      |               |
| 3. N<br>3. T<br>5. D<br>6. N<br>7. D<br>9. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HE TE<br>ESD 9<br>HE ZO<br>DIMENS<br>FROM<br>ID ANI<br>DEPOPI<br>COPLAY<br>DRAWIN<br>ARKING                                           | MENSION<br>HE TOT<br>RMINAL<br>5-1 SI<br>5-1 SI<br>5-1 SI<br>5-1 SI<br>10 NE F<br>ULATION<br>NARITY<br>10 CON<br>5 IS FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NS ARE<br>TAL NUL<br>PP-012<br>DICATED<br>APPLIE<br>AL TIP.<br>REFER<br>N IS PO<br>APPLIE<br>IFORMS<br>DR PAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E IN M<br>MBER (<br>MENTIFIE<br>2. DETA<br>2. DETA<br>2. DETA<br>3. TO I<br>S TO I<br>S TO I<br>TO JE<br>KAGE (                                      | ILLIMETI<br>DF TER<br>AND<br>NLS OF<br>TERMIN<br>METALLI<br>IN NUME<br>IN A<br>THE EX<br>IDEC M<br>DRIENTA                                | ERS. AN<br>MINALS.<br>TERMIN<br>TERMIN<br>VAL #1<br>ZED TE<br>VER OF<br>SYMME<br>POSED<br>0220,<br>UTION R                              | NAL NU<br>NAL NU<br>IDENTI<br>IDENTI<br>ITERMII<br>TERMII<br>TERMII<br>HEAT<br>EXCEP                 | ARE IN<br>IMBERI<br>IDENTI<br>FIER M<br>AND<br>AALS C<br>FASHK<br>SINK S<br>F FOR            | I DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IN EAC<br>DN.<br>LUG A<br>12444           | ees.<br>Nventik<br>Re opt<br>Eithef<br>Sured<br>H D A<br>S Well           | rional,<br>R A MC<br>D Betwi<br>ND E S     | BUT M<br>XLD OR<br>EEN 0.:<br>SIDE RE                   | UST BE<br>MARKI<br>25 mm<br>ESPECTI                     | E LOCAT<br>ED FEA<br>1 AND<br>IVELY. | TURE.         |   | 4             |      |      |                  |      |        |      |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HE TE<br>ESD 9<br>HE ZO<br>DIMENS<br>ROM<br>ID ANI<br>DEPOPU<br>COPLAN<br>DRAWIN<br>ARKING<br>DPLAN                                   | MENSION<br>HE TOT<br>RMINAL<br>5-1 SIONE INE<br>IONE INE<br>IONE F<br>IONE F<br>ULATION<br>WARITY<br>IG CON<br>G IS FC<br>ARITY S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NS ARE<br>TAL NUI<br>PP-012<br>DICATED<br>APPLIE<br>AL TIP.<br>REFER<br>N IS PO<br>APPLIE<br>IFORMS<br>DR PAC<br>SHALL 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E IN M<br>MBER (<br>MENTIFIE<br>2. DETA<br>2. DETA<br>2. DETA<br>3. TO I<br>5. TO I<br>5. TO I<br>5. TO I<br>5. TO I<br>5. TO I<br>6. NOT EX         | ILLIMETI<br>DF TER<br>AND<br>NLS OF<br>TERMIN<br>METALLI<br>E NUMB<br>E IN A<br>THE EX<br>EDEC M<br>DRIENTA<br>CEED (                     | ERS. AM<br>MINALS.<br>TERMIN<br>TERMIN<br>VAL #1<br>ZED TE<br>ER OF<br>SYMME<br>POSED<br>0220,<br>NION R<br>0.08mm                      | NAL NU<br>NAL NU<br>IDENTI<br>IDENTI<br>ITERMII<br>TERMII<br>TERMII<br>HEAT<br>EXCEP                 | ARE IN<br>IMBERI<br>IDENTI<br>FIER M<br>AND<br>AALS C<br>FASHK<br>SINK S<br>F FOR            | I DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IN EAC<br>DN.<br>LUG A<br>12444           | ees.<br>Nventik<br>Re opt<br>Eithef<br>Sured<br>H D A<br>S Well           | rional,<br>R A MC<br>D Betwi<br>ND E S     | BUT M<br>XLD OR<br>EEN 0.:<br>SIDE RE                   | UST BE<br>MARKI<br>25 mm<br>ESPECTI                     | E LOCAT<br>ED FEA<br>1 AND<br>IVELY. | TURE.         |   |               |      |      |                  |      |        |      |               |
| 3. N<br>3. N<br>5<br>5<br>7. D<br>6<br>7. D<br>9. C<br>11. CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I IS TI<br>THE TE<br>IESD 9<br>THE ZO<br>DIMENS<br>ROM<br>ID ANI<br>DEPOPU<br>COPLAN<br>DRAWIN<br>ARKING<br>DPLAN<br>ARPAGI<br>TAD CE | MENSION<br>HE TOT<br>RMINAL<br>5-1 SI<br>5-1 S | NS ARE<br>AL NUL<br>PP-012<br>DICATELE<br>APPLIE<br>APPLIE<br>APPLIE<br>IFORMS<br>DR PAC<br>DR P | E IN M<br>MBER (<br>MBER (<br>DENTIFIE<br>2. DETA<br>5. TO I<br>S TO I<br>S TO I<br>S TO I<br>S TO I<br>TO JE<br>KAGE (<br>NOT EX<br>EXCEE<br>D BE A | ILLINETI<br>DF TER<br>AND<br>NLS OF<br>TERMIN<br>METALLI<br>E NUMB<br>E IN A<br>THE EX<br>EDEC M<br>DRIENTA<br>CEED (<br>ND 0.1<br>T TRUE | ERS. A<br>MINALS.<br>TERMIN<br>TERMIN<br>VAL #1<br>ZED TE<br>VER OF<br>SYMME<br>POSED<br>0220,<br>VIION R<br>0.08mm<br>0.08mm<br>0.08mm | NAL MI<br>IDENTI<br>IDENTI<br>RMINAI<br>TERMII<br>TRICAL<br>HEAT<br>EXCEP                            | ARE IN<br>MBERII<br>IDENTI<br>FIER M<br>AND<br>NALS C<br>FASHIK<br>SINK S<br>F FOR<br>NCE OF | I DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IN EAC<br>DN.<br>LUG AS<br>T2444-<br>NLY. | EES.<br>NVENTIK<br>RE OPT<br>EITHEF<br>SURED<br>H D A<br>S WELL<br>-3, T2 | ND E :<br>A MC<br>ND E :<br>AS TI<br>444-4 | BUT M<br>DLD OR<br>EEN Q.<br>SIDE RE<br>HE TER<br>AND 1 | UST BE<br>MARKI<br>25 mm<br>ESPECTI<br>MINALS<br>12844- | E LOCAT<br>ED FEA<br>AND<br>IVELY.   | TURE.         |   |               | DA   |      | S                |      |        | ×    | 1/1           |
| 3. N TJT DF N D C T<br>7. O C T<br>9. O C T<br>11. CC<br>12. W/<br>12. W/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I IS TI<br>THE TE<br>IESD 9<br>THE ZO<br>DIMENS<br>ROM<br>ID ANI<br>DEPOPU<br>COPLAN<br>DRAWIN<br>ARKING<br>DPLAN<br>ARPAGI<br>TAD CE | MENSION<br>HE TOT<br>RMINAL<br>5-1 SI<br>5-1 S | NS ARE<br>AL NUL<br>PP-012<br>DICATELE<br>APPLIE<br>APPLIE<br>APPLIE<br>IFORMS<br>DR PAC<br>DR P | E IN M<br>MBER (<br>MBER (<br>DENTIFIE<br>2. DETA<br>5. TO I<br>S TO I<br>S TO I<br>S TO I<br>S TO I<br>TO JE<br>KAGE (<br>NOT EX<br>EXCEE<br>D BE A | ILLINETI<br>DF TER<br>AND<br>NLS OF<br>TERMIN<br>METALLI<br>E NUMB<br>E IN A<br>THE EX<br>EDEC M<br>DRIENTA<br>CEED (<br>ND 0.1<br>T TRUE | ERS. A<br>MINALS.<br>TERMIN<br>TERMIN<br>VAL #1<br>ZED TE<br>VER OF<br>SYMME<br>POSED<br>0220,<br>VIION R<br>0.08mm<br>0.08mm<br>0.08mm | NAL MI<br>IDENTI<br>IDENTI<br>RMINAI<br>TERMII<br>TRICAL<br>HEAT<br>EXCEP                            | ARE IN<br>MBERII<br>IDENTI<br>FIER M<br>AND<br>NALS C<br>FASHIK<br>SINK S<br>F FOR<br>NCE OF | I DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IN EAC<br>DN.<br>LUG AS<br>T2444-<br>NLY. | EES.<br>NVENTIK<br>RE OPT<br>EITHEF<br>SURED<br>H D A<br>S WELL<br>-3, T2 | ND E :<br>A MC<br>ND E :<br>AS TI<br>444-4 | BUT M<br>DLD OR<br>EEN Q.<br>SIDE RE<br>HE TER<br>AND 1 | UST BE<br>MARKI<br>25 mm<br>ESPECTI<br>MINALS<br>12844- | E LOCAT<br>ED FEA<br>AND<br>IVELY.   | TURE.         |   |               | PAC  | KAGE | OUTLI<br>24, 28L |      | QFN, 4 |      | I V B         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HE TE<br>ESD 9<br>HE ZO<br>DIMENS<br>FROM<br>ID ANI<br>DEPOPI<br>COPLAY<br>DRAWIN<br>ARKING                                           | MENSION<br>HE TOT<br>RMINAL<br>5-1 SI<br>5-1 SI<br>5-1 SI<br>5-1 SI<br>10 NE F<br>ULATION<br>NARITY<br>10 CON<br>5 IS FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NS ARE<br>TAL NUL<br>PP-012<br>DICATED<br>APPLIE<br>AL TIP.<br>REFER<br>N IS PO<br>APPLIE<br>IFORMS<br>DR PAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E IN M<br>MBER (<br>MENTIFIE<br>2. DETA<br>2. DETA<br>2. DETA<br>3. TO I<br>S TO I<br>S TO I<br>TO JE<br>KAGE (                                      | ILLIMETI<br>DF TER<br>AND<br>NLS OF<br>TERMIN<br>METALLI<br>IN NUME<br>IN A<br>THE EX<br>IDEC M<br>DRIENTA                                | ERS. AN<br>MINALS.<br>TERMIN<br>TERMIN<br>VAL #1<br>ZED TE<br>VER OF<br>SYMME<br>POSED<br>0220,<br>UTION R                              | NAL NU<br>NAL NU<br>IDENTI<br>IDENTI<br>ITERMII<br>TERMII<br>TERMII<br>HEAT<br>EXCEP                 | ARE IN<br>IMBERI<br>IDENTI<br>FIER M<br>AND<br>AALS C<br>FASHK<br>SINK S<br>F FOR            | I DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IN EAC<br>DN.<br>LUG A<br>12444           | ees.<br>Nventik<br>Re opt<br>Eithef<br>Sured<br>H D A<br>S Well           | rional,<br>R A MC<br>D Betwi<br>ND E S     | BUT M<br>XLD OR<br>EEN 0.:<br>SIDE RE                   | UST BE<br>MARKI<br>25 mm<br>ESPECTI                     | E LOCAT<br>ED FEA<br>1 AND<br>IVELY. | TURE.         |   |               |      |      |                  |      |        |      |               |

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

#### Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 \_\_\_

© 2005 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products, Inc.

٦

15