DATA SHEET

HFC - S PCI ISDN 2BDS0

ISDN HDLC FIFO controller with S/T and PCI interface and U-chip support

Copyright 1994-1999 Cologne Chip Designs GmbH All Rights Reserved

The information presented can not be considered as assured characteristics. Data can change without notice. Parts of the information presented may be protected by patent or other rights.

February 1999

Revision History

Date	Remarks
Feb. 1999	Changes made on: CLKDEL register bit description.
Jan. 1999	New chip released: HFC-S PCI A is compliant to PCI Spec 2.2. The old chip
	HFC-S PCI is not recommended for new projects.
Sep. 1998	Changes made on: Electrical characteristics, Part List: C3 and C4 must be 22pF.
Aug. 1998	Changes made on: FIFO_EN register bit description.
Aug. 1998	Changes made on: Part List: C3 and C4 must be 47pF, C5 and C6 have been
	removed.
July 1998	changes made on: PCI buffer signaling and power supply environment, PCI
	configuration registers, B_MODE register bit description
July 1998	changes made on: Block diagram, sample circuitry, Part List: Q2 and Q3 must be
	BC850C instead of BC848B
June 1998	schematic of PCI sample board corrected; digital part added
May 1998	changes made on: RESET characteristics, PCI modes supported, PCI buffer
	signaling environment, PCI configuration registers, timer, FIFO counters location in
	MW, automatically D-channel frame repetition, FIFO initialisation, TRxR register
	bit description, CTMT register bit description, CHIP_ID register bit description,
	FIFO_EN register bit description, TRM register bit description, electrical
	characteristics, S/T module part numbers and manufacturers, sample circuitry

Eintrachtstrasse 113 D-50668 Köln Germany

Tel.: +49 (0) 221 / 912 96 04 Fax: +49 (0) 221 / 912 96 05 http://www.CologneChip.com http://www.CologneChip.de CologneChip@t-online.de

Cologne Chip Designs

Contents

1 General description	6
1.1 Applications	7
2 Pin description	8
2.1 PCI bus interface.	8
2.2 Auxiliary port	10
2.3 S/T interface transmit signals	10
2.4 S/T interface receive signals	10
2.5 Oscillator	11
2.6 GCI/IOM2 bus interface	11
2.7 GCI/IOM2 Timeslot enable signals	11
2.8 EEPROM interface	11
2.9 Power supply	12
2.10 RESET characteristics	12
3 Functional description	13
3.1 PCL-interface	13
3.1.1 PCI access types used by HFC-S PCI	13
3.1.2 PCI modes supported	13
3.1.3 PCI buffer signaling and power supply environment	
3.1.4 PCI configuration registers	14
3.2 Internal HFC-S PCI register description	17
3.2.1 Registers of the S/T section	18
3.2.2 Registers of the GCI/IOM2 bus section	19
3.2.3 Interrupt and status registers	20
3.3 Timer	21
3.4 FIFOs	22
3.4.1 FIFO counters location in Memory Window	23
3.4.2 FIFO data location in Memory Window	24
3.4.3 FIFO channel operation	25
3.4.3.1 Send channels (B1, B2 and D transmit)	25
3.4.3.2 Automatically D-channel frame repetition	26
3.4.3.3 FIFO full condition in send channels	26
3.4.3.4 Receive Channels (B1, B2 and D receive)	26
3.4.3.5 FIFO full condition in receive channels	28
3.4.3.6 FIFO initialisation	28
3.4.4 Transparent mode of HFC-S PCI	29
4 Register bit description	30
4.1 Register bit description of S/T section	30
4.2 Register bit description of GCI/IOM2 bus section	33
4.3 Register bit description of CONNECT register	36
4.4 Register bit description of auxiliary and cross data registers	37
5 Electrical characteristics	42
6 Timing characteristics	16
6 1 PCI hus timing	 +∪ ⊿6
6.2 GCI/IOM2 hus clock and data alignment for Mitel ST TM hus	+0 Δ6
6.3 GCI/IOM2 timing	- 0 47
6.4 EEPROM access	
	10

7 S/T interface circuitry	
7.1 External receiver circuitry	
7.2 External transmitter circuitry	
7.3 Oscillator circuitry	
7.4 EEPROM circuitry	
7.5 PME pin circuitry	
8 State matrices for NT and TE	
8.1 S/T interface activation/deactivation layer 1 for finite state matrix for NT	
8.2 Activation/deactivation layer 1 for finite state matrix for TE	
9 Binary organisation of the frames	
9.1 S/T frame structure	
9.2 GCI frame structure	
10 Clock synchronisation	
10.1 Clock synchronisation in NT-mode	
10.2 Clock synchronisation in TE-mode	60
11 HFC-S PCI package dimensions	61
12 ISDN DCI cand comple cinquitmy with LIEC S DCI	

Figures

Figure 1: HFC-S PCI block diagram	7
Figure 2: Pin Connection	8
Figure 3: HFC-S PCI in I/O address mapped mode	17
Figure 4: HFC-S PCI in memory address mapped mode	17
Figure 5: FIFO Organisation (shown for B-channel, similar for D-channel)	25
Figure 6: FIFO Data Organisation	27
Figure 7: Function of the CONNECT register bits	36
Figure 8: GCI/IOM2 bus clock and data alignment	46
Figure 9: External receiver circuitry	49
Figure 10: External transmitter circuitry	50
Figure 11: Oscillator Circuitry	53
Figure 12: EEPROM circuitry	53
Figure 13: PME pin circuitry	54
Figure 14: Frame structure at reference point S and T	57
Figure 15: Single channel GCI format	58
Figure 16: Clock synchronisation in NT-mode	59
Figure 17: Clock synchronisation in TE-mode	60
Figure 18: HFC-S PCI package dimensions	61

Tables

Table 1: PCI command types	13
Table 2: PCI configuration registers' initial values	17
Table 3: S/T module part numbers and manufacturer	52
Table 4: Activation/deactivation layer 1 for finite state matrix for NT	55
Table 5: Activation/deactivation layer 1 for finite state matrix for TE	56

Timing Diagrams

Timing diagram 3: GCI/IOM2 timing	
Timing diagram 4: EEPROM access	

Features

- One chip ISDN-S-controller with B- and D-channel HDLC support
- O Independent Read and Write HDLC-Channels for 2 ISDN B-channels and one ISDN D-channel
- O B1- and B2-channel transparent mode independently selectable
- O FIFO-Memory-Window: 4x 7.5 KByte (B-channel) and 2x 512 Byte (D-channel)
- max. 31 HDLC frames (B-channel) and 15 HDLC frames (D-channel) per channel and direction in FIFO
- 56 kbit/s restricted mode for U.S. ISDN lines selectable
- full I.430 ITU S/T ISDN support in TE and NT mode
- O B1+B2 HDLC mode
- PCM30 interface configurable to interface MITEL STTM bus (MVIPTM), Siemens IOM2TM or GCITM for interface to U-chip or external codecs
- integrated PCI Spec. 2.1 bus interface for 3.3V and 5V bus signals
- O direct access to PCM30 interface for tone synthetisation
- 3.3V and 5V supply voltage
- rectangular QFP 100 case

1 General description

The HFC-S PCI is an ISDN S/T HDLC basic rate controller for so called "passive" ISDN PC cards with integrated S/T interface and PCM30 highway interface. It is the first all in one solution for a PCI ISDN PC-card world wide with power management and Windows 98 support.

A 32Kbyte memory window of the PC is used for the deep FIFOs. Also an industrial standard serial interface for telecom peripheral ICs is implemented. Codecs are normally connected to this interface.

1.1 Applications

• ISDN PCI PC card

Figure 1: HFC-S PCI block diagram

2 Pin description

Figure 2: Pin Connection

2.1 PCI bus interface

For further information please refer to the PCI Local Bus Specification.

Pin No.	Pin Name	<u>I</u> nput	Function
		<u>O</u> utput	
			PCI address bus
47	AD0	I/O	Address bit 0
46	AD1	I/O	Address bit 1
45	AD2	I/O	Address bit 2
44	AD3	I/O	Address bit 3
43	AD4	I/O	Address bit 4
42	AD5	I/O	Address bit 5
41	AD6	I/O	Address bit 6
40	AD7	I/O	Address bit 7
37	AD8	I/O	Address bit 8
36	AD9	I/O	Address bit 9
35	AD10	I/O	Address bit 10
34	AD11	I/O	Address bit 11
33	AD12	I/O	Address bit 12
32	AD13	I/O	Address bit 13
31	AD14	I/O	Address bit 14
30	AD15	I/O	Address bit 15

Pin No.	Pin Name	Input	Function
		Output	
16	AD16	I/O	Address bit 16
15	AD17	I/O	Address bit 17
14	AD18	I/O	Address bit 18
13	AD19	I/O	Address bit 19
12	AD20	I/O	Address bit 20
11	AD21	I/O	Address bit 21
10	AD22	I/O	Address bit 22
9	AD23	I/O	Address bit 23
4	AD24	I/O	Address bit 24
3	AD25	I/O	Address bit 25
2	AD26	I/O	Address bit 26
1	AD27	I/O	Address bit 27
100	AD28	I/O	Address bit 28
99	AD29	I/O	Address bit 29
98	AD30	I/O	Address bit 30
97	AD31	I/O	Address bit 31
26	PAR	I/O	Parity bit
38	C/BE0	I/O	Bus command and byte enable 0
27	C/BE1	I/O	Bus command and byte enable 1
18	C/BE2	I/O	Bus command and byte enable 2
5	C/BE3	I/O	Bus command and byte enable 3
93	CLK	Ι	PCI clock
92	RST#	Ι	Reset
19	FRAME#	I/O	Cycle frame
20	IRDY#	I/O	Initiator ready
21	TRDY#	I/O	Target ready
23	STOP#	I/O	Stop
6	IDSEL	Ι	Initialisation device select
22	DEVSEL#	I/O	Device select
95	REQ#	0	Request
94	GNT#	Ι	Grant
24	PERR#	I/O	Parity error
25	SERR#	0	System error
53	PME	0	Power management event (high active)
			see also: Figure 13 on page 54
91	INTA#	0	Interrupt A

2.2 Auxiliary port

Pin No.	Pin Name	<u>I</u> nput	Function
		<u>O</u> utput	
75	DAUX0	I/O	AUX data bit 0
74	DAUX1	I/O	AUX data bit 1
73	DAUX2	I/O	AUX data bit 2
72	DAUX3	I/O	AUX data bit 3
71	DAUX4	I/O	AUX data bit 4
70	DAUX5	I/O	AUX data bit 5
69	DAUX6	I/O	AUX data bit 6
68	DAUX7	I/O	AUX data bit 7
67	/AUX_WR	0	AUX write
66	/AUX_RD	0	AUX read
65	/ADR_WR	I/O ^{d)}	AUX address write

^{d)} internal pull down

2.3 S/T interface transmit signals

88	TX2_HI	0	Transmit output 2
87	/TX1_LO	0	GND driver for transmitter 1
86	/TX_EN	Ο	Transmit enable
85	/TX2_LO	Ο	GND driver for transmitter 2
84	TX1_HI	0	Transmit output 1

See also: 7.2 External transmitter circuitry.

2.4 S/T interface receive signals

82	R2	Ι	Receive data 2
81	LEV_R2	Ι	Level detect for R2
80	LEV_R1	Ι	Level detect for R1
79	R1	Ι	Receive data 1
78	ADJ_LEV	0	Levelgenerator

See also: 7.1 External receiver circuitry.

2.5 Oscillator

Pin No.	Pin Name	<u>I</u> nput <u>O</u> utput	Function
51	OSC_IN	Ι	Oscillator input or quarz connection 12.288 MHz
50	OSC_OUT	0	Oscillator output or quarz connection

2.6 GCI/IOM2 bus interface

54	C4IO	I/O ^{u)}	4.096 MHz clock	
			GCI/IOM2 bus clock master: output	
			GCI/IOM2 bus clock slave: input (reset default)	
55	F0IO	I/O ^{u)}	Frame synchronisation, 8kHz pulse for GCI/IOM2 bus frame	
			synchronisation	
			GCI/IOM2 bus master: output	
			GCI/IOM2 bus slave: input (reset default)	
56	STIO1	I/O ^{u)}	GCI/IOM2 bus databus I	
			Slotwise programmable as input or output	
57	STIO2	I/O ^{u)}	GCI/IOM2 bus databus II	
			Slotwise programmable as input or output	

^{u)} internal pull up

2.7 GCI/IOM2 Timeslot enable signals

(e. g. for PCM codecs)

58	F1_A	0	enable signal for external CODEC A
			Programmable as positive (reset default) or negative pulse.
59	F1_B	0	enable signal for external CODEC B
			Programmable as positive (reset default) or negative pulse.

2.8 **EEPROM** interface

The external EEPROM is optional. EE_SCL/EN must be connected to GND if no external EEPROM is available.

63	EE_SDA	I/O ^{u)}	Serial data of external EEPROM
62	EE_SCL/EN	I/O ^{u)}	Clock of external EEPROM / EEPROM enable

^{u)} internal pull up

2.9 Power supply

Pin No.	Pin Name	Function
7, 28, 48, 60, 76, 89	VDD	VDD (+3.3V or +5V)
8, 17, 29, 39, 49, 52, 61, 64, 77,	GND	GND
83, 90, 96		

d important!

All power supply pins VDD must be directly connected to each other. Also all pins GND must be directly connected to each other.

To keep VDD and GND bounce to a minimum a bypass capacitor (10 nF to 100 nF) should be placed between each pair of VDD/GND pins.

2.10 **RESET characteristics**

The reset signal (hardware reset or software reset) must be active for at least 4 clock cycles.

The GCI/IOM2 bus lines STIO1, STIO2 and the interrupt lines are in tristate mode after a reset.

The HFC-S PCI is in slave mode after reset. C4IO and F0IO are inputs.

The S/T state machine is stuck to '0' after reset. This means the HFC-S PCI does not react to any signal on the S/T interface before the S/T state machine is initialised.

The registers' initial values are described in the Register bit description (section 4 of this data sheet).

During initialisation phase the HFC-S PCI must not be accessed. Bit 1 of the STATUS register is cleared to '0' to indicate that the initialisation phase has been finished.

3 Functional description

3.1 PCI-interface

3.1.1 PCI access types used by HFC-S PCI

C/BE3#	C/BE2#	C/BE1#	C/BE0#	Command Type	HFC-S PCI mode
0	0	1	0	I/O Read	target mode
0	0	1	1	I/O Write	target mode
0	1	1	0	Memory Read	target mode and master mode
0	1	1	1	Memory Write	target mode and master mode
1	0	1	0	Configuration Read	target mode
1	0	1	1	Configuration Write	target mode

Table 1: PCI command types

3.1.2 PCI modes supported

The HFC-S PCI supports both target mode and master mode. Before the HFC-S PCI can operate in master mode the 32K Memory Window Base Address register (MWBA) must be configured. Afterwards all FIFO data accesses are done by the HFC-S PCI automatically by PCI master accesses. Only control and configuration register accesses must be done by PCI target accesses by the host CPU.

3.1.3 PCI buffer signaling and power supply environment

The HFC-S PCI supports 5V and 3.3V PCI bus environments. The environment mode is set during RESET (RST# low) by the input value of /ADR_WR.

PCI bus power and signaling environment	/ARD_WR during RST# low
3.3V	high ^{*)}
5V	low

*) external pull-up resistor required (10k)

3.1.4 PCI configuration registers

Register is implemented, value can be read from EEPROM
Register is implemented

Register is not implemented and returns all 0's when read

HFC-S PCI

The external EEPROM is optional. If no EEPROM is available, EE_SCL/EN must be connected to GND. Without EEPROM the PCI configuration registers will be loaded with the default values shown in Table 2.

All registers which can be read from EEPROM can also be written by configuration write accesses. The addresses for configuration write are shown in the table below.

Register Name	Default Value	Remarks		
Vendor ID	1397h	Value can be read from EEPROM. Base address for		
		configuration write is C0h.		
Device ID	2BD0h	Value can be read from EEPROM. Base address for		
		configuration write is C0h.		
Command Register		Bits Function		
		0 Enables/disables I/O space accesses.		
		1 Enables/disables memory space accesses.		
		2 Enables/disables master accesses.		
		53 fixed to '0'		
		6 PERR# enable/disable		
		7 fixed to '0'		
		8 SERR# enable/disable		
		159 fixed to '0'		
Status Register	0210h	Bits[7:0] can be read from EEPROM. Base address for		
		configuration write is C4h.		
		Bits Function		
		30 reserved		
		4 fixed to '1'		
		5 66MHz capable		
		6 User definable features supported		
		7 fast Back-to-Back capable		
		8 data parity error detected		
		10.9 fixed to '01': timing of DEVSEL# is medium		
		signaled target abort (fixed to 0)		
		12 received target abort		
		13 received master abort		
		14 signaled system error (Addr. parity error)		
Devision ID	011	15 detected partity error		
Revision ID	010			
Class Code	02 80 00h	Value can be read from EEPROM. Base address for		
T. (1.01	configuration write is C8n.		
Latency Timer	10h	Set to 16 clocks, value is fixed.		
Header Type	00h	Header Type 0		
BIST	00h	No build in self test supported.		
I/O Base Address		Bits[31:3] are r/w by configuration accesses		
Memory Base Address		Bits[31:8] are r/w by configuration accesses		
Subsystem Vendor ID	1397h	Value can be read from EEPROM. Base address for		
		configuration write is ECh.		
Subsystem ID	2BD0h	Value can be read from EEPROM. Base address for		
		configuration write is ECh.		
Cap_Ptr	40h	Offset to Power Management register block.		

February 1999

Register Name	Default Value	Remarks
Interrupt Line	FFh	This register must be configured by configuration write.
Interrupt Pin	01h	INTA supported
Min_Gnt	00h	Value can be read from EEPROM. Base address for
		configuration write is FCh.
Max_Lat	10h	Value can be read from EEPROM. Base address for
		configuration write is FCh.
Cap_ID	01h	Capability ID. 01h identifies the linked list item as PCI
		Power Management registers.
Next Ptr	00h	There are no next items in the linked list.
PMC	7E21h	Power Management Capabilities. See also PCI Bus
		Power Management Interface Specification. This
		register's value can be read from EEPROM. Base
		address for configuration write is E0h.
		PME # can be asserted from D0, D1, D2 and $D3_{hot}$.
		Device specific initialisation is required.
		The HFC-S PCI does not require PCI-clock to generate
		PME# (if S/T change state is selected).
		This function complies with the PCI Power
		Management Spec. Version 1.0.
PMCSR	0000h	Power Management Control/Status
		Bits Function
		15 PME_Status - This bit is set when the function
		would normally assert the PME # signal
		Independent of the state of the PVIE_En bit.
		the function to stop according a DME # (if
		anobled)
		Writing a $0'$ has no effect
		14.9 fixed to '0'
		8 PME En - A '1' enables the function to assert
		PMF#.
		When '0', PME # assertion is disabled.
		72 fixed to '0'
		10 PowerState - This 2-bit field is used both to
		determine the current power state of a function
		and to set the function into a new power state.
		00b - D0
		01b - D1
		10b - D2
		11b - D3 _{hot}
		All States except D0 disable HFC-S PCI master
		accesses.

Register Name	Default Value	Remarks
32K Memory Window	0000h	Bits[31:15] are r/w by configuration accesses.
Base Address		The 32K Memory Window is for HFC-S PCI internal
(MWBA)		use and for the B- and D-channel FIFOs. This register
		must be written by a "DWORD Config Write" to enable
		the HFC-S PCI to operate in master mode.

Table 2: PCI configuration registers' initial values

Unimplemented registers return all 0's when read.

3.2 Internal HFC-S PCI register description

If the HFC-S PCI is used in memory mapped mode all register can directly be accessed by adding their CIP address to the configured Memory Base Address.

In I/O address mapped mode the HFC-S PCI occupies 8 bytes in the I/O address space. Byte 0 is for data read/write, byte 4 for register selection. The AUX-port address is selected by byte 3, AUX-port data is read/written by byte 1.

I/O-Address	Byte 3	Byte 2	Byte 1	Byte 0
	AUX-Addr.		AUX-Data	Data
I/O-Address	Byte 7	Byte 6	Byte 5	Byte 4
	AUX-Addr.		AUX-Data	Reg ister Select

Figure 3: HFC-S PCI in I/O address mapped mode

x = don't care

Figure 4: HFC-S PCI in memory address mapped mode

3.2.1 Registers of the S/T section

CIP / I/O-address Name r/w		r/w	Function	
1100 0000	C0h	STATES	r/w	State of the TE/NT state machine
1100 0100	C4h	SCTRL	W	S/T control register
1100 1000	C8h	SCTRL_E	W	S/T control register (extended)
1100 1100	CCh	SCTRL_R	W	receive enable for B-channels
1101 0000	D0h	SQ_REC SQ_SEND	r w	receive register for S/Q bits send register for S/Q bits
1101 1100	DCh	CLKDEL	W	setup of the delay time between receive and send direction (TE) receive data sample time (NT)
1111 0000	F0h	B1_REC ^{*)} B1_SEND ^{*)}	r w	B1-channel receive register B1-channel transmit register
1111 0100	F4h	B2_REC ^{*)} B2_SEND ^{*)}	r W	B2-channel receive register B2-channel transmit register
1111 1000	F8h	D_REC ^{*)} D_SEND ^{*)}	r w	D-channel receive register D-channel transmit register
1111 1100	FCh	E_REC*)	r	E-channel receive register

^{*)} These registers are read/written automatically by the HDLC FIFO controller (HFC) or GCI/IOM2 bus controller and need not be accessed by the user. To read/write data the FIFOs in the Memory Window should be used.

3.2.2 Registers of the GCI/IOM2 bus section

GCI/IOM2 bus timeslot selection registers

CIP / I/O-ad	dress	Name	r/w	Function
0000 1000	08h	C/I	r/w	C/I command/indication register
0000 1100	0Ch	TRxR	r	Monitor Tx ready handshake
0010 1000	28h	MON1_D	r/w	first monitor byte second monitor byte
0010 1100	2Ch	MON2_D	r/w	

GCI/IOM2 bus timeslot selection registers

CIP / I/O-ad	ldress	Name	r/w	Function		
1000 0000	80h	B1_SSL	w	B1-channel transmit slot (031)		
1000 0100	84h	B2_SSL	w	B2-channel transmit slot (031)		
1000 1000	88h	AUX1_SSL	w	AUX1-channel transmit slot (031)		
1000 1100	8Ch	AUX2_SSL	w	AUX2-channel transmit slot (031)		
1001 0000	90h	B1_RSL	W	B1-channel receive slot (031)		
1001 0100	94h	B2_RSL	W	B2-channel receive slot (031)		
1001 1000	98h	AUX1_RSL	W	AUX1-channel receive slot (031)		
1001 1100	9Ch	AUX2_RSL	W	AUX2-channel receive slot (031)		

GCI/IOM2 bus data registers

CIP / I/O-ad	dress	Name	r/w	Function
1010 0000	A0h	$B1_D^{*)}$	r/w	GCI/IOM2 bus B1-channel data register
1010 0100	A4h	$B2_D^{*)}$	r/w	GCI/IOM2 bus B2-channel data register
1010 1000	A8h	AUX1_D	r/w	AUX1-channel data register
1010 1100	ACh	AUX2_D	r/w	AUX2-channel data register

*) These registers are read/written automatically by the HDLC FIFO controller (HFC) or by the S/T controller and need not be accessed by the user.

GCI/IOM2 bus configuration registers

CIP / I/O-ad	ldress	Name	r/w	Function
1011 0100	B4h	MST_EMOD	W	extended mode register for GCI/IOM2 bus
1011 1000	B8h	MST_MODE	W	mode register for GCI/IOM2 bus
1011 1100	BCh	CONNECT	w	connect functions for S/T, HFC, GCI/IOM2

3.2.3 Interrupt and status registers

CIP / I/O ad	ldress	Name	r/w	Function
0100 0100	44h	FIFO_EN	W	FIFO enable/disable
0100 1000	48h	TRM	W	transparent mode interrupt mode register
0100 1100	4Ch	B_MODE	W	mode of B-channels
0101 1000	58h	CHIP_ID	r	register for chip identification
0110 0000	60h	CIRM	W	interrupt selection and softreset register
0110 0100	64h	CTMT	W	transparent mode and timer control register
0110 1000	68h	INT_M1	W	interrupt mask register 1
0110 1100	6Ch	INT_M2	W	interrupt mask register 2
0111 1000	78h	INT_S1	r	interrupt status register 1
0111 1100	7Ch	INT_S2	r	interrupt status register 2
0111 0000	70h	STATUS	r	common status register

3.3 Timer

The HFC-S PCI includes a timer with interrupt capability. The timer counts F0IO pulses. So the timer counter is incremented every $125\mu s$. It can be reset by bit 7 of of the CTMT register. Furthermore the timer is reset at every HFC-S PCI access when bit 5 of the CTMT register is set. Seven different timer values can be selected.

3.4 FIFOs

All FIFOs are located in the 32K Memory Window (MW) in host PC's memory.

There are 6 FIFOs with 6 HDLC-Controllers handled by the HFC-S PCI. The HDLC circuits are located on the S/T device side of the HFC-S PCI. So always plain data is stored in the FIFO. Zero insertion and deletion is done in HDLC mode:

- if the data goes to the S/T or GCI/IOM device in send FIFOs and
- when the HDLC data comes from the S/T device or GCI/IOM2 bus in receive operation.

There are a send and a receive FIFO for each of the two B-channels and for the D-channel.

The FIFOs are realized as ring buffers in the 32K Memory Window in host PC's memory. To control them there are some counters.

		B-channel	D-channel
Z1:	FIFO input counter	13 Bit	9 Bit
Z2:	FIFO output counter	13 Bit	9 Bit

Each counter points to a byte position in the Memory Window. This is an offset to the 32K Memory Window Base Address in the configuration space. On a FIFO input operation Z1 is incremented. On an output operation Z2 is incremented.

After every pulse on the F0IO signal two HDLC-bytes are written into the S/T interface (FIFOs No. 0 and 2) and two HDLC-bytes are read from the S/T interface (FIFOs No. 1 and 3). D-channel data is handled in a similar way but only 2 bits are processed.

d important!

Instead of the S/T interface also GCI/IOM2 bus is selectable for each B-channel (see CONNECT register).

If Z1 = Z2 the FIFO is empty.

Additionally there are two counters F1 and F2 for every FIFO channel (5Bit for B-channel, 4Bit for D-channel). They count the HDLC-frames in the FIFOs and form a ring buffer as Z1 and Z2 do, too.

F1 is incremented when a complete frame has been received and stored in the FIFO. F2 is incremented when a complete frame has been read from the FIFO.

If F1 = F2 there is no complete frame in the FIFO.

When the RESET line is active or software reset is active Z1, Z2, F1 and F2 are all initialized to all 1s.

All Zx and Fx counters are also stored in the Memory Window. So it is easy to read and write the counters by simple host memory accesses.

Because the HFC-S PCI is limited to the 32K Memory Window data in different regions of the host PC can not be overwritten even if counter and pointer values are handled in a wrong way.

d important!

The counter state 0200h of the Z-counters follows counter state 1FFFh in the B-channel FIFOs. The counter state 000h of the Z-counters follows counter state 1FFh in the D-channel FIFOs.

The counter state 00h of the F-counters follows counter state 1Fh in the B-channel FIFOs. The counter state 10h of the F-counters follows counter state 1Fh in the D-channel FIFOs.

3.4.1 FIFO counters location in Memory Window

For each FIFO one F1 and one F2 counter is available. The counters are located at the following offsets to the Memory Window Base Address (MWBA) in the Memory Window (MW).

FIFO	Counter	Offset to Memory Window	Counter Size
		Base Address	in Bytes
B1-transmit	F1	2080h	1
	F2 ^{*)}	2081h	1
B1-receive	F1 ^{*)}	6080h	1
	F2	6081h	1
B2-transmit	F1	2180h	1
	F2 ^{*)}	2181h	1
B2-receive	F1 ^{*)}	6180h	1
	F2	6181h	1
D-transmit	F1	20A0h	1
	F2 ^{*)}	20A1h	1
D-receive	F1 ^{*)}	60A0h	1
	F2	60A1h	1

^{*)} These counters are handled by the HFC-S PCI automatically and must not be written by software.

FIFO	Counter	Offset to Memory Window Base Address	Counter Size in Bytes
B1-transmit	Z1	2000h + (Fx * 4)	2
	Z2 ^{*)}	2000h + (Fx * 4) + 2	2
B1-receive	Z1 ^{*)}	6000h + (Fx * 4)	2
	Z2	6000h + (Fx * 4) + 2	2
B2-transmit	Z1	2100h + (Fx * 4)	2
	Z2 ^{*)}	2100h + (Fx * 4) + 2	2
B2-receive	Z1 ^{*)}	6100h + (Fx * 4)	2
	Z2	6100h + (Fx * 4) + 2	2
D-transmit	Z1	2080h + (Fx * 4)	2
	Z2 ^{*)}	2080h + (Fx * 4) + 2	2
D-receive	Z1 ^{*)}	6080h + (Fx * 4)	2
	Z2	6080h + (Fx * 4) + 2	2

For each FIFO an array of Z1 and Z2 counters is available. The offset of the counters to the Memory Window Base Address (MWBA) can be calculated as shown in the following table.

*) These counters are handled by the HFC-S PCI automatically and must not be written by software.

Fx is either F1 or F2. F1 is used for input data in transmit FIFOs, F2 is used for output data in receive FIFOs.

FIFO	Starting at Offset	Ending at Offset	Offset to add to Z-counters value
B1-transmit	0200h	1FFFh	0000h
B1-receive	4200h	5FFFh	4000h
B2-transmit	2200h	3FFFh	2000h
B2-receive	6200h	7FFFh	6000h
D-transmit	0000h	01FFh	0000h
D-receive	4000h	41FFh	4000h

3.4.2 FIFO data location in Memory Window

3.4.3 FIFO channel operation

Figure 5: FIFO Organisation (shown for B-channel, similar for D-channel)

3.4.3.1 Send channels (B1, B2 and D transmit)

The send channels send data from the host bus interface to the FIFO and the HFC-S PCI converts the data into HDLC code and tranfers it from the FIFO into the S/T or/and the GCI/IOM2 bus interface write registers.

The HFC-S PCI checks Z1 and Z2. If Z1=Z2 (FIFO empty) the HFC-S PCI generates a HDLC-Flag (01111110) and sends it to the S/T device. In this case Z2 is not incremented. If also F1=F2 only HDLC flags are sent to the S/T interface and all counters remain unchanged. If the frame counters are unequal F2 is incremented and the HFC-S PCI tries to send the next frame to the output device. After the end of a frame (Z2 reaches Z1) it automatically generates the 16 bit CRC checksum and adds the ending flag. If there is another frame in the FIFO (F1 \neq F2) the F2 counter is incremented.

With every byte being sent from the host bus side to the FIFO Z1 is incremented automatically. If a complete frame has been sent F1 must be incremented to send the next frame. If the frame counter F1 is incremented also the Z-counters may change because Z1 and Z2 are functions of F1 and F2. So there are Z1(F1), Z2(F1), Z1(F2) and Z2(F2) (see Figure 5).

Z1(F1) is used for the frame which is just written from the PC-bus side. Z2(F2) is used for the frame which is just beeing transmitted to the S/T device side of the HFC-S PCI. Z1(F2) is the end of frame pointer of the current output frame.

In the send channels F1 is only changed from the PC interface side if the software driver wants to say "end of send frame". Then the current value of Z1 is stored, F1 is incremented and Z1 is used as start address of the next frame. Z1(F2) and Z2(F2) can not be accessed.

3.4.3.2 Automatically D-channel frame repetition

The D-channel send FIFO has a special feature. If the S/T interface signals a D-channel contention before the CRC is sent the Z2 counter is set to the starting address of the current frame and the HFC-S PCI tries to repeat the frame automatically.

d important!

The HFC-S PCI begins to transmit bytes from a FIFO at the moment $Z1 \neq Z2$. So if the Z1 pointer is updated by software after writing the transmit data into the FIFO space of the Memory Window the transmission starts.

3.4.3.3 FIFO full condition in send channels

FIFO full condition can easily be calculated from the Z1/Z2 table in the Memory Window.

Remember that an increment of Z-value 1FFFh is 0200h in the B-channels!

There are two different FIFO full conditions. The first one is met when the FIFO contents comes up to 31 frames (B-channel) or 15 frames (D-channel). There is no possibility for the HFC-S PCI to manage more frames even if the frames are very small.

The second limitation is the size of the FIFO which is 512 byte for the D-channel and 7.5 KByte for the B-channels.

3.4.3.4 Receive Channels (B1, B2 and D receive)

The receive channels receive data from the S/T or GCI/IOM2 bus interface read registers. The data is converted from HDLC into plain data and sent to the FIFO. The data can then be read via the host bus interface.

The HFC-S PCI checks the HDLC data coming in. If it finds a flag or more than 5 consecutive 1s it does not generate any output data. In this case Z1 is not incremented. Proper HDLC data being received is converted by the HFC-S PCI into plain data. After the ending flag of a frame the HFC-S PCI checks the HDLC CRC checksum. If it is correct one byte with all 0s is inserted behind the CRC data in the FIFO named STAT. This last byte of a frame in the FIFO is different from all 0s if there is no correct CRC field at the end of the frame.

Figure 6: FIFO Data Organisation

The ending flag of a HDLC-frame can also be the starting flag of the next frame.

After a frame is received completely F1 is incremented by the HFC-S PCI automatically and the next frame can be received.

After reading a frame via the host bus interface F2 must be incremented. If the frame counter F2 is incremented also the Z-counters may change because Z1 and Z2 are functions of F1 and F2. So there are Z1(F1), Z2(F1), Z1(F2) and Z2(F2) (see Figure 5).

Z1(F1) is used for the frame which is just received from the S/T device side of the HFC. Z2(F2) is used for the frame which is just beeing transmitted to the host bus interface. Z1(F2) is the end of frame pointer of the current output frame.

To calculate the length of the current receive frame the software has to evaluate Z1-Z2+1.

In the receive channels F2 must be incremented to point to the next Z1/Z2 pair. If Z1 = Z2 and F1 = F2 the FIFO is totally empty.

3.4.3.5 FIFO full condition in receive channels

Because the ISDN-B-channels and the ISDN-D-channels have no hardware based flow control there is no possibility to stop input data if a receive FIFO is full.

So there is no FIFO full condition implemented in the HFC-S PCI. The HFC-S PCI assumes that the FIFOs are so deep that the host processor hard- and software is able to avoid any overflow of the receive FIFOs. Overflow conditions are again more than 31 input frames (15 frames for D-channel) or a real overflow of the FIFO because of excessive data.

Because HDLC procedures only know a window size of 7 frames no more than 7 frames are sent without software intervention. Due to the great size of the FIFOs of the HFC-S PCI it is easy to poll counters in the Memory Window even in large time intervalls without having to fear a FIFO overflow condition.

However to avoid any undetected FIFO overflows the software driver should check the number of frames in the FIFO which is F1-F2. An overflow exists if the number (F1-F2) is less than the number in the last reading even if there was no reading of a frame in between.

After a detected FIFO overflow condition this FIFO must be reset.

3.4.3.6 FIFO initialisation

All counters Z1, Z2, F1 and F2 of all FIFOs are initialized to all 1s after a RESET.

Then the result is Z1 = Z2 = 1FFFh and F1 = F2 = 1Fh for the B-channels and Z1 = Z2 = 1FFh and F1 = F2 = 1Fh for the D-channel. This information is written in the Memory Window for initialisation.

Please mask bit 4 of D-channel from counter F1, F2.

The same initialisation is done if the bit 3 in the CIRM register is set (soft reset).

During initialisation phase the HFC-S PCI must not be accessed. Bit 1 of the STATUS register is cleared to '0' to indicate that the initialisation phase has been finished.

3.4.4 Transparent mode of HFC-S PCI

You can switch off HDLC operation for each B-channel independently. There is one bit for each B-channel in the CTMT control register. If this bit is set data in the FIFO is sent directly to the S/T or GCI/IOM2 bus interface and data from the S/T or GCI/IOM2 bus interface is sent directly to the FIFO.

Be sure to switch into transparent mode only if F1=F2. Being in transparent mode the Fx counters remain unchanged. Z1 and Z2 are the input and output pointers respectively. Because F1=F2 both Z-counters are always accessable and have valid data.

If a send FIFO channel changes to FIFO empty condition no CRC is generated and the last data byte written into the FIFO is repeated until there is new data.

In receive channels there is no check on flags or correct CRCs and no status byte is added.

The byte bounderies are not arbitrary like in HDLC mode where byte synchronisation is achieved with HDLC-flags. The data is just the same as it comes from the S/T or GCI/IOM2 bus interface or is sent to this.

Send and receive transparent data can be handled in two ways. The usual way is transmitting B-channel data with the LSB first as it is usual in HDLC mode. The second way is sending the bytes in reverse bit order as it is usual for PWM data. So the first bit is the MSB. The bit order can be reversed by setting the corresponding bits in the CIRM register.

4 Register bit description

4.1 Register bit description of S/T section

Name	Addr.	Bits	r/w	Function
STATES	C0h	30	r	binary value of actual state (NT: Gx, TE: Fx)
			W	prepare for new state xxxx
		4	W	'1' loads the prepared state (bit 30) and stops the state
				machine. This bit needs to be set for a minimum period of
				5.21μ s and must be cleared by software.
				(reset default)
				'0' enables the state machine.
				After writing an invalid state the state machine goes to
				deactivated state (G1, F2)
		5	W	'0' prepare deactivation
				'1' prepare activation
		6	W	'1' start activation/deactivation as selected by bit 5
				This bit is automatically cleared after activation/deactivation.
		7	W	'0' no operation
				'1' in NT mode allows transition from G2 to G3.
				This bit is automatically cleared after the transition.

d important!

The state machine is stuck to '0' after a reset. Writing a '0' to bit 4 of the STATES register restarts the state machine.

In this state the HFC-S PCI sends no signal on the S/T-line and it is not possible to activate it by incoming INFOx.

NT mode: The NT state machine does not change automatically from G2 to G3 if the TE side sends INFO3 frames. This transition must be activated each time by bit 7 of the STATES register.

Name	Addr.	Bits	r/w	Function
SCTRL	C4h			B-channel enable
		0	W	'0' B1 send data disabled (permanent 1 sent in activated
				states, reset default)
				'1' B1 data enabled
		1	W	'0' B2 send data disabled (permanent 1 sent in activated
				states, reset default)
				'1' B2 data enabled
		2	W	S/T interface mode
				'0' TE mode (reset default)
				'1' NT mode
		3	W	D-channel priority
				'0' high priority 8/9 (reset default)
				'1' low priority 10/11
		4	W	S/Q bit transmission
				'0' S/Q bit disable (reset default)
				'1' S/Q bit and multiframe enable
		5	W	'0' normal operation (reset default)
				'1' send 96kHz transmit test signal (alternating zeros)
		6	W	TX_LO line setup
				This bit must be configured depending on the used S/T
				module and circuitry to match the 400 Ω pulse mask test.
				'0' capacitive line mode (reset default)
		_		T non capacitive line mode
		1	W	Power down
				"O power up, oscillator active (reset default)
	C 01			T power down, oscillator stopped
SCTRL_E	C8h	0	W	Power down mode bit
				¹⁰ S/T awake disable (reset default)
				Power up can only be programmed by register access
				(SCIRL DIT /).
				S/T awake enable. Oscillator starts on every non INFO0
		1	***	5/1 Signal.
		2	w	D reset
		2	vv	'0' normal operation (reset default)
				11' D bits are forced to 11'
		3	W	D U enable
		5	**	'0' normal operation (reset default)
				'1' D channel is always send enabled regardless of E receive
				bit
		64	w	must be '0'
		7	W	'0' normal operation (reset default)
				'1' B1/B2 are exchanged in the S/T interface

Name	Addr.	Bits	r/w	Function
SCTRL_R	CCh	0	W	B1-channel receive enable
		1	W	B2-channel receive enable
				'0' B-receive bits are forced to '1'
				'1' normal operation
		72	W	unused
SQ_REC	D0h	30	r	TE mode: S bits (bit $3 = S1$, bit $2 = S2$, bit $1 = S3$, bit $0 = S4$)
				NT mode: Q bits (bit $3 = Q1$, bit $2 = Q2$, bit $1 = Q3$,
				bit $0 = Q4$)
		4	r	'1' a complete S or Q multiframe has been received
				Reading SQ_REC clears this bit.
		65	r	not defined
		7	r	'1' ready to send a new S or Q multiframe
				Writing to SQ_SEND clears this bit.
SQ_SEND	D0h	30	W	TE mode: Q bits (bit $3 = Q1$, bit $2 = Q2$, bit $1 = Q3$,
				bit $0 = Q4$)
				NT mode: S bits (bit $3 = S1$, bit $2 = S2$, bit $1 = S3$, bit $0 = S4$)
		74	W	not defined
CLKDEL	DCh	30	W	TE: 4 bit delay value to adjust the 2 bit delay time between
				receive and transmit direction. The delay of the external
				S/T-interface circuit can be compensated. The lower the
				value the smaller the delay between receive and transmit
				direction (see also Figure 14)
				NT: Data sample point. The lower the value the earlier the
				input data is sampled.
				The steps are 163ns.
		64	W	NT mode only
				early edge input data shaping
				Low pass characteristic of extended bus configurations can be
				compensated. The lower the value the earlier input data pulse is
				sampled. No compensation means a value of 6 (110b). Step size
				is the same as for bits 3-0.
		7	W	unused

d note!

The register is not initialized with a '0' after reset. The register should be initialized as follows before activating the TE/NT state machine: TE mode: 0Dh .. 0Fh NT mode: 6Ch

4.2 Register bit description of GCI/IOM2 bus section

Timeslots for transmit direction

Name	Addr.	Bits	r/w	Function
B1_SSL	80h	40	W	select GCI/IOM2 bus transmission slot (031)
B2_SSL	84h	5	W	unused
AUX1_SSL	88h	6	W	select GCI/IOM2 bus data lines
AUX2_SSL	8Ch			'0' STIO1 output
				'1' STIO2 output
		7	W	transmit channel enable for GCI/IOM2 bus
				'0' disable (reset default)
				'1' enable

dimportant!

Enabling more than one channel on the same slot causes undefined output data.

Timeslots for receive direction

Name	Addr.	Bits	r/w	Function
B1_RSL	90h	40	W	select GCI/IOM2 bus receive slot (031)
B2_RSL	94h	5	W	unused
AUX1_RSL	98h	6	W	select GCI/IOM2 bus data lines
AUX2_RSL	9Ch			'0' STIO2 is input
				'1' STIO1 is input
		7	W	receive channel enable for GCI/IOM2 bus
				'0' disable (reset default)
				'1' enable

Data registers

Name	Addr.	Bits	r/w	Function
B1_D	A0h	07	r/w	read/write data registers for selected timeslot data
B2_D	A4h			
AUX1_D	A8h			
AUX2_D	ACh			

d note!

If the data registers AUX1_D and AUX2_D are not overwritten, the transmisson slots AUX1_SSL and AUX2_SSL mirror the data received in AUX1_RSL and AUX2_RSL slots. This is useful for an internal connection between two CODECs. This mirroring is disabled by setting bit 1 in MST_EMOD register

Name	Addr.	Bits	r/w	Function
MST_MODE	B8h	0	W	GCI/IOM2 bus mode
				'0' slave (reset default) (C4IO and F0IO are inputs)
				'1' master (C4IO and F0IO are outputs)
		1	W	polarity of C4- and C2O-clock
				'0' FOIO is sampled on negative clock transition
				'1' F0IO is sampled on positive clock transition
		2	W	polarity of F0-signal
				'0' F0 positive pulse
				'1' F0 negative pulse
		3	W	duration of F0-signal
				'0' F0 active for one C4-clock (244ns) (reset default)
				'1' F0 active for two C4-clocks (488ns)
		5,4	W	time slot for codec-A signal F1_A
				'00' B1 receive slot
				'01' B2 receive slot
				'10' AUX1 receive slot
				'11' signal C2O \rightarrow pin F1_A (C2O is 2048 kHz clock)
		7,6	W	time slot for codec-B signal F1_B
				'00' B1 receive slot
				'01' B2 receive slot
				'10' AUX1 receive slot
				'11' AUX2 receive slot

The pulse shape and polarity of the codec signals F1_A and F1_B is the same as the pulseshape of the F0IO signal. The polatity of C2O can be changed by bit 1.

RESET sets register MST_MODE to all '0's.

Name	Addr.	Bits	r/w	Function
MST_EMOD	B4h	0	W	slow down C4IO clock adjustment (see Figure 17)
				'0' C4IO clock is adjusted in the 31th time slot twice for one
				half clock cycle (reset default)
				'1' C4IO clock is adjusted in the 31th time slot once for one
				half clock cycle
		1	W	enable/disable AUX channel mirroring
				'0' normal opration (reset default)
				'1' disable AUX channel data mirroring
		2	W	unused
		53	W	select D-channel data flow (see also: CONNECT register)
				destination source
				bit 3: '0' D-HFC \leftarrow D-S/T
				'1' D-HFC \leftarrow D-GCI/IOM2
				bit 4: '0' D-S/T \leftarrow D-HFC
				'1' D-S/T \leftarrow D-GCI/IOM2
				bit 5: '0' D-GCI/IOM2 \leftarrow D-HFC
				'1' D-GCI/IOM2 \leftarrow D-S/T
		6	W	unused
		7	W	enable GCI/IOM2 write slots
				'0' disable GCI/IOM2 write slots; slot #2 and slot #3 may be
				used for normal data
				'1' enables slot #2 and slot #3 as master, D- and C/I-channel
C/I	08h	30	r/w	on read: indication
				on write: command
		74		unused
TRxR	0Ch	0	r	'1' monitor receive ready (2 bytes received)
				This bit is reset after read of second monitor byte (MON2_D)
		1	r	'1' Monitor transmitter ready
				Writing on MON2_D starts transmisssion and resets this bit.
		52	r	reserved
		6	r	STIO2 in
		7	r	STIO1 in

RESET sets register MST_EMOD to all '0's.

4.3	Register bit	description of	CONNECT	register
-----	--------------	----------------	---------	----------

Name	Addr.	Bits	r/w	Function
CONNECT	BCh	20	W	select B1-channel data flow
				destination source
				bit 0: '0' B1-HFC \leftarrow B1-S/T
				'1' B1-HFC \leftarrow B1-GCI/IOM2
				bit 1: '0' B1-S/T \leftarrow B1-HFC
				'1' B1-S/T \leftarrow B1-GCI/IOM2
				bit 2: '0' B1-GCI/IOM2 \leftarrow B1-HFC
				'1' B1-GCI/IOM2 \leftarrow B1-S/T
		53	W	select B2-channel data flow
				destination source
				bit 3: '0' B2-HFC \leftarrow B2-S/T
				'1' B2-HFC \leftarrow B2-GCI/IOM2
				bit 4: '0' B2-S/T \leftarrow B2-HFC
				'1' B2-S/T \leftarrow B2-GCI/IOM2
				bit 5: '0' B2-GCI/IOM2 \leftarrow B2-HFC
				'1' B2-GCI/IOM2 \leftarrow B2-S/T
		76	W	unused

RESET sets CONNECT register to all '0's.

The following figure shows the different options for switching the B-channels with the CONNECT register.

Figure 7: Function of the CONNECT register bits

Name	Addr.	Bits	r/w	Function
CIRM	60h	20	W	defines the length of the auxiliary port access:
				Value Cycle time (AUX_WR or AUX_RD low)
				000b 1 PCI-Clock
				001b 3 PCI-Clocks
				010b 5 PCI-Clocks
				011b 7 PCI-Clocks
				100b 9 PCI-Clocks
				101b 11 PCI-Clocks
				110b 13 PCI-Clocks
				111b 15 PCI-Clocks
		3	W	soft reset, similar as hardware reset; the registers CIP, CIRM
				and CTMT are not changed. The PCI interface is not reset.
				The reset is active until the bit is cleared.
				'0' deactivate reset (reset default)
				'1' activate reset
		54	W	must be '0'
		6	W	select bit order for B1 channel
				'0' normal read/write data operation
				'1' reverse bit order read/write data operation
		7	W	select bit order for B2 channel
				'0' normal read/write data operation
				'1' reverse bit order read/write data operation
FIFO_EN	44h	50	W	FIFO enable/disable ('1' = enable (reset default))
				Bit FIFO
				0 B1-transmit
				1 B1-receive
				2 B2-transmit
				3 B2-receive
				4 D-transmit
				5 D-receive
				The enable/disable change becomes valid between 0 and
				250µs after the bit has been written. All PCI bus accesses and
				FIFO activities are disabled for the selected FIFOs. To avoid
				unnecessary PCI transfers all unused FIFOs should be
				disabled.
			\downarrow	At least one FIFO (usually D-receive) must be enabled.
		76	w	unused, should be '0'

4.4 Register bit description of auxiliary and cross data registers

Name	Addr.	Bits	r/w	Function
CTMT	64h	0	W	HDLC/transparent mode for B1-channel
				'0' HDLC mode (reset default)
				'1' transparent mode
		1	W	HDLC/transparent mode for B2-channel
				'0' HDLC mode (reset default)
				'1' transparent mode
		42	W	select timer (bit $4 = MSB$)
				timer
				'000' off
				'001' 3.125ms
				'010' 6.25ms
				'011' 12.5ms
				'100' 25ms
				'101' 50ms
				'110' 400ms
				'111' 800ms
		5	W	timer reset mode
				'0' reset timer by CTMT bit 7 (reset default)
				'1' automatically reset timer at each access to HFC-S PCI
		6	W	ignored
		7	W	reset timer
				'1' reset timer
				This bit is automatically cleared.
CHIP_ID	58h	0	r	power supply
				'0' 5V PCI signaling environment
				'1' 3.3V PCI signaling environment
		31	r	reserved
		74	r	Chip identification
				0011b HFC-S PCI
B_MODE	4Ch	10	W	unused
		2	W	in 64 kbit/s mode: bit is ignored
				in 56 kbit/s mode: value of the LSB in 7-bit mode
		3	W	unused
		4	W	56 kbit/s mode selection bit for B1-channel
				'0' 64 kbit/s mode (reset default)
				'1' 56 kbit/s mode
		5	W	56 kbit/s mode selection bit for B2-channel
				'0' 64 kbit/s mode (reset default)
				'1' 56 kbit/s mode
		6	W	'0' Data not inverted for B1-channel (reset default)
				'1' Data inverted for B1-channel
		7	W	'0' Data not inverted for B2-channel (reset default)
				'1' Data inverted for B2-channel

Name	Addr.	Bits	r/w	Function
INT_M1	68h	0	W	interrupt mask for channel B1 in transmit direction
		1	W	interrupt mask for channel B2 in transmit direction
		2	W	interrupt mask for channel D in transmit direction
		3	W	interrupt mask for channel B1 in receive direction
		4	W	interrupt mask for channel B2 in receive direction
		5	W	interrupt mask for channel D in receive direction
		6	W	interrupt mask for state change of TE/NT state machine
		7	W	interrupt mask for timer

For mask bits a '1' enables and a '0' disables interrupt. RESET clears all bits to '0'.

Name	Addr.	Bits	r/w	Function
INT_M2	6Ch	0	W	interrupt mask for processing/non processing phase transition
		1	W	interrupt mask for GCI I-change
		2	W	interrupt mask for GCI monitor receive
		3	W	enable for interrupt output ('1' = enable)
		64	W	unused
		7	W	PMESEL
				'0' PME triggered on D-channel receive int
				'1' PME triggered on S/T interface state change

For mask bits a '1' enables and a '0' disables interrupt. RESET clears all bits to '0'.

Name	Addr.	Bits	r/w	Function
TRM	48h	10	W	interrupt in transparent mode is generated if Z1 in receive
				FIFOs or Z2 in transmit FIFOs change from:
				00: $x xxxx x011 1111 \rightarrow x xxxx x100 0000$
				01: x xxxx 0111 1111 \rightarrow x xxxx 1000 0000
				10: $x xxx0 1111 1111 \rightarrow x xxx1 0000 0000$
				11: $x 0111 1111 1111 \rightarrow x 1000 0000 0000$
		42	W	must be '0'
		5	W	$E \rightarrow B2$ receive channel
				When set the E receive channel of the S/T interface is
				connected to the B2 receive channel.
		6	W	B1+B2 mode
				'0' normal operation (reset default)
				'1' B1+B2 are combined to one HDLC or transparent channel.
				All settings for data shape and connect are derived from
				B1.
		7	w	IOM test loop
				When set MST output data is looped to the MST input.

Name	Addr.	Bits	r/w	Function
INT_S1	78h	0	r	B1-channel interrupt status in transmit direction
		1	r	B2-channel interrupt status in transmit direction
				in HDLC mode:
				'1' a complete frame has been transmitted, the frame counter
				F2 has been incremented
				in transparent mode:
				'1' interrupt as selected in TRM register bits 10
		2	r	D-channel interrupt status in transmit direction
				'1' a complete frame was transmitted, the frame counter
				F2 was incremented
		3	r	B1-channel interrupt status in receive direction
		4	r	B2-channel interrupt status in receive direction
				in HDLC mode:
				'1' a complete frame has been transmitted, the frame counter
				F1 has been incremented
				in transparent mode:
				'1' interrupt as selected in TRM register bits 10
		5	r	D-channel interrupt status in receive direction
				'1' a complete frame was received, the frame counter
				F1 was incremented
		6	r	TE/NT state machine interrupt status
				'1' state of state machine changed
		7	r	timer interrupt status
				'1' timer is elapsed
INT_S2	7Ch	0	r	processing/non processing transition interrupt status
				'1' The HFC-S PCI has changed from processing to non
				processing state.
		1	r	GCI I-change interrupt
				'1' a different I-value on GCI was detected
		2	r	receiver ready (RxR) of monitor channel
				'1' 2 monitor bytes have been received
		63	r	unused, '0'
		7	r	'1' fatal error: synchronisation lost. PCI performance too low
				for HFC-S PCI. Only soft reset recovers from this situation.

d important!

Reading the INT_S1 or INT_S2 register resets all active read interrupts in the INT_S1 or INT_S2 register. New interrupts may occur during read. These interrupts are reported at the next read of INT_S1 or INT_S2.

All interrupt bits are reported regardless of the mask registers settings (INT_M1 and INT_M2). The mask register settings only influence the interrupt output condition.

The interrupt output goes inactive during the read of INT_S1 or INT_S2. If interrupts occur during this read the interrupt line goes active immediately after the read is finished. So processors with level or transition triggered interrupt inputs can be connected.

Name	Addr.	Bits	r/w	Function
STATUS	70h	0	r	always '0'
		1	r	processing/non processing status
				'1' the HFC-S PCI is in processing phase (every 125µs)
				'0' the HFC-S PCI is not in processing phase
		2	r	processing/non processing transition interrupt status
				'1' The HFC-S PCI has finished internal processing phase
				(every 125µs)
		3	r	always '0'
		4	r	timer status
				'0' timer not elapsed
				'1' timer elapsed
		5	r	TE/NT state machine interrupt state
				'1' state of state machine has changed
		6	r	FRAME interrupt has occured (any data channel interrupt)
				all masked D-channel and B-channel interrupts are "ored"
		7	r	ANY interrupt
				all masked interrupts are "ored"

Reading the STATUS register clears no bit.

5 Electrical characteristics

Absolute maximum ratings

Parameter	Symbol	Rating
Supply voltage	V _{DD}	-0.3V to +7.0V
Input voltage	VI	$-0.3V$ to $V_{DD} + 0.3V$
Output voltage	Vo	$-0.3V$ to $V_{DD} + 0.3V$
Operating temperature	T _{opr}	-10°C to +85°C
Storage temperature	T _{stg}	-40°C to +125°C

Recommended operating conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.
Supply voltage	V _{DD}	V _{DD} =5V	4.75V	5.0V	5.25V
		$V_{DD}=3.3V$	3.15V	3.3V	3.45V
Operating temperature	T _{opr}		0°C		+70°C

Electrical characteristics for 5V power supply

 $V_{DD}=4.75V$ to 5.25V, $T_{opr}=0^{\circ}C$ to $+70^{\circ}C$

Parameter	Symbol	Condition	TTL level		TTL level CMOS lev		vel	
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Input LOW voltage	V _{IL}				0.8V			1.0V
Input HIGH voltage	V _{IH}		2.0V			3.5V		
Output LOW voltage	V _{OL}				0.4V			0.4V
Output HIGH voltage	V _{OH}		4.3V			4.3V		
Output leakage current	I _{OZ}	High Z			10µA			10µA
Pull-up resistor input	$\mid I_{IL} \mid$	$V_I = V_{SS}$		50μΑ			50μΑ	
current								

Electrical characteristics for 3.3V power supply

$V_{DD} = 3$	15V to	3.45V	$T_{opr} =$	$0^{\circ}C$ to +'	70°C

Parameter	Symbol	Symbol Condition TTL level CMOS le		TTL level		MOS lev	/el	
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Input LOW voltage	V _{IL}				0.8V			1.0V
Input HIGH voltage	V _{IH}		2.0V			2.3V		
Output LOW voltage	V _{OL}				0.4V			0.4V
Output HIGH voltage	V _{OH}		2.4V			2.4V		

DC current consumption of HFC-S PCI

25°C ambient temperature, 5 V operating voltage, 33 MHz PCI clock

Condition	MIN.	TYP.	MAX.
PCI master, PCM master		24,5 mA	
(full operational)			
power down, no S/T awake (12.288 MHz OSC off)		15 mA	
All pins GND (except power supply)			1 mA

I/O Characteristics

Input	Interface Level
AD0-31	PCI
PAR	PCI
C/BE0-3	PCI
RST#	PCI
FRAME#	PCI
IRDY#	PCI
TRDY#	PCI
STOP#	PCI
IDSEL	PCI
DEVSEL#	PCI
GNT#	PCI
PERR#	PCI
DAUX0-7	TTL
C4IO	TTL, internal pull-up resistor
F0IO	TTL, internal pull-up resistor
STIO1-2	TTL, internal pull-up resistor
EE_SDA	TTL, internal pull-up resistor
EE_SCL/EN	TTL, internal pull-up resistor

	Driver Capability				
	Lo	W	High		
Output	0.4V	0.6V	V _{DD} - 0.4V		
AD0-31 ^{*)}	6mA		3mA		
PAR ^{*)}	6mA		3mA		
C/BE0-3 ^{*)}	6mA		3mA		
FRAME# ^{*)}	6mA		3mA		
IRDY# ^{*)}	6mA		3mA		
TRDY# ^{*)}	6mA		3mA		
STOP# ^{*)}	6mA		3mA		
DEVSEL# *)	6mA		3mA		
REQ# ^{*)}	6mA		3mA		
PERR# ^{*)}	6mA		3mA		
SERR# ^{*)}	6mA		3mA		
PME	2mA		1mA		
INTA# ^{*)}	6mA		3mA		
DAUX0-7	4mA		2mA		
/AUX_WR	2mA		1mA		
/AUX_RD	2mA		1mA		
/ADR_WR	8mA		4mA		
TX2_HI	6mA		3mA		
/TX1_LO	6mA		3mA		
/TX_EN	4mA		2mA		
/TX2_LO	6mA		3mA		
TX1_HI	6mA		3mA		
ADJ_LEV	1mA		0.5mA		
C4IO	8mA		4mA		
F0IO	8mA		4mA		
STIO1-2	8mA		4mA		
F1_A-B	6mA		3mA		
EE_SDA	1mA		0.5mA		
EE_SCL/EN	1mA		0.5mA		

PCI buffer is PCI Spec. 2.1 compliant.

6 Timing characteristics

6.1 PCI bus timing

The timing characteristics of the HFC-S PCIs integrated PCI bus interface is compliant with version 2.1 of the PCI Local Bus specification.

6.2 GCI/IOM2 bus clock and data alignment for Mitel STTM bus

Figure 8: GCI/IOM2 bus clock and data alignment

6.3 GCI/IOM2 timing

Timing diagram 1: GCI/IOM2 timing

*) F0IO starts one C4IO clock earlier if bit 3 in MST_MODE register is set. If this bit is set F0IO is also awaited one C4IO clock cycle earlier.

SYMBOL	CHARACTERISTICS	MIN.	MAX
t _{C4P}	Clock C4IO period (4.096 MHz)	243.9 ns	244.4 ns
t _{C4H}	Clock C4IO High Width	110 ns	134 ns
tc4L	Clock C4IO Low Width	110 ns	134 ns
tc2p	Clock C2O Period	487.8 ns	488.8 ns
t _{C2H}	Clock C2O High Width	220 ns	268 ns
t _{F0is}	F0IO Setup Time	50 ns	150 ns
t F0iH	F0IO Hold Time	50 ns	150 ns
tfoiw	F0IO Width	200 ns	300 ns
tstod	STIO1 Delay Level 1 Output	20 ns	125 ns

SYMBOL	CHARACTERISTICS	MIN.	MAX
t _{SToD}	STIO1 Delay Level 2 Output	20 ns	125 ns
tstis	STIO2 Set Up Time	30 ns	
tstih	STIO2 Hold Time	2 ns	30ns

All specifications are for 2.048 Mb/s Streams and $f_{CLK} = 12.288$ MHz.

6.4 EEPROM access

Timing diagram 2: EEPROM access

SYMBOL	CHARACTERISTICS	TYP.
fscl	Serial Clock Frequency	32.2 KHz ^{*)}
tscl	Serial Clock Period	1 / fscl
thd:sta	Start Condition Hold Time	3/4 tscl
tlow	Clock Low Period	1/2 t _{SCL}
tнigн	Clock High Period	1/2 t _{SCL}
tsu:sta	Start Condition Setup Time	3/4 tscl
thd:dat	Output Data Change after Clock ↓	10 ns
tsu	Data In Setup Time	100 ns
tdн	Data In Hold Time	100 ns

*) with 33 MHz PCI clock

7 S/T interface circuitry

In order to comply to the physical requirements of ITU-T recommendation I.430 and considering the national requirements concerning overvoltage protection and electromagnetic compatibility (EMC), the HFC-S PCI needs some additional circuitry, which are shown in the following figures.

7.1 External receiver circuitry

Figure 9: External receiver circuitry

Part list

VDD	5V	3.3V	C1	47 nF
R1, R1'	33 kΩ		C3, C3'	22pF
R2, R2'	100 kΩ		D1, D2	1N4148 or LL4148
R3	1 MΩ	680k Ω	D3, D4	1N4148 or LL4148
R4	3.9 kΩ		S/T module	see Table 3 on page 52.
R5, R5'	4.7 kΩ			
R6, R6'	4.7 kΩ			
R7	1.8 MΩ	$1.2 M\Omega$		

C3, C3' are for reduction of high frequency input noise and should be located as close as possible to the HFC-S PCI.

February 1999

7.2 External transmitter circuitry

Figure 10: External transmitter circuitry

Part List

VDD R1 R2 R3, R3' ^{*)} R4 R5 R6 R7 R9	5V 2.2 kΩ ± 1% 3.0 kΩ ± 1% 18 Ω 100 Ω 5.6 kΩ 3.3 kΩ 3.3 kΩ 2.2 kΩ	3.3V $560 \Omega \pm 1\%$ $3.9 k\Omega \pm 1\%$ 18Ω 50Ω $3.3 k\Omega$ $2.2 k\Omega$ $1.8 k\Omega$ $2.2 k\Omega$	C3 D2, D3 D4, D5 ZD1 T1, T1' T2, T2' T3 S/T module	470 pF 1N4148 or LL4148 1N4148 or LL4148 Z-Diode 2.7 V (e. g. BZV 55C 2V7) BC550C, BC850C or similar BC550C, BC850C or similar BC560C, BC860C or similar see Table 3 on page 52.
R8	$2.2 \text{ k}\Omega$	2.2 kΩ		

*) value is depending on the used S/T module

S/T module part number	manufacturer			
APC 56624	Advanced Power Components			
APC 42624	United Kingdom			
	Phone: +44 1634-290588			
APC 5568DS (includes receiver and transmitter	Fax: +44 1634-290591			
circuitry)	http://www.apcisdn.com			
FE 8131-55Z	FEE GmbH			
	Singapore			
	Phone: +65 741-5277			
	Fax: +65 741-3013			
	Bangkok			
	Phone: +662 718-0726-30			
	Fax: +662 718-0712			
	Germany			
	Phone: +49 6106-82980			
	Fax: +49 6106-829898			
transformers:	Pulse Engineering, Inc.			
PE-64995	United States			
PE-64999	Phone: +1-619-674-8100			
PE-65795	Fax: +1-619-674-8262			
PE-65799	http://www.pulseeng.com			
PE-68995				
PE-68999				
T5006				
T5007				
S ₀ -modules:				
T5012				
T5034				
T5038				
Т 6040	VAC GmbH			
transformers:	Germany			
3-L4021-X066	Phone: +49 6181/38-0			
3-L4025-X095	Fax: +49 6181/ 38-2645			
3-L5024-X028	http://www.vacuumschmelze.de			
3-L4096-X005				
3-L5032-X040				
S ₀ -modules:				
7-L5051-X014				
7-M5051-X032				
7-L5052-X102				
7-M5052-X110				
7-M5052-X114				
transformers:	Valor Electronics, Inc.			
ST5069	Asia			
S ₀ -modules:	Phone: +852 2333-0127			
PT5135	Fax: +852 2363-6206			
ST5201	North America			
ST5202	Phone: +1 800 31VALOR			
	Fax: +1 619 537-2525			
	Europe			
	Phone: +44 1727-824-875			
	Fax: +44 1727-824-898			
	http://www.valorinc.com			

February 1999

S/T module part number	manufacturer
543 76 009 00	Vogt electronic AG
	Germany
	Phone: +49 8591/17-0
	Fax: +49 8591/17-240
	http://www.vogt-electronic.com
transformers	UMEC GmbH
UT21023	Germany
S ₀ -modules:	Phone: +49 7131-7617-0
UT 21624	Fax: +49 7131-7617-20
UT 28624	Taiwan
	Phone: +886-4-3590096
	Fax: +886-4-3590129
	United States
	Phone: +1-310-326-7072
	Fax: +1-310-326-7058
	http://www.umec.de

Table 3: S/T module part numbers and manufacturer

7.3 Oscillator circuitry

Q1 12.288 MHz quartz

R1	050 Ω
R2	1 MΩ
C1, C2	47 pF

Figure 11: Oscillator Circuitry

The values of C1, C2 and R1 depend on the used quartz.

For a load-free check of the oscillator frequency the C4O clock of the GCI/IOM2 bus should be measured (HFC-S PCI as master, S/T interface deactivated, 4.096 MHz frequency intented on the C4IO).

7.4 EEPROM circuitry

Figure 12: EEPROM circuitry

7.5 **PME** pin circuitry

The PME pin (pin 53) on the HFC-S PCI is high active. To connect it to the low active PME# pin on the PCI bus, the following circuitry is necessary.

Figure 13: PME pin circuitry

8 State matrices for NT and TE

8.1 S/T interface activation/deactivation layer 1 for finite state matrix for NT

State name	Reset	Deactive	Pending activation	Active	Pending deactivation
State number	G0	G1	G2	G3	G4
Event INFO sent	INFO 0	INFO 0	INFO 2	INFO 4	INFO 0
State machine release (Note 3)	G2	Ι	I	l	_
Activate request	G2 (Note 1)	G2 (Note 1)	I	I	G2 (Note 1)
Deactivate request	_	l	Start timer T2 G4	Start timer T2 G4	
Expiry T2 (Note 2)	_		_		G1
Receiving INFO 0	_		_	G2	G1
Receiving INFO 1	_	G2 (Note 1)	_	/	_
Receiving INFO 3	_	/	G3 (Note 1)	_	_
Lost framing	_	1	/	G2	

Table 4: Activation/deactivation layer 1 for finite state matrix for NT

— No state change

/ Impossible by the definition of peer-to-peer physical layer procedures or system internal reasons

Impossible by the definition of the physical layer service

Note 1: Timer 1 (T1) is not implemented in the HFC-S PCI and must be implemented in software.

Note 2: Timer 2 (T2) prevents unintentional reactivation. Its value is 32ms (256 x 125µs). This implies that a TE has to recognize INFO 0 and to react on it within this time.

Note 3: After reset the state machine is fixed to G0.

February 1999

\square	State name	Reset	Sensing	Deactivated	Awaiting signal	Identifying input	Synchronized	Activated	Lost framing
	State number	F0	F2	F3	F4	F5	F6	F7	F8
Event	Info	INFO 0	INFO 0	INFO 0	INFO 1	INFO 0	INFO 3	INFO 3	INFO 0
State machine release (Note 1)		F2	/	/	/	/	/	/	/
Activate	Receiving any signal	_		F5			_		—
Request	Receiving INFO 0			F4	_	_			_
Expiry T3 (Note 5)		_	/	_	F3	F3	F3	_	_
Receiving	INFO 0		F3		_		F3	F3	F3
Receiving (Note 2)	any signal			_	F5		/	/	_
Receiving (Note 3)	INFO 2		F6	F6	F6	F6		F6	F6
Receiving (Note 3)	INFO 4		F7	F7	F7	F7	F7		F7
Lost framin (Note 4)	ng		/	/	/	/	F8	F8	_

8.2 Activation/deactivation layer 1 for finite state matrix for TE

Table 5: Activation/deactivation layer 1 for finite state matrix for TE

- Impossible by the definition of the layer 1 service
- / Impossible situation

Notes

- Note 1: After reset the state machine is fixed to F0.
- Note 2: This event reflects the case where a signal is received and the TE has not (yet) determined wether it is INFO 2 or INFO 4.
- Note 3: Bit- and frame-synchronisation achieved.
- Note 4: Loss of Bit- or frame-synchronisation.

Note 5: Timer 3 (T3) is not implemented in the HFC-S PCI and must be implemented in software.

[—] No change, no action

9 Binary organisation of the frames

9.1 S/T frame structure

The frame structures are different for each direction of transmission. Both structures are illustrated in Figure 14.

Ν

А

S

Figure 14: Frame structure at reference point S and T

- F Framing bit
- L D.C. balancing bit
- D D-channel bit
- E D-echo-channel bit
- F_A Auxiliary framing bit
- M Multiframing bit

- Bit set to a binary value $N = \overline{F}_A$ (NT to TE)
- B1 Bit within B-channel 1
- B2 Bit within B-channel 2
 - Bit used for activation
 - S-channel bit

d note!

Lines demarcate those parts of the frame that are independently d.c.-balanced.

The F_A bit in the direction TE to NT is used as Q bit in every fifth frame if S/Q bit transmission is enabled (see SCTRL register).

The nominal 2-bit offset is as seen from the TE. The offset can be adjusted with the CLKDEL register in TE mode. The corresponding offset at the NT may be greater due to delay in the interface cable and varies by configuration.

HDLC-B-channel data start with the LSB, PCM-B-channel data start with the MSB.

9.2 GCI frame structure

The binary organistation of a single GCI channel frame is described below.

Figure 15: Single channel GCI format

- B1 B-channel 1 data
- B2 B-channel 2 data
- M Monitor channel data
- D D-channel data
- C/I Command/indication bits for controlling activation/deactivation and for additional control functions
- MR Handshake bit for monitor channel
- MX Handshake bit for monitor channel

10 Clock synchronisation

10.1 Clock synchronisation in NT-mode

Figure 16: Clock synchronisation in NT-mode

10.2 Clock synchronisation in TE-mode

Figure 17: Clock synchronisation in TE-mode

The C4IO clock is adjusted in the 31th time slot at the GCI/IOM bus twice for one half clock cycle. This can be reduced to one adjustment of a half clock cycle. This is useful if another HFC-S, HFC-S+, HFC-SP or HFC-S PCI is connected as slave in NT mode to the GCI/IOM2 bus.

11 HFC-S PCI package dimensions

Figure 18: HFC-S PCI package dimensions

12 ISDN PCI card sample circuitry with HFC-S PCI

The 8-Bit-Flip-Flop (U3) is only needed for auxiliary port accesses. The EEPROM (U2) is also optional.

Part List

Part	Value	Part	Value	Part	Value
C1	47p	D11	BAV99	R10	100R
C2	47p	JP1	IOM	R11	3k3
C3	22p	JP2	PINHD-2X13	R12	5k6
C4	22p	Q1	12.288 MHz	R13	$2k2 \pm 1\%$
C7	47n	Q2	BC850C	R13'	$2k2 \pm 1\%$
C8	470p	Q3	BC850C	R14	3k3
CB1	33n	Q4	BC850C	R15	$3k \pm 1\%$
CB2	33n	Q5	BC850C	R15'	$3k \pm 1\%$
CB3	33n	Q6	BC860C	R16	18R
CB5	33n	Q7	BC850C	R16'	18R
CB6	33n	R1	(330R)	R17	3k3
CB7	33u 10V, BF C	R2	(1M)	R18	10k
CB8	33u 10V, BF C	R3	3k9	R19	10k
CB9	33n	R4	1 M	R20	none
CON1	PCI32PME	R5	4k7	R21	none
CON5	WESTERN	R5'	4k7	R22	10k
D1	BAV99	R6	4k7	R23	none
D2	BAV99	R6'	4k7	R24	none
D5	Z-Diode 2V7	R7	100k	TR1	SOTR
D10	BAV99	R7'	100k	U1	HFC-S PCI
		R8	33k	U2	24C04
		R8'	33k	U3	74374 (optional)
		R9	1 M 8		-