HFC - 4S / HFC - 8S ISDN HDLC FIFO controller with 4/8 integrated S/T interfaces Tel.: +49 (0) 221 / 91 24-0 Fax: +49 (0) 221 / 91 24-100 http://www.CologneChip.com http://www.CologneChip.de gne Csupport@CologneChip.com Copyright 1994 - 2003 Cologne Chip AG All Rights Reserved The information presented can not be considered as assured characteristics. Data can change without notice. Parts of the information presented may be protected by patent or other rights. Cologne Chip products are not designed, intended, or authorized for use in any application intended to support or sustain life, or for any other application in which the failure of the Cologne Chip product could create a situation where personal injury or death may occur. # **Contents** | 1 | Gen | eral des | scription | 19 | |---|------|----------|---|----| | | 1.1 | System | n overview | 20 | | | 1.2 | Feature | es | 21 | | | 1.3 | Pin des | scription | 22 | | | | 1.3.1 | Pinout diagram | 22 | | | | 1.3.2 | Differences between HFC-4S and HFC-8S | 27 | | | | 1.3.3 | Pin list | 28 | | 2 | Univ | ersal ex | xternal bus interface | 43 | | | 2.1 | Comm | on features of all interface modes | 45 | | | | 2.1.1 | EEPROM programming | 45 | | | | 2.1.2 | EEPROM circuitry | 45 | | | | 2.1.3 | Register access | 46 | | | | 2.1.4 | RAM access | 46 | | | 2.2 | PCI int | terface | 47 | | | | 2.2.1 | PCI command types | 47 | | | | 2.2.2 | PCI access description | 49 | | | | 2.2.3 | PCI configuration registers | 50 | | | | 2.2.4 | PCI connection circuitry | 53 | | | 2.3 | ISA Pl | ug and Play interface | 54 | | | | 2.3.1 | IRQ assignment | 55 | | | | 2.3.2 | ISA Plug and Play registers | 55 | | | | 2.3.3 | ISA connection circuitry | 59 | | | 2.4 | PCMC | IA interface | 60 | | | | 2.4.1 | Attribute memory | 60 | | | | 2.4.2 | PCMCIA registers | 60 | | | | 2.4.3 | PCMCIA connection circuitry | 62 | | | 2.5 | Paralle | el processor interface | 63 | | | | 2.5.1 | Parallel processor interface modes | 64 | | | | 2.5.2 | Signal and timing characteristics | 64 | | | | | 2.5.2.1 8 bit processors in mode 2 (Motorola) and mode 3 (Intel) | 66 | | | | | 2.5.2.2 16 bit processors in mode 2 (Motorola) and mode 3 (Intel) | 69 | | | | | | | | | | | 2.5.2.3 8 bit processors in mode 4 (Intel, multiplexed) | |---|-----|----------------|--| | | | | 2.5.2.4 16 bit processors in mode 4 (Intel, multiplexed) | | | | | 2.5.2.5 32 bit processors in mode 4 (Intel, multiplexed) | | | | 2.5.3 | Examples of processor connection circuitries | | | 2.6 | Serial p | processor interface (SPI) | | | | 2.6.1 | SPI read and write access | | | | 2.6.2 | SPI connection circuitry | | | 2.7 | Registe | r description | | | | 2.7.1 | Write only registers | | | | 2.7.2 | Read only registers | | 3 | HEC | . 10100 | 6 data flow 9 | | 3 | | | | | | 3.1 | | ow concept | | | | | | | | 3.3 | | | | | | 3.3.1
3.3.2 | | | | | 3.3.3 | <u>c</u> | | | 3.4 | | | | | 3.4 | 3.4.1 | ow modes | | | | 3.4.1 | - | | | | 3.4.2 | Channel Select Mode | | | 3.5 | | FIFO Sequence Mode 100 nnel Processing 111 | | | 3.3 | 3.5.1 | Transparent mode | | | | 3.5.1 | HDLC mode | | | 3.6 | | r description | | | 3.0 | Registe | r description | | 4 | FIF | O handli | ing and HDLC controller 12 | | | 4.1 | FIFO c | ounters | | | 4.2 | FIFO s | ize setup | | | 4.3 | FIFO o | peration | | | | 4.3.1 | HDLC transmit FIFOs | | | | 4.3.2 | Automatical D-channel frame repetition | | | | 4.3.3 | FIFO full condition in HDLC transmit HFC-channels | | | | 4.3.4 | HDLC receive FIFOs | | | | 4.3.5 | FIFO full condition in HDLC receive HFC-channels | | | | 4.3.6 | Transparent mode of the HFC-4S/8S | | | | 4.3.7 | Reading F - and Z -counters | | | 4.4 | Registe | r description | | | | 4.4.1 | Write only registers | | | | 4.4.2 | Read only registers | | | 4.4.3 Read/write registers | | 141 | |-------|--|---|---------------| | S/T i | interface | | 145 | | 5.1 | State machine | | 147 | | 5.2 | Clock synchronization | | 148 | | | 5.2.1 Clock synchronization in NT mode | | 148 | | | 5.2.2 Clock synchronization in TE mode | | 149 | | | 5.2.3 Clock synchr. with several TEs connected to different central offi | ce switches | 150 | | 5.3 | Data transmission | | 150 | | 5.4 | S/T modules and transformers | | 151 | | 5.5 | External circuitries | | 154 | | | 5.5.1 External receive circuitry | | 154 | | | 5.5.2 External transmit circuitry | | 154 | | | 5.5.3 Transformer and ISDN jack connection | | 158 | | 5.6 | Register description | | 159 | | | 5.6.1 Write only registers | | 159 | | | 5.6.2 Read only registers | | 168 | | - ~- | | | | | | | | 173 | | | | | | | | | | | | 6.3 | | | | | | | | | | | | | | | 6.4 | | | | | | 6.4.1 Write only register | | 179 | | | 6.4.2 Read only register | | 189 | | Puls | se width modulation (PWM) outputs | | 191 | | 7.1 | Standard PWM usage | | 192 | | 7.2 | Alternative PWM usage | | 192 | | 7.3 | Register description | | 193 | | | 7.3.1 Write only register | | 193 | | 3.7.1 | | | 105 | | | | | 195 | | | • | | 196 | | | | | 196 | | | | | 196 | | | | | 197 | | 8.5 | | | 200 | | | 8.5.1 Write only registers | | 200 | | | 5.1
5.2
5.3
5.4
5.5
5.6
PCI
6.1
6.2
6.3
6.4
Puls
7.1
7.2
7.3 | S/T interface 5.1 State machine 5.2 Clock synchronization 5.2.1 Clock synchronization in NT mode 5.2.2 Clock synchronization in TE mode. 5.2.3 Clock synchronization in TE mode. 5.2.3 Clock synchronization in TE mode. 5.2.4 S/T modules and transformers 5.5 External circuitries 5.5.1 External receive circuitry 5.5.2 External transmit circuitry 5.5.3 Transformer and ISDN jack connection 5.6 Register description 5.6.1 Write only registers 5.6.2 Read only registers 6.1 PCM interface 6.1 PCM interface function 6.3 External CODECs 6.3.1 CODEC select via enable lines 6.3.2 CODEC select via time slot number 6.4 Register description 6.4.1 Write only register 6.4.2 Read only register 7.1 Standard PWM usage 7.2 Alternative PWM usage 7.3 Register description 7.3.1 Write only register Multiparty audio conferences 8.1 Conference unit description 8.2 Overflow handling 8.3 Conference including the S/T interface 8.4 Conference setup example for CSM 8.5 Register description | S/T interface | | | | 8.5.2 Read only registers | 201 | |----|-------|---|-----| | 9 | DTM | IF controller | 203 | | | 9.1 | DTMF detection engine | 204 | | | 9.2 | Register description | 207 | | 10 | BER | T | 209 | | | 10.1 | BERT functionality | 210 | | | 10.2 | Register description | 211 | | | 10.3 | Write only register | 211 | | | 10.4 | Read only register | 212 | | 11 | Auxi | liary interface | 215 | | | 11.1 | Interface pins | 216 | | | 11.2 | Various mode selections | 217 | | | | 11.2.1 Driver mode | 217 | | | | 11.2.2 Control mode | 217 | | | | 11.2.3 Access mode | 217 | | | | 11.2.4 Host mode | 219 | | | 11.3 | Timing definitions | 219 | | | 11.4 | Register description | 221 | | 12 | Cloc | k, reset, interrupt, timer and watchdog | 229 | | | 12.1 | Clock | 230 | | | 12.2 | Reset | 230 | | | 12.3 | Interrupt | 231 | | | 12.4 | Watchdog and Timer | 231 | | | 12.5 | Register description | 232 | | | | 12.5.1 Write only register | 232 | | | | 12.5.2 Read only register | 235 | | 13 | Gene | eral purpose I/O pins (GPIO) and input pins (GPI) | 247 | | | 13.1 | GPIO and GPI functionality | 248 | | | 13.2 | GPIO output voltage adjustment | 248 | | | 13.3 | Register description | 250 | | | | 13.3.1 Write only register | 250 | | | | 13.3.2 Read only register | 255 | | 14 | Elect | trical characteristics | 261 | | A | State | e matrices for NT and TE | 263 | | | A.1 | S/T interface activation / deactivation layer 1 of finite state matrix for NT | 264 | | | A.2 | Activation / deactivation layer 1 of finite state matrix for TE | 265 | | | | | | | В | Binary organisation of the S/T frame structure | 267 | |-----|--|-------------| | С | HFC-4S/8S package dimensions | 269 | | Lis | st of register and bitmap abbreviations | 27 1 | ## and #### **General Remarks to Notations** - 1. Numerical values have different notations for various number systems, e.g. the hexadecimal value 0xC9 is in binary '11001001' and in decimal notation 201. - 2. The first letter of register names indicates the type: 'R $_\dots$ ' is a register, 'A $_\dots$ ' is an array-register. - 3. The first letter of register's bit and bitmap names indicates the type: 'V_...' is a bit or bitmap value and 'M_...' is its bitmap mask, i.e. all bits of the bitmap are set to '1'. # **List of Figures** | 1.1 | HFC-8S block diagram | 19 | |------|---|----| | 1.2 | HFC-4S block diagram | 20 | | 1.3 | HFC-8S
pinout in PCI mode | 22 | | 1.4 | HFC-8S pinout in ISA PnP mode | 23 | | 1.5 | HFC-8S pinout in PCMCIA mode | 24 | | 1.6 | HFC-8S pinout in processor mode | 25 | | 1.7 | HFC-8S pinout in SPI mode | 26 | | 2.1 | EEPROM connection circuitry | 46 | | 2.2 | EE_SCL/EN and EE_SDA connection without EEPROM | 46 | | 2.3 | PCI configuration registers | 48 | | 2.4 | PCI access in PCI I/O mapped mode | 49 | | 2.5 | PCI access in PCI memory mapped mode | 49 | | 2.6 | PCI connection circuitry | 53 | | 2.7 | ISA PnP circuitry | 59 | | 2.8 | PCMCIA circuitry | 62 | | 2.9 | Read access from 8 bit processors in mode 2 (Motorola) and mode 3 (Intel) | 66 | | 2.10 | Write access from 8 bit processors in mode 2 (Motorola) and mode 3 (Intel) | 68 | | 2.11 | Byte / word read access from 16 bit proc. in mode 2 (Motorola) & mode 3 (Intel) $$. $$ | 69 | | 2.12 | Byte / word write access from 16 bit proc. in mode 2 (Motorola) & mode 3 (Intel) | 71 | | 2.13 | Read access from 8 bit processors in mode 4 (Intel, multiplexed) | 73 | | 2.14 | Write access from 8 bit processors in mode 4 (Intel, multiplexed) | 74 | | 2.15 | Word read access from 16 bit processors in mode 4 (Intel, multiplexed) | 75 | | 2.16 | Word write access from 16 bit processors in mode 4 (Intel, multiplexed) | 76 | | 2.17 | Double word read access from 32 bit processors in mode 4 (Intel, multiplexed) | 77 | | 2.18 | Write access from 32 bit processors in mode 4 (Intel, multiplexed) | 79 | | 2.19 | 8 bit Intel/Motorola processor circuitry example (mode 2) | 81 | | 2.20 | 16 bit Intel processor circuitry example (mode 4, multiplexed) | 82 | | 2.21 | SPI read access | 83 | | 2.22 | SPI write access | 84 | | 2.23 | Interrupted SPI read access | 84 | | | | | March 2003 (rev. A) Data Sheet 9 of 273 | 2.24 | SPI connection circuitry | 85 | |------|--|-----| | 3.1 | Data flow block diagram | 94 | | 3.2 | Areas of FIFO oriented, HFC-channel oriented and PCM time slot oriented numbering | 95 | | 3.3 | The flow controller in transmit operation | 97 | | 3.4 | The flow controller in receive FIFO operation | 98 | | 3.5 | SM example | 103 | | 3.6 | Channel assigner in CSM | 104 | | 3.7 | - | 106 | | 3.8 | | 108 | | 3.9 | FSM list processing | 109 | | 3.10 | | 110 | | | | 113 | | | | | | 4.1 | FIFO organization | | | 4.2 | FIFO data organization in HDLC mode | 132 | | 5.1 | S/T clock synchronization shown with one S/T interface in NT mode | 148 | | 5.2 | S/T clock synchronization shown with one S/T interface in TE mode | | | 5.3 | Synchronization scenario with TEs connected to unsynchr. central office switches | 150 | | 5.4 | Synchronization registers (detail of Figure 5.3) | 151 | | 5.5 | Timing example of one transmit and one receive transmission | 151 | | 5.6 | External S/T receive circuitry for TE and NT mode | | | 5.7 | External S/T transmit circuitry for TE and NT mode | | | 5.8 | External S/T transmit circuitry for NT mode only | | | 5.9 | VDD_ST voltage generation | | | 5.10 | Transformer and connector circuitry in TE mode | | | | Transformer and connector circuitry in NT mode | | | | | | | 6.1 | PCM interface function block diagram | | | 6.2 | Example for two CODEC enable signal shapes with SHAPE0 and SHAPE1 | 176 | | 6.3 | Example for two CODEC enable signal shapes | 178 | | 8.1 | Conference example | 197 | | 11 1 | Points of contact of the various bridge modes | 217 | | | Host bridge structure in I/O mapped mode | | | | | | | 11.3 | Host bridge structure in memory mapped mode | 220 | | 12.1 | Standard HFC-4S/8S quartz circuitry | 230 | | B.1 | Frame structure at reference point S and T $\ldots \ldots \ldots \ldots \ldots \ldots$ | 268 | | C.1 | HFC-4S/8S package dimensions | 270 | # **List of Tables** | 1.1 | Pin differences of HFC-85 and HFC-45 | 27 | |------|---|-----| | 2.1 | Overview of the HFC-4S/8S bus interface registers | 43 | | 2.2 | Access types | 44 | | 2.3 | Overview of common bus interface pins | 45 | | 2.4 | EEPROM load size | 45 | | 2.5 | SRAM start address | 45 | | 2.6 | Overview of the PCI interface pins | 47 | | 2.7 | PCI command types | 49 | | 2.8 | PCI configuration registers | 50 | | 2.9 | Overview of the ISA PnP interface pins | 54 | | 2.10 | ISA address decoding | 54 | | 2.11 | ISA Plug and Play registers | 55 | | 2.12 | Overview of the PCMCIA interface pins | 60 | | 2.13 | PCMCIA registers | 61 | | 2.14 | Overview of the parallel processor interface pins in mode 2 and 3 | 63 | | 2.15 | Overview of the processor interface pins in mode 4 | 63 | | 2.16 | Pins and signal names of the HFC-4S/8S processor interface modes | 64 | | 2.17 | Overview of read and write accesses in processor interface mode | 65 | | 2.18 | Timing diagrams of the parallel processor interface | 65 | | 2.19 | Data access width in mode 2 and 3 | 70 | | 2.20 | Symbols of read accesses in Figures 2.9 and 2.11 | 70 | | 2.21 | Symbols of write accesses in Figures 2.10 and 2.12 | 72 | | 2.22 | Data access width in mode 4 | 77 | | 2.23 | Symbols of read accesses in Figures 2.13, 2.15 and 2.17 | 78 | | 2.24 | Symbols of write accesses in Figures 2.14, 2.16 and 2.18 | 80 | | 2.25 | Overview of the SPI interface pins | 83 | | | | | | 3.1 | Overview of the HFC-4S/8S data flow registers | 93 | | 3.2 | Flow controller connectivity | 98 | | 3.3 | V_DATA_FLOW programming values for single-destination connections | 99 | | 3.4 | | 100 | | 3.5 | List specification of the example in Figure 3.10 | 111 | | | | | | 3.6 | Subchannel processing example in SM combined with transparent mode | 115 | |------|--|-----| | 3.7 | Subchannel processing example in CSM combined with transparent mode | 115 | | 3.8 | Subchannel processing example in SM combined with HDLC mode | 116 | | 3.9 | Subchannel processing example in CSM combined with HDLC mode | 117 | | 4.1 | Overview of the HFC-4S/8S FIFO registers | 127 | | 4.2 | F-counter range with different RAM sizes | 128 | | 4.3 | FIFO size setup | 130 | | 5.1 | Overview of the HFC-4S/8S bus interface register | 145 | | 5.2 | Overview of the HFC-4S and HFC-8S S/T pins | 146 | | 5.3 | Symbols of Figures 5.5 | 152 | | 5.4 | S/T module part numbers and manufacturers | 152 | | 6.1 | Overview of the HFC-4S/8S PCM interface registers | 173 | | 6.2 | Overview of the HFC-4S/8S PCM pins | 174 | | 6.3 | PCM interface configuration with bitmaps of the register A_SL_CFG | 175 | | 7.1 | Overview of the HFC-4S/8S PWM pins | 191 | | 7.2 | Overview of the HFC-4S/8S PWM registers | 191 | | 8.1 | Overview of the HFC-4S/8S conference registers | 195 | | 8.2 | Conference example specification | 197 | | 9.1 | Overview of the HFC-4S/8S DTMF registers | 203 | | 9.2 | DTMF tones on a 16 keys keypad | 204 | | 9.3 | 16-bit K factors for the DTMF calculation | 205 | | 9.4 | Memory address calculation for DTMF coefficients related to equation (9.3) | 206 | | 10.1 | Overview of the HFC-4S/8S BERT registers | 209 | | 11.1 | Overview of the HFC-4S/8S auxiliary bridge registers | 215 | | 11.2 | HFC-4S/8S pins of the auxiliary bridge | 216 | | 11.3 | Control mode | 217 | | 12.1 | Overview of the HFC-4S/8S clock pins | 229 | | 12.2 | Overview of the HFC-4S/8S reset, timer and watchdog registers | 229 | | 12.3 | Quartz selection | 230 | | 12.4 | HFC-4S/8S reset groups | 231 | | 13.1 | Overview of the HFC-4S/8S general purpose I/O registers | 247 | | 13.2 | Adjustable pin groups of the HFC-4S/8S | 249 | | A.1 | Activation / deactivation layer 1 for finite state matrix for NT | 264 | | 4.2 | Activation | deactivation laver | 1 for finite state matrix for TE |
265 | |-----|------------|--------------------|----------------------------------|---------| | | | | | | March 2003 (rev. A) Data Sheet 13 of 273 ### List of Registers (sorted by name) #### Please note! Register addresses are assigned independently for write and read access, i.e. in many cases there are different registers for write and read access with the same address. Only registers with the same meaning and bitmap structure in write and read direction are declared to be read & write. It must be distinguished between registers, array registers and multi-registers. **Array registers** have multiple instances and are indexed by a number. This index is either the FIFO number (R_FIFO with 13 indexed registers), the PCM time slot number (R_SLOT with 2 indexed registers) or the S/T interface number (R_ST_SEL with 15 indexed registers). <u>Array registers</u> have equal name, bitmap structure and meaning for every instance. Multi-registers have multiple instances, too, but they are selected by a bitmap value. With this value, different registers can be selected with the same address. Multi-register addresses are 0x15 (14 instances selected by R_PCM_MD0) and 0x0F (2 instances selected by R_FIFO_MD) for HFC-4S/8S. Multi-registers have different names, bitmap structure and meaning for each instance. The first letter of array register names is 'A_...' whereas all other registers begin with 'R_...'. The index of array registers and multi-registers has to be specified in the appropriate register. | Write only registers: | | | | Address | Name | Reset
group | Page | |-----------------------|----------------|----------------|------|---------|-----------------|----------------|------| | Address | Name | Reset
group | Page | 0x47 | R_BRG_MD | 0 | 223 | | - Tuui ess | rume | group | Tuge | 0x02 | R_BRG_PCM_CFG | Н | 221 | | 0xF4 | A_CH_MSK | 0, 1 | 123 | 0x4C | R_BRG_TIM_SEL01 | 0 | 225 | | 0xFC | A_CHANNEL | 0, 1 | 126 | 0x4D | R_BRG_TIM_SEL23 | 0 | 226 | | 0xFA | A_CON_HDLC | 0, 1 | 124 | 0x4E | R_BRG_TIM_SEL45 | 0 | 226 | | 0xD1 | A_CONF | _ | 200 | 0x4F | R_BRG_TIM_SEL67 | 0 | 227 | | 0xFD | A_FIFO_SEQ | 0, 1 | 126 | 0x48 | R_BRG_TIM0 | 0 | 224 | | 0x0E | R_INC_RES_FIFO | _ | 136 | 0x49 | R_BRG_TIM1 | 0 | 224 | | 0xFF |
A_IRQ_MSK | 0, 1 | 234 | 0x4A | R_BRG_TIM2 | 0 | 224 | | 0xD0 | A_SL_CFG | 0, 3 | 122 | 0x4B | R_BRG_TIM3 | 0 | 225 | | 0x3C | A_ST_B1_TX | 0, 1, 3 | 167 | 0x00 | R_CIRM | Н | 86 | | 0x3D | A_ST_B2_TX | 0, 1, 3 | 167 | 0x18 | R_CONF_EN | 0, 2 | 200 | | 0x37 | A_ST_CLK_DLY | - | 166 | 0x01 | R_CTRL | Н | 87 | | 0x31 | A_ST_CTRL0 | 0, 1, 3 | 163 | 0x1C | R_DTMF0 | 0 | 207 | | 0x32 | A_ST_CTRL1 | 0, 1, 3 | 164 | 0x1D | R_DTMF1 | 0 | 208 | | 0x33 | A_ST_CTRL2 | 0, 1, 3 | 165 | 0x0D | R_FIFO_MD | Н | 119 | | 0x3E | A_ST_D_TX | 0, 1, 3 | 168 | 0x0F | R_FIFO | 0, 1 | 120 | | 0x34 | A_ST_SQ_WR | 0, 1, 3 | 165 | 0x0B | R_FIRST_FIFO | 0, 1 | 118 | | 0x30 | A_ST_WR_STA | 0, 1, 3 | 162 | 0x0F | R_FSM_IDX | 0, 1 | 120 | | 0xFB | A_SUBCH_CFG | 0, 1 | 125 | 0x42 | R_GPIO_EN0 | 0 | 252 | | 0x1B | R_BERT_WD_MD | 0, 1 | 211 | 0x43 | R_GPIO_EN1 | 0 | 253 | | 0x45 | R_BRG_CTRL | 0 | 222 | 0x40 | R_GPIO_OUT0 | 0 | 250 | | Address | Name | Reset
group | Page | Address | Name | Reset
group | Page | |---------|---------------|----------------|------|---------|----------------|----------------|------| | 0x41 | R_GPIO_OUT1 | 0 | 251 | 0x04 | A_Z1L | 0, 1 | 137 | | 0x44 | R_GPIO_SEL | 0 | 254 | 0x06 | A_Z2 | 0, 1 | 138 | | 0x13 | R_IRQ_CTRL | 0 | 232 | 0x07 | A_Z2H | 0, 1 | 138 | | 0x11 | R_IRQMSK_MISC | Н | 232 | 0x06 | A_Z2L | 0, 1 | 138 | | 0x14 | R_PCM_MD0 | 0, 2 | 179 | 0x1B | R_BERT_ECH | 0, 1 | 213 | | 0x15 | R_PCM_MD1 | 0, 2 | 185 | 0x1A | R_BERT_ECL | 0, 1 | 212 | | 0x15 | R_PCM_MD2 | 0, 2 | 186 | 0x17 | R_BERT_STA | 0, 1 | 212 | | 0x46 | R_PWM_MD | 0 | 194 | 0x16 | R_CHIP_ID | Н | 92 | | 0x38 | R_PWM0 | 0, 1, 3 | 193 | 0x1F | R_CHIP_RV | _ | 92 | | 0x39 | R_PWM1 | 0, 1, 3 | 193 | 0x14 | R_CONF_OFLOW | 0, 1 | 201 | | 80x0 | R_RAM_ADDR0 | 0 | 88 | 0x19 | R_F0_CNTH | 0, 1 | 189 | | 0x09 | R_RAM_ADDR1 | 0 | 88 | 0x18 | R_F0_CNTL | 0, 1 | 189 | | 0x0A | R_RAM_ADDR2 | 0 | 89 | 0x44 | R_GPI_IN0 | _ | 257 | | 0x0C | R_RAM_MISC | Н | 90 | 0x45 | R_GPI_IN1 | _ | 258 | | 0x12 | R_SCI_MSK | 3 | 159 | 0x46 | R_GPI_IN2 | - | 259 | | 0x15 | R_SH0H | 0, 2 | 187 | 0x47 | R_GPI_IN3 | - | 260 | | 0x15 | R_SH0L | 0, 2 | 187 | 0x40 | R_GPIO_IN0 | _ | 255 | | 0x15 | R_SH1H | 0, 2 | 188 | 0x41 | R_GPIO_IN1 | - | 256 | | 0x15 | R_SH1L | 0, 2 | 187 | 0x88 | R_INT_DATA | - | 140 | | 0x15 | R_SL_SEL0 | 0, 2 | 180 | 0xC8 | R_IRQ_FIFO_BL0 | 0, 1 | 238 | | 0x15 | R_SL_SEL1 | 0, 2 | 181 | 0xC9 | R_IRQ_FIFO_BL1 | 0, 1 | 239 | | 0x15 | R_SL_SEL2 | 0, 2 | 182 | 0xCA | R_IRQ_FIFO_BL2 | 0, 1 | 240 | | 0x15 | R_SL_SEL3 | 0, 2 | 182 | 0xCB | R_IRQ_FIFO_BL3 | 0, 1 | 241 | | 0x15 | R_SL_SEL4 | 0, 2 | 183 | 0xCC | R_IRQ_FIFO_BL4 | 0, 1 | 242 | | 0x15 | R_SL_SEL5 | 0, 2 | 183 | 0xCD | R_IRQ_FIFO_BL5 | 0, 1 | 243 | | 0x15 | R_SL_SEL6 | 0, 2 | 184 | 0xCE | R_IRQ_FIFO_BL6 | 0, 1 | 244 | | 0x15 | R_SL_SEL7 | 0, 2 | 184 | 0xCF | R_IRQ_FIFO_BL7 | 0, 1 | 245 | | 0x10 | R_SLOT | 0, 2 | 121 | 0x11 | R_IRQ_MISC | 0, 1 | 236 | | 0x16 | R_ST_SEL | 0, 3 | 160 | 0x10 | R_IRQ_OVIEW | 0, 1 | 235 | | 0x17 | R_ST_SYNC | 0, 3 | 161 | 0x15 | R_RAM_USE | 0, 1 | 91 | | 0x1A | R_TI_WD | 0, 1 | 233 | 0x12 | R_SCI | 0, 1 | 168 | | | | | | 0x1C | R_STATUS | _ | 237 | ### Read only registers: | Address | Name | Reset
group | Page | |---------|-------------|----------------|------| | 0x0C | A_F1 | 0, 1 | 139 | | 0x0C | A_F12 | 0, 1 | 140 | | 0x0D | A_F2 | 0, 1 | 139 | | 0x3C | A_ST_B1_RX | 0, 3 | 170 | | 0x3D | A_ST_B2_RX | 0, 3 | 171 | | 0x3E | A_ST_D_RX | 0, 3 | 171 | | 0x3F | A_ST_E_RX | 0, 3 | 172 | | 0x30 | A_ST_RD_STA | 0, 3 | 169 | | 0x34 | A_ST_SQ_RD | 0, 3 | 170 | | 0x04 | A_Z1 | 0, 1 | 137 | | 0x04 | A_Z12 | 0, 1 | 139 | | 0x05 | A_Z1H | 0, 1 | 137 | #### Read/Write registers: | Address | Name | Reset
group | Page | |---------|--------------------|----------------|------| | 0x84 | A_FIFO_DATA0_NOING | O – | 142 | | 0x80 | A_FIFO_DATA0 | _ | 141 | | 0x84 | A_FIFO_DATA1_NOING | C – | 143 | | 0x80 | A_FIFO_DATA1 | _ | 141 | | 0x84 | A_FIFO_DATA2_NOING | C – | 143 | | 0x80 | A_FIFO_DATA2 | _ | 142 | | 0xC0 | R_RAM_DATA | _ | 91 | | | | | | **Note:** See table 12.4 on page 231 for 'Reset group' explanation. March 2003 (rev. A) Data Sheet 15 of 273 ## List of Registers (sorted by address) # Please note! See explanation of register types on page 14. | Write only registers: | | | | Address | Name | Reset
group | Page | |-----------------------|----------------|---------|------|-----------|-----------------|----------------|------| | Address | Name | Reset | Dogo | 0x33 | A_ST_CTRL2 | 0, 1, 3 | 165 | | Address | Name | group | Page | 0x34 | A_ST_SQ_WR | 0, 1, 3 | 165 | | 0x00 | R_CIRM | Н | 86 | 0x37 | A_ST_CLK_DLY | _ | 166 | | 0x01 | R_CTRL | Н | 87 | 0x38 | R_PWM0 | 0, 1, 3 | 193 | | 0x02 | R_BRG_PCM_CFG | Н | 221 | 0x39 | R_PWM1 | 0, 1, 3 | 193 | | 80x0 | R_RAM_ADDR0 | 0 | 88 | 0x3C | A_ST_B1_TX | 0, 1, 3 | 167 | | 0x09 | R_RAM_ADDR1 | 0 | 88 | 0x3D | A_ST_B2_TX | 0, 1, 3 | 167 | | 0x0A | R_RAM_ADDR2 | 0 | 89 | 0x3E | A_ST_D_TX | 0, 1, 3 | 168 | | 0x0B | R_FIRST_FIFO | 0, 1 | 118 | 0x40 | R_GPIO_OUT0 | 0 | 250 | | 0x0C | R_RAM_MISC | Н | 90 | 0x41 | R_GPIO_OUT1 | 0 | 251 | | 0x0D | R_FIFO_MD | Н | 119 | 0x42 | R_GPIO_EN0 | 0 | 252 | | 0x0E | R_INC_RES_FIFO | _ | 136 | 0x43 | R_GPIO_EN1 | 0 | 253 | | 0x0F | R_FSM_IDX | 0, 1 | 120 | 0x44 | R_GPIO_SEL | 0 | 254 | | 0x0F | R_FIFO | 0, 1 | 120 | 0x45 | R BRG CTRL | 0 | 222 | | 0x10 | R_SLOT | 0, 2 | 121 | 0x46 | R PWM MD | 0 | 194 | | 0x11 | R_IRQMSK_MISC | Н | 232 | 0x47 | R BRG MD | 0 | 223 | | 0x12 | R_SCI_MSK | 3 | 159 | 0x48 | R_BRG_TIM0 | 0 | 224 | | 0x13 | R_IRQ_CTRL | 0 | 232 | 0x49 | R BRG TIM1 | 0 | 224 | | 0x14 | R_PCM_MD0 | 0, 2 | 179 | 0x4A | R BRG TIM2 | 0 | 224 | | 0x15 | R_PCM_MD1 | 0, 2 | 185 | 0x4B | R BRG TIM3 | 0 | 225 | | 0x15 | R_PCM_MD2 | 0, 2 | 186 | 0x4C | R BRG TIM SEL01 | 0 | 225 | | 0x15 | R_SH0H | 0, 2 | 187 | 0x4D | R BRG TIM SEL23 | 0 | 226 | | 0x15 | R_SH1H | 0, 2 | 188 | 0x4E | R BRG TIM SEL45 | 0 | 226 | | 0x15 | R_SH0L | 0, 2 | 187 | 0x4F | R BRG TIM SEL67 | 0 | 227 | | 0x15 | R_SH1L | 0, 2 | 187 | 0xD0 | A SL CFG | 0, 3 | 122 | | 0x15 | R_SL_SEL0 | 0, 2 | 180 | 0xD1 | A CONF | _ | 200 | | 0x15 | R_SL_SEL1 | 0, 2 | 181 | 0xF4 | A CH MSK | 0, 1 | 123 | | 0x15 | R_SL_SEL2 | 0, 2 | 182 | 0xFA | A CON HDLC | 0, 1 | 124 | | 0x15 | R_SL_SEL3 | 0, 2 | 182 | 0xFB | A SUBCH CFG | 0, 1 | 125 | | 0x15 | R_SL_SEL4 | 0, 2 | 183 | 0xFC | A CHANNEL | 0, 1 | 126 | | 0x15 | R_SL_SEL5 | 0, 2 | 183 | 0xFD | A FIFO SEQ | 0, 1 | 126 | | 0x15 | R_SL_SEL6 | 0, 2 | 184 | 0xFF | A_IRQ_MSK | 0, 1 | 234 | | 0x15 | R_SL_SEL7 | 0, 2 | 184 | | | ŕ | | | 0x16 | R_ST_SEL | 0, 3 | 160 | | | | | | 0x17 | R_ST_SYNC | 0, 3 | 161 | | | | | | 0x18 | R_CONF_EN | 0, 2 | 200 | | | | | | 0x1A | R TI WD | 0, 1 | 233 | Read only | registers: | | | | 0x1B | R BERT WD MD | 0, 1 | 211 | | | | | | 0x1C | R_DTMF0 | 0 | 207 | A 33 | Nama | Reset | Do | | 0x1D | R_DTMF1 | 0 | 208 | Address | Name | group | Page | | 0x30 | A_ST_WR_STA | 0, 1, 3 | 162 | 0x04 | A_Z12 | 0, 1 | 139 | | 0x31 | A_ST_CTRL0 | 0, 1, 3 | 163 | 0x04 | A_Z1L | 0, 1 | 137 | | 0x32 | A_ST_CTRL1 | 0, 1, 3 | 164 | 0x04 | A_Z1 | 0, 1 | 137 | | | | | | 0x05 | A_Z1H | 0, 1 | 137 | | Address | Name | Reset
group | Page | |---------|----------------|----------------|------| | 0x06 | A_Z2L | 0, 1 | 138 | | 0x06 | _
A Z2 | 0, 1 | 138 | | 0x07 | A Z2H | 0, 1 | 138 | | 0x0C | _
A F1 | 0, 1 | 139 | | 0x0C | A F12 | 0, 1 | 140 | | 0x0D | A F2 | 0, 1 | 139 | | 0x10 | R_IRQ_OVIEW | 0, 1 | 235 | | 0x11 | R_IRQ_MISC | 0, 1 | 236 | | 0x12 | R_SCI | 0, 1 | 168 | | 0x14 | R_CONF_OFLOW | 0, 1 | 201 | | 0x15 | R_RAM_USE | 0, 1 | 91 | | 0x16 | R_CHIP_ID | Н | 92 | | 0x17 | R_BERT_STA | 0, 1 | 212 | | 0x18 | R_F0_CNTL | 0, 1 | 189 | | 0x19 | R_F0_CNTH | 0, 1 | 189 | | 0x1A | R_BERT_ECL | 0, 1 | 212 | | 0x1B | R_BERT_ECH | 0, 1 | 213 | | 0x1C | R_STATUS | _ | 237 | | 0x1F | R_CHIP_RV | _ | 92 | | 0x30 | A_ST_RD_STA | 0, 3 | 169 | | 0x34 | A_ST_SQ_RD | 0, 3 | 170 | | 0x3C | A_ST_B1_RX | 0, 3 | 170 | | 0x3D | A_ST_B2_RX | 0, 3 | 171 | | 0x3E | A_ST_D_RX | 0, 3 | 171 | | 0x3F | A_ST_E_RX | 0, 3 | 172 | | 0x40 | R_GPIO_IN0 | _ | 255 | | 0x41 | R_GPIO_IN1 | - | 256 | | 0x44 | R_GPI_IN0 | _ | 257 | | 0x45 | R_GPI_IN1 | _ | 258 | | 0x46 | R_GPI_IN2 | - | 259 | | 0x47 | R_GPI_IN3 | - | 260 | | 0x88 | R_INT_DATA | - | 140 | | 0xC8 | R_IRQ_FIFO_BL0 | 0, 1 | 238 | | 0xC9 | R_IRQ_FIFO_BL1 | 0, 1 | 239 | | 0xCA | R_IRQ_FIFO_BL2 | 0, 1 | 240 | | 0xCB | R_IRQ_FIFO_BL3 | 0, 1 | 241 | | 0xCC | R_IRQ_FIFO_BL4 | 0, 1 | 242 | | 0xCD | R_IRQ_FIFO_BL5 | 0, 1 | 243 | | 0xCE | R_IRQ_FIFO_BL6 | 0, 1 | 244 | | 0xCF | R_IRQ_FIFO_BL7 | 0, 1 | 245 | | Address | Name | Reset
group | Page | |---------|-------------------|----------------|------| | 0x84 | A_FIFO_DATA2_NOIN | C – | 143 | | 0x84 | A_FIFO_DATA0_NOIN | C – | 142 | | 0x84 | A_FIFO_DATA1_NOIN | C – | 143 | | 0xC0 | R_RAM_DATA | _ | 91 | **Note:** See table 12.4 on page 231 for 'Reset group' explanation. ### Read/Write registers: | Address | Name | Reset
group | Page | |---------|--------------|----------------|------| | 0x80 | A_FIFO_DATA2 | _ | 142 | | 0x80 | A_FIFO_DATA0 | _ | 141 | | 0x80 | A_FIFO_DATA1 | _ | 141 | March 2003 (rev. A) Data Sheet 17 of 273 # **Chapter 1** # **General description** Figure 1.1: HFC-8S block diagram March 2003 (rev. A) Data Sheet 19 of 273 #### 1.1 System overview The HFC-4S and HFC-8S are ISDN S/T HDLC basic rate controllers for all kinds of BRI equipment, such as - high performance ISDN PC cards - ISDN multi-BRI terminal adapters - ISDN PABX for BRI - VoIP gateways - Integrated Access Devices (IAD) - ISDN LAN routers for BRI - ISDN least cost routers for BRI - ISDN test equipment for BRI The integrated universal bus interface of the HFC-4S/8S can be configured to PCI, ISA Plug and Play, PCMCIA, microprocessor interface or SPI. A PCM128 / PCM64 / PCM30 interface for CODEC or inter chip connection is also integrated. The very deep FIFOs of the HFC-4S/8S is realized with an internal or external SRAM. Figure 1.2: HFC-4S block
diagram #### 1.2 Features - 4 (HFC-4S) resp. 8 (HFC-8S) integrated S/T interfaces - single chip ISDN-S/T controllers with HDLC support for all B- and D-channels - full I.430 S/T ISDN support in TE and NT mode - Independent read and write HDLC channels for 8 (HFC-4S) resp. 16 (HFC-8S) ISDN B-channels and 4 (HFC-4S) resp. 8 (HFC-8S) ISDN D-channels - B-channel transparent mode independently selectable - up to 32 FIFOs for transmit and for receive data, FIFO sizes are configurable - each FIFO can be assigned to an arbitrary HFC-channel, moreover each HFC-channel can be assigned to a S/T-channel of one S/T interface or to a time slot of the PCM interface - max. 31 HDLC frames (with 128 kByte or 512 kByte external RAM) or 15 HDLC frames (with 32 kByte build-in RAM) per FIFO - 1 ... 8 bit processing for subchannels selectable - 56 kbit/s restricted mode for U.S. ISDN lines selectable - B-channels for higher data rate can be combined up to 256 bit - PCM128 / PCM64 / PCM30 interface configurable to interface MSTTM(MVIPTM) ¹ or Siemens IOM2TM and Motorola GCITM(no monitor or C/I-channel support) for inter chip connection or external CODECs ² - Switch matrix for PCM included - H.100 data rate supported - integrated ISA Plug and Play interface with buffers for ISA-databus - integrated PCMCIA interface - integrated PCI bus interface (Spec. 2.2) for 3.3 V and 5 V signal environment - microprocessor interface compatible to Motorala bus and Siemens / Intel bus - Serial processor interface (SPI) - multiparty audio conferences switchable - DTMF detection on all B-channels - Timer and watchdog with interrupt capability - CMOS technology 3.3 V (5 V tolerant on nearly all inputs ³) - PQFP 208 package March 2003 (rev. A) Data Sheet 21 of 273 ¹Mitel Serial Telecom bus ²All TM marked names are registered trademarks of the appropriate organizations. ³Never connect the power supply of the HFC-4S/8S to 5 V! ### 1.3 Pin description #### 1.3.1 Pinout diagram Figure 1.3: HFC-8S pinout in PCI mode **Note:** The HFC-4S pinning is very similar. Some pins are NC. See Table 1.1 on page 27 for detailed information. Figure 1.4: HFC-8S pinout in ISA PnP mode March 2003 (rev. A) Data Sheet 23 of 273 Figure 1.5: HFC-8S pinout in PCMCIA mode Figure 1.6: HFC-8S pinout in processor mode March 2003 (rev. A) Data Sheet 25 of 273 Figure 1.7: HFC-8S pinout in SPI mode 26 of 273 Data Sheet March 2003 (rev. A) #### 1.3.2 Differences between HFC-4S and HFC-8S The HFC-4S and HFC-8S differ only in the number of S/T interfaces. Table 1.1 shows all pins which are different between the two chips. Some of the listed pins have a secondary function. This is implemented for both chips and must be enabled in the register R GPIO SEL. T_A4 ... T_A7 and T_B4 ... T_B7 may output signals even in NC mode. The input pins marked with 'NC*' in Table 1.1 should be tied to ground if they are not used as GPI function. #### Please note! HFC-4S and HFC-8S are pin compatible except for S/T interface pins listed in Table 1.1. Table 1.1: Pin differences of HFC-8S and HFC-4S | Pin | normal | / | secondary | norma | l / | secondary | | | |-----|------------|------|-----------|-------|--------------------|-----------|--|--| | | function (| of F | IFC-8S | funct | function of HFC-4S | | | | | 124 | R A7 | / | GPI31 | NC* | / | GPI31 | | | | 125 | LEV A7 | / | GPI30 | NC* | / | GPI30 | | | | 126 | LEV_B7 | / | GPI29 | NC* | / | GPI29 | | | | 127 | R B7 | / | GPI28 | NC* | / | GPI28 | | | | 128 | ADJ_LEV7 | / | _ | NC | / | _ | | | | 130 | T_A7 | / | GPIO15 | NC | / | GPIO15 | | | | 131 | T_B7 | / | GPIO14 | NC | / | GPIO14 | | | | 132 | T_B6 | / | GPIO13 | NC | / | GPIO13 | | | | 133 | T_A6 | / | GPIO12 | NC | / | GPIO12 | | | | 135 | ADJ LEV6 | / | _ | NC | / | _ | | | | 136 | R_B6 | / | GPI27 | NC* | / | GPI27 | | | | 137 | LEV_B6 | / | GPI26 | NC* | / | GPI26 | | | | 138 | LEV_A6 | / | GPI25 | NC* | / | GPI25 | | | | 139 | R_A6 | / | GPI24 | NC* | / | GPI24 | | | | 142 | R_A5 | / | GPI23 | NC* | / | GPI23 | | | | 143 | LEV_A5 | / | GPI22 | NC* | / | GPI22 | | | | 144 | LEV_B5 | / | GPI21 | NC* | / | GPI21 | | | | 145 | R_B5 | / | GPI20 | NC* | / | GPI20 | | | | 146 | ADJ_LEV5 | / | _ | NC | / | _ | | | | 148 | T_A5 | / | GPIO11 | NC | / | GPIO11 | | | | 149 | T_B5 | / | GPIO10 | NC | / | GPIO10 | | | | 150 | T_B4 | / | GPIO9 | NC | / | GPIO9 | | | | 151 | T A4 | / | GPIO8 | NC | / | GPIO8 | | | | 153 | ADJ_LEV4 | / | _ | NC | / | _ | | | | 154 | R_B4 | / | GPI19 | NC* | / | GPI19 | | | | 155 | LEV_B4 | / | GPI18 | NC* | / | GPI18 | | | | 156 | LEV_A4 | / | GPI17 | NC* | / | GPI17 | | | | 157 | R A4 | / | GPI16 | NC* | / | GPI16 | | | March 2003 (rev. A) Data Sheet 27 of 273 #### **1.3.3** Pin list ### Important! The following list contains all HFC-8S pins. See page 27 for differences to HFC-4S pinning! | Pin | Interface | Name | I/O | Description | $\mathbf{U_{in}}/\mathbf{V}$ | $I_{\mathrm{out}}/\mathrm{mA}$ | |-----|---------------|--------|-----|--|------------------------------|--------------------------------| | | | | Uni | versal bus interface | | | | 1 | PCI | AD27 | IO | Address / Data bit 27 | LVCMOS | 8 | | | ISA PnP | SA11 | I | Address bit 11 | LVCMOS | | | | PCMCIA | A11 | I | Address bit 11 | LVCMOS | | | | Processor | FL0 | I | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | | SPI | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 2 | PCI | AD26 | IO | Address / Data bit 26 | LVCMOS | 8 | | | ISA PnP | SA10 | I | Address bit 10 | LVCMOS | | | | PCMCIA | A10 | I | Address bit 10 | LVCMOS | | | | Processor | FL0 | I | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | | SPI | FL0 | I | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 3 | PCI | AD25 | IO | Address/Data bit 25 | LVCMOS | 8 | | | ISA PnP | SA9 | I | Address bit 9 | LVCMOS | | | | PCMCIA | A9 | I | Address bit 9 | LVCMOS | | | | Processor | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | | SPI | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 4 | PCI | AD24 | IO | Address/Data bit 24 | LVCMOS | 8 | | | ISA PnP | SA8 | I | Address bit 8 | LVCMOS | | | | PCMCIA | A8 | I | Address bit 8 | LVCMOS | | | | Processor | FL0 | I | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | | SPI | FL0 | I | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 5 | | GND | | Ground | | | | 6 | PCI | C/BE3# | I | Bus command and Byte Enable 3 | LVCMOS | | | | ISA PnP | FL1 | I | Fixed level (high), connect to power supply via ext. pull-up | LVCMOS | | | | PCMCIA | FL1 | I | Fixed level (high), connect to power supply via ext. pull-up | LVCMOS | | | | Processor | /BE3 | I | Byte Enable 3 | LVCMOS | | | | SPI | FL1 | I | Fixed level (high), connect to power supply via ext. pull-up | LVCMOS | | | | | | | | (11 | | | Pin | Interface | Name | I/O | Description | $\mathrm{U_{in}}/\mathbf{V}$ | I_{out} / mA | |-----|---------------|-------|-----|---|------------------------------|----------------| | | | | | - | | Tout / IIIA | | 7 | PCI | IDSEL | I | Initialisation Device Select | LVCMOS | | | | ISA PnP | GND | I | Ground | LVCMOS | | | | PCMCIA | REG# | Ι | PCMCIA Register and Attr. Mem. Select | LVCMOS | | | | Processor | GND | I | Ground | LVCMOS | | | | SPI | GND | I | Ground | LVCMOS | | | 8 | PCI | AD23 | IO | Address/Data bit 23 | LVCMOS | 8 | | | ISA PnP | SA7 | I | Address bit 7 | LVCMOS | | | | PCMCIA | A7 | I | Address bit 7 | LVCMOS | | | | Processor | A7 | I | Address bit 7 | LVCMOS | | | | SPI | FL0 | I | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 9 | PCI | AD22 | IO | Address / Data bit 22 | LVCMOS | 8 | | | ISA PnP | SA6 | I | Address bit 6 | LVCMOS | | | | PCMCIA | A6 | I | Address bit 6 | LVCMOS | | | | Processor | A6 | I | Address bit 6 | LVCMOS | | | | SPI | FL0 | I | Fixed level (low), connect to | LVCMOS | | | | | | | ground via ext. pull-down | | | | 10 | PCI | AD21 | IO | Address / Data bit 21 | LVCMOS | 8 | | | ISA PnP | SA5 | I | Address bit 5 | LVCMOS | | | | PCMCIA | A5 | I | Address bit 5 | LVCMOS | | | | Processor | A5 | I | Address bit 5 | LVCMOS | | | | SPI | FL0 | I | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 11 | PCI | AD20 | IO | Address/Data bit 20 | LVCMOS | 8 | | | ISA PnP | SA4 | I | Address bit 4 | LVCMOS | | | | PCMCIA | A4 | I | Address bit 4 | LVCMOS | | | | Processor | A4 | I | Address bit 4 | LVCMOS | | | | SPI | FL0 | I | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 12 | | VDD | | +3.3 V power supply | | | | 13 | | GND | | Ground | | | | 14 | PCI | AD19 | IO | Address / Data bit 19 | LVCMOS | 8 | | | ISA PnP | SA3 | I | Address bit 3 | LVCMOS | | | | PCMCIA | A3 | I | Address bit 3 | LVCMOS | | | | Processor | A3 | I | Address bit 3 | LVCMOS | | | | SPI | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 15 | PCI | AD18 | IO | Address / Data bit 18 | LVCMOS | 8 | | | ISA PnP | SA2 | I | Address bit 2 | LVCMOS | | | | PCMCIA | A2 | I | Address bit 2 | LVCMOS | | | | Processor | A2 | I | Address bit 2 | LVCMOS | | | | SPI | FL0 | I | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | | | | | | | | | Pin | Interface | Name | I/O | Description | $\mathbf{U_{in}}/\mathbf{V}$ | I_{out} / mA | |-----|--|---|-------------------------|---|--|----------------| | 16 |
PCI
ISA PnP
PCMCIA
Processor
SPI | AD17
SA1
A1
A1
FL0 | IO
I
I
I
I | Address / Data bit 17 Address bit 1 Address bit 1 Address bit 1 Fixed level (low), connect to ground via ext. pull-down | LVCMOS
LVCMOS
LVCMOS
LVCMOS
LVCMOS | 8 | | 17 | PCI
ISA PnP
PCMCIA
Processor
SPI | AD16
SA0
A0
A0
FL0 | IO
I
I
I | Address / Data bit 16 Address bit 0 Address bit 0 Address bit 0 Fixed level (low), connect to ground via ext. pull-down | LVCMOS
LVCMOS
LVCMOS
LVCMOS
LVCMOS | 8 | | 18 | PCI
ISA PnP
PCMCIA
Processor
SPI | C/BE2#
/IOIS16
IOIS16#
/BE2
FL1 | I
Ood
O
I
I | Bus command and Byte Enable 2 16 bit access enable 16 bit access enable Byte Enable 2 Fixed level (high), connect to power supply via ext. pull-up | LVCMOS
LVCMOS
LVCMOS | 8 | | 19 | | GND | | Ground | | | | 20 | PCI
ISA PnP
PCMCIA
Processor
SPI | FRAME#
/AEN
GND
/CS
VDD | I
I | Cycle Frame Address Enable Ground Chip Select +3.3 V power supply | LVCMOS
LVCMOS | | | 21 | PCI
ISA PnP
PCMCIA
Processor
SPI | IRDY#
/IOR
IORD#
/IOR
VDD | I
I
I | Initiator Ready Read Enable Read Enable Read Enable +3.3 V power supply | LVCMOS
LVCMOS
LVCMOS
LVCMOS | | | 22 | PCI
ISA PnP
PCMCIA
Processor
SPI | TRDY#
/IOW
IOWR#
/IOW
FL1 | O
I
I
I
I | Target Ready Write Enable Write Enable Write Enable Fixed level (high), connect to power supply via ext. pull-up | LVCMOS
LVCMOS
LVCMOS
LVCMOS | 8 | | 23 | PCI
ISA PnP
PCMCIA
Processor
SPI | DEVSEL#
FL0
OE#
/WD
FL0 | O
I
I
Ood
I | Device Select Fixed level (low), connect to ground via ext. pull-down PCMCIA Output Enable for Attr. Mem. Read Watch Dog Output Fixed level (low), connect to ground via ext. pull-down | LVCMOS
LVCMOS | 8 | | - | | | | | (continued o | n novt nogo) | | Pin | Interface | Name | I/O | Description | $\mathbf{U_{in}} / \mathbf{V}$ | 10, | |-----|-----------|---------|-----|---|--------------------------------|----------------| | | Interrace | Ivallie | | Description | U _{in} / V | I_{out} / mA | | 24 | PCI | STOP# | O | Stop | 11107.500 | 8 | | | ISA PnP | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | | PCMCIA | WE# | I | PCMCIA Write Enable for Conf. Reg. Write | LVCMOS | | | | Processor | ALE | I | Address Latch Enable | LVCMOS | | | | SPI | FL0 | I | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 25 | PCI | PERR# | IO | Parity Error | LVCMOS | 8 | | | ISA PnP | /BUSDIR | O | Bus Direction | | 8 | | | PCMCIA | INPACK# | O | Read access | | 8 | | | Processor | /BUSDIR | O | Bus Direction | | 8 | | | SPI | NC | | | | | | 26 | PCI | SERR# | Ood | System Error | | 8 | | | ISA PnP | NC | | | | | | | PCMCIA | NC | | | | | | | Processor | NC | | | | | | | SPI | NC | | | | | | 27 | PCI | PAR | IO | Parity Bit | LVCMOS | 8 | | | ISA PnP | FL0 | I | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | | PCMCIA | FL0 | I | Fixed level (low), connect to | LVCMOS | | | | | | | ground via ext. pull-down | | | | | Processor | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | | SPI | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 28 | | VDD | | +3.3 V power supply | | | | 29 | | GND | | Ground | | | | 30 | PCI | C/BE1# | I | Bus command and Byte Enable 1 | LVCMOS | | | | ISA PnP | /SBHE | I | High byte enable | LVCMOS | | | | PCMCIA | CE2# | I | High byte enable | LVCMOS | | | | Processor | /BE1 | I | Byte Enable 1 | LVCMOS | | | | SPI | FL1 | I | Fixed level (high), connect to | LVCMOS | | | | | | | power supply via ext. pull-up | | | | 31 | PCI | AD15 | IO | Address/Data bit 15 | LVCMOS | 8 | | | ISA PnP | SD15 | IO | ISA Data Bus Bit 15 | LVCMOS | 8 | | | PCMCIA | D15 | IO | PCMCIA Data Bus Bit 15 | LVCMOS | 8 | | | Processor | D15 | IO | Data bit 15 | LVCMOS | 8 | | | SPI | FL0 | I | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 32 | PCI | AD14 | IO | Address/Data bit 14 | LVCMOS | 8 | | | ISA PnP | SD14 | IO | ISA Data Bus Bit 14 | LVCMOS | 8 | | | PCMCIA | D14 | IO | PCMCIA Data Bus Bit 14 | LVCMOS | 8 | | | Processor | D14 | IO | Data bit 14 | LVCMOS | 8 | | | SPI | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | | | | | | | | | Pin | Interface | Name | I/O | Description | $\mathbf{U_{in}}/\mathbf{V}$ | I_{out}/mA | |-----|------------------|--------|---------|---|------------------------------|---------------------------------------| | - | | | | - | | · · · · · · · · · · · · · · · · · · · | | 33 | PCI | AD13 | IO | Address / Data bit 13 | LVCMOS | 8 | | | ISA PnP | SD13 | IO | ISA Data Bus Bit 13 | LVCMOS | 8 | | | PCMCIA | D13 | IO | PCMCIA Data Bus Bit 13 | LVCMOS
LVCMOS | 8 | | | Processor
SPI | D13 | IO
I | Data bit 13 | | 8 | | | 3P1 | FL0 | 1 | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 34 | PCI | AD12 | IO | Address / Data bit 12 | LVCMOS | 8 | | | ISA PnP | SD12 | IO | ISA Data Bus Bit 12 | LVCMOS | 8 | | | PCMCIA | D12 | IO | PCMCIA Data Bus Bit 12 | LVCMOS | 8 | | | Processor | D12 | IO | Data bit 12 | LVCMOS | 8 | | | SPI | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 35 | | GND | | Ground | | | | 36 | PCI | AD11 | IO | Address / Data bit 11 | LVCMOS | 8 | | | ISA PnP | SD11 | IO | ISA Data Bus Bit 11 | LVCMOS | 8 | | | PCMCIA | D11 | IO | PCMCIA Data Bus Bit 11 | LVCMOS | 8 | | | Processor | D11 | IO | Data bit 11 | LVCMOS | 8 | | | SPI | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 37 | PCI | AD10 | IO | Address / Data bit 10 | LVCMOS | 8 | | 37 | ISA PnP | SD10 | IO | ISA Data Bus Bit 10 | LVCMOS | 8 | | | PCMCIA | D10 | IO | PCMCIA Data Bus Bit 10 | LVCMOS | 8 | | | Processor | D10 | IO | Data bit 10 | LVCMOS | 8 | | | SPI | FL0 | I | Fixed level (low), connect to | | | | | | | | ground via ext. pull-down | | | | 38 | PCI | AD9 | IO | Address / Data bit 9 | LVCMOS | 8 | | | ISA PnP | SD9 | IO | ISA Data Bus Bit 9 | LVCMOS | 8 | | | PCMCIA | D9 | IO | PCMCIA Data Bus Bit 9 | LVCMOS | 8 | | | Processor | D9 | IO | Data bit 9 | LVCMOS | 8 | | | SPI | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 39 | PCI | AD8 | IO | Address / Data bit 8 | LVCMOS | 8 | | | ISA PnP | SD8 | IO | ISA Data Bus Bit 8 | LVCMOS | 8 | | | PCMCIA | D8 | IO | PCMCIA Data Bus Bit 8 | LVCMOS | 8 | | | Processor | D8 | IO | Data bit 8 | LVCMOS | 8 | | | SPI | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 40 | PCI | C/BE0# | I | Bus command and Byte Enable 0 | LVCMOS | | | - | ISA PnP | FL0 | I | Fixed level (low), connect to | | | | | | | | ground via ext. pull-down | | | | | PCMCIA | CE1# | I | Low byte enable | LVCMOS | | | | Processor | /BE0 | I | Byte Enable 0 | LVCMOS | | | | SPI | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | LVCMOS | | | 41 | | VDD | | +3.3 V power supply | | | | 42 | | GND | | Ground | | | | | | | | | | | | | | | | | (COII | umuea from pr | evious page) | |-----|--|-------------------------------|---------------------|---|-------|--|-------------------| | Pin | Interface | Name | I/O | Description | | $ m U_{in}/ m V$ | $I_{ m out}$ / mA | | 43 | PCI
ISA PnP
PCMCIA
Processor
SPI | AD7
SD7
D7
D7
FL0 | IO
IO
IO
I | Address / Data bit 7 ISA Data Bus Bit 7 PCMCIA Data Bus Bit 7 Data bit 7 Fixed level (low), connect ground via ext. pull-down | to | LVCMOS
LVCMOS
LVCMOS
LVCMOS
LVCMOS | 8
8
8
8 | | 44 | PCI
ISA PnP
PCMCIA
Processor
SPI | AD6
SD6
D6
D6
FL0 | IO IO IO IO | Address/Data bit 6 ISA Data Bus Bit 6 PCMCIA Data Bus Bit 6 Data bit 6 Fixed level (low), connect ground via ext. pull-down | to | LVCMOS
LVCMOS
LVCMOS
LVCMOS
LVCMOS | 8
8
8
8 | | 45 | PCI
ISA PnP
PCMCIA
Processor
SPI | AD5
SD5
D5
D5
FL0 | IO
IO
IO
I | Address / Data bit 5 ISA Data Bus Bit 5 PCMCIA Data Bus Bit 5 Data bit 5 Fixed level (low), connect ground via ext. pull-down | to | LVCMOS
LVCMOS
LVCMOS
LVCMOS
LVCMOS | 8
8
8
8 | | 46 | PCI
ISA PnP
PCMCIA
Processor
SPI | AD4
SD4
D4
D4
FL0 | IO
IO
IO
I | Address/Data bit 4 ISA Data Bus Bit 4 PCMCIA Data Bus Bit 4 Data bit 4 Fixed level (low), connect ground via ext. pull-down | to | LVCMOS
LVCMOS
LVCMOS
LVCMOS
LVCMOS | 8
8
8
8 | | 47 | | GND | | Ground | | | | | 48 | PCI
ISA PnP
PCMCIA
Processor
SPI | AD3
SD3
D3
D3
FL0 | IO
IO
IO
I | Address/Data bit 3 ISA Data Bus Bit 3 PCMCIA Data Bus Bit 3 Data bit 3 Fixed level (low), connect ground via ext. pull-down | to | LVCMOS
LVCMOS
LVCMOS
LVCMOS
LVCMOS | 8
8
8
8 | | 49 | PCI
ISA PnP
PCMCIA
Processor
SPI | AD2
SD2
D2
D2
FL0 | IO
IO
IO
I | Address / Data bit 2 ISA Data Bus Bit 2 PCMCIA Data Bus Bit 2 Data bit 2 Fixed level (low), connect ground via ext. pull-down | to | LVCMOS
LVCMOS
LVCMOS
LVCMOS
LVCMOS | 8
8
8
8 | | 50 | PCI
ISA PnP
PCMCIA
Processor
SPI | AD1
SD1
D1
D1
FL0 | OI
OI
OI
I | Address/Data bit 1 ISA Data Bus Bit 1 PCMCIA Data Bus Bit 1 Data bit 1 Fixed level (low), connect ground via ext. pull-down | to | LVCMOS
LVCMOS
LVCMOS
LVCMOS
LVCMOS | 8
8
8
8 | | Pin | Interface |
Name | I/O | Description | $\mathbf{U_{in}}/\mathbf{V}$ | I_{out}/mA | |-----|--|-------------------------------|----------------------|--|--|------------------| | 51 | PCI
ISA PnP
PCMCIA
Processor
SPI | AD0
SD0
D0
D0
FL0 | IO
IO
IO
IO | Address / Data bit 0 ISA Data Bus Bit 0 PCMCIA Data Bus Bit 0 Data bit 0 Fixed level (low), connect to ground via ext. pull-down | LVCMOS
LVCMOS
LVCMOS
LVCMOS
LVCMOS | 8
8
8
8 | | 52 | | VDD | | +3.3 V power supply | | | | 53 | | GND | | Ground | | | | | | | SRAN | M / Auxiliary interface | | | | 54 | 1st function
2nd function | SRA0
BRG_A0 | O
O | Address bit 0 for external SRAM
Bridge Address bit 0 | | 2
2 | | 55 | 1st function
2nd function | SRA1
BRG_A1 | O
O | Address bit 1 for external SRAM
Bridge Address bit 1 | | 2
2 | | 56 | 1st function
2nd function | SRA2
BRG_A2 | O
O | Address bit 2 for external SRAM
Bridge Address bit 2 | | 2
2 | | 57 | 1st function
2nd function | SRA3
BRG_A3 | O
O | Address bit 3 for external SRAM
Bridge Address bit 3 | | 2 2 | | 58 | 1st function
2nd function | SRA4
BRG_A4 | 0
0 | Address bit 4 for external SRAM
Bridge Address bit 4 | | 2
2 | | 59 | 1st function
2nd function | SRA5
BRG_A5 | O
O | Address bit 5 for external SRAM
Bridge Address bit 5 | | 2
2 | | 60 | 1st function
2nd function | SRA6
BRG_A6 | 0
0 | Address bit 6 for external SRAM
Bridge Address bit 6 | | 2
2 | | 61 | 1st function
2nd function | SRA7
BRG_A7 | O
O | Address bit 7 for external SRAM
Bridge Address bit 7 | | 2
2 | | 62 | | GND | | Ground | | | | 63 | 1st function
2nd function | SRA8
BRG_A8 | O
O | Address bit 8 for external SRAM
Bridge Address bit 8 | | 2
2 | | 64 | 1st function
2nd function | SRA9
BRG_A9 | O
O | Address bit 9 for external SRAM
Bridge Address bit 9 | | 2 2 | | 65 | 1st function
2nd function | SRA10
BRG_A10 | 0
0 | Address bit 10 for external SRAM
Bridge Address bit 10 | | 2
2 | | 66 | 1st function
2nd function | SRA11
BRG_A11 | O
O | Address bit 11 for external SRAM
Bridge Address bit 11 | | 2
2 | | 67 | 1st function
2nd function | SRA12
/BRG_CS0 | 0
0 | Address bit 12 for external SRAM
Bridge Chip Select 0 | | 2 2 | | 68 | 1st function
2nd function | SRA13
/BRG_CS1 | 0
0 | Address bit 13 for external SRAM
Bridge Chip Select 1 | | 2
2 | | 69 | 1st function
2nd function | SRA14
/BRG_CS2 | 0 | Address bit 14 for external SRAM
Bridge Chip Select 2 | | 2
2 | | Pin | Interface | Name | I/O | Description | $\mathbf{U_{in}} / \mathbf{V}$ | I_{out} / mA | |-----|------------------------------|-------------------|----------|---|--------------------------------|----------------| | 70 | 1st function
2nd function | SRA15
/BRG_CS3 | O
O | Address bit 15 for external SRAM
Bridge Chip Select 3 | | 2
2 | | 71 | 1st function
2nd function | SRA16
/BRG_CS4 | O
O | Address bit 16 for external SRAM
Bridge Chip Select 4 | | 2
2 | | 72 | 1st function
2nd function | SRA17
/BRG_CS5 | O
O | Address bit 17 for external SRAM
Bridge Chip Select 5 | | 2
2 | | 73 | 1st function
2nd function | SRA18
/BRG_CS6 | O
O | Address bit 18 for external SRAM
Bridge Chip Select 6 | | 2
2 | | 74 | 1st function
2nd function | NC
/BRG_CS7 | О | Bridge Chip Select 7 | | 2 | | 75 | | GND | | Ground | | | | 76 | | VDD | | +3.3 V power supply | | | | 77 | 1st function
2nd function | SRD0
BRG_D0 | IO
IO | Data bit 0 for external SRAM
Bridge Data bit 0 | LVCMOS
LVCMOS | 8 | | 78 | 1st function
2nd function | SRD1
BRG_D1 | IO
IO | Data bit 1 for external SRAM
Bridge Data bit 1 | LVCMOS
LVCMOS | 8 | | 79 | 1st function
2nd function | SRD2
BRG_D2 | IO
IO | Data bit 2 for external SRAM
Bridge Data bit 2 | LVCMOS
LVCMOS | 8
8 | | 80 | 1st function
2nd function | SRD3
BRG_D3 | IO
IO | Data bit 3 for external SRAM
Bridge Data bit 3 | LVCMOS
LVCMOS | 8
8 | | 81 | 1st function
2nd function | SRD4
BRG_D4 | IO
IO | Data bit 4 for external SRAM
Bridge Data bit 4 | LVCMOS
LVCMOS | 8 | | 82 | 1st function
2nd function | SRD5
BRG_D5 | IO
IO | Data bit 5 for external SRAM
Bridge Data bit 5 | LVCMOS
LVCMOS | 8 | | 83 | 1st function
2nd function | SRD6
BRG_D6 | IO
IO | Data bit 6 for external SRAM
Bridge Data bit 6 | LVCMOS
LVCMOS | 8
8 | | 84 | 1st function
2nd function | SRD7
BRG_D7 | IO
IO | Data bit 7 for external SRAM
Bridge Data bit 7 | LVCMOS
LVCMOS | 8 | | 85 | 1st function
2nd function | /SR_WR
/BRG_WR | O
O | Write enable for external SRAM
Bridge Write enable / RD/WR | | 4
4 | | 86 | | /SR_CS | О | Chip Select for external SRAM | | 4 | | 87 | 1st function
2nd function | /SR_OE
/BRG_RD | O
O | Output enable for external SRAM
Bridge Read enable / /DS | | 4
4 | | 88 | | GND | | Ground | | | | 89 | | VDD | | +3.3 V power supply | | | | | | | | Clock | | | | 90 | | OSC_IN | I | Oscillator Input Signal | | | | 91 | | OSC_OUT | О | Oscillator Output Signal | | | | | | | | | (continued o | on next page) | | Pin | Interface | Name | I/O | Description | $\mathbf{U_{in}}/\mathbf{V}$ | I_{out}/mA | |-----|---|----------------------|-------------|--|------------------------------|--------------| | 92 | | CLK_MODE | I | Clock Mode | LVCMOS | | | 93 | | GND | | Ground | | | | 94 | | VDD | | +3.3 V power supply | | | | | | | | Miscellaneous | | | | 95 | | PWM1 | О | Pulse Width Modulator Output 1 | | 8 | | 96 | | PWM0 | О | Pulse Width Modulator Output 0 | | 8 | | 97 | | SYNC_I | I | Synchronization Input | LVCMOS | | | 98 | | SYNC_O | О | Synchronization Output | | 4 | | 99 | | MODE0 | I | Interface Mode pin 0 | LVCMOS | | | 100 | | MODE1 | Ι | Interface Mode pin 1 | LVCMOS | | | 101 | | GND | | Ground | | | | | | | | EEPROM | | | | 102 | | EE_SCL/EN | Ю | EEPROM clock / EEPROM enable | LVCMOS | 1 | | 103 | | EE_SDA | IO | EEPROM data I/O | LVCMOS | 1 | | 104 | | VDD | | +3.3 V power supply | | | | 105 | | GND | | Ground | | | | | | | | PCM | | | | 106 | 1st function
2nd function
ISA PnP | NC
F_Q6
IRQ6 | 0 | PCM time slot count 6 ISA Interrupt Request 6 | | 6
6 | | 107 | 1st function
2nd function
ISA PnP | F1_7
F_Q5
IRQ5 | 0
0
0 | PCM CODEC enable 7 PCM time slot count 5 ISA Interrupt Request 5 | | 6
6
6 | | 108 | 1st function
2nd function
ISA PnP | F1_6
F_Q4
IRQ4 | 0
0
0 | PCM CODEC enable 6
PCM time slot count 4
ISA Interrupt Request 4 | | 6
6
6 | | 109 | 1st function
2nd function
ISA PnP | F1_5
F_Q3
IRQ3 | 0
0
0 | PCM CODEC enable 5 PCM time slot count 3 ISA Interrupt Request 3 | | 6
6
6 | | 110 | 1st function
2nd function
ISA PnP | F1_4
F_Q2
IRQ2 | 0
0
0 | PCM CODEC enable 4 PCM time slot count 2 ISA Interrupt Request 2 | | 6
6
6 | | 111 | 1st function
2nd function
ISA PnP | F1_3
F_Q1
IRQ1 | 0
0
0 | PCM CODEC enable 3 PCM time slot count 1 ISA Interrupt Request 1 | | 6
6
6 | | | | | | | itinued from pr | evious page) | |-----|---------------------------|----------------|--------|--|------------------------------|----------------| | Pin | Interface | Name | I/O | Description | $\mathrm{U_{in}}/\mathrm{V}$ | I_{out} / mA | | 112 | 1st function | F1_2 | O | PCM CODEC enable 2 | | 6 | | | 2nd function | F_Q0 | O | PCM time slot count 0 | | 6 | | | ISA PnP | IRQ0 | 0 | ISA Interrupt Request 0 | | 6 | | 113 | 1st function | F1_1 | O | PCM CODEC enable 1 | | 6 | | | 2nd function | SHAPE1 | О | PCM CODEC enable shape signal 1 | | 6 | | 114 | 1 . 6 | E4 0 | | | | | | 114 | 1st function 2nd function | F1_0
SHAPE0 | 0 | PCM CODEC enable 0 PCM CODEC enable shape sig- | | 6
6 | | | Ziid function | SHALLO | O | nal 0 | | U | | 115 | | VDD | | +3.3 V power supply | | | | 116 | | GND | | Ground | | | | 117 | | C2O | О | PCM bit clock output | | 8 | | 118 | | C4IO | IOpu | PCM double bit clock I/O | LVCMOS | 8 | | 119 | | F0IO | IOpu | PCM frame clock I/O (8 kHz) | LVCMOS | 8 | | 120 | | STIO1 | IOpu | PCM data bus 1, I or O per time | LVCMOS | 8 | | | | | | slot | | | | 121 | | STIO2 | IOpu | PCM data bus 2, I or O per time slot | LVCMOS | 8 | | 122 | | GND | | Ground | | | | 123 | | VDD | | +3.3 V power supply | | | | | | | S/7 | Γ interfaces / GPIO | | | | 124 | 1st function | R A7 | I | S/T interface no. 7 receive input A | S/T | | | | 2nd function | GPI31 | I | General Purpose Input pin 31 | LVCMOS | | | 125 | 1st function | LEV A7 | I | S/T interface no. 7 level detect A | S/T | | | 123 | 2nd function | GPI30 | I | General Purpose Input pin 30 | LVCMOS | | | 126 | 1st function | LEV B7 | I | S/T interface no. 7 level detect B | S/T | | | 120 | 2nd function | GPI29 | I | General Purpose Input pin 29 | LVCMOS | | | 127 | | | | | | | | 127 | 1st function 2nd function | R_B7
GPI28 | I
I | S/T interface no. 7 receive input B
General Purpose Input pin 28 | S/T
LVCMOS | | | 128 | | ADJ LEV7 | Ood | S/T interface no. 7 level generator | | | | 120 | | _ | | onn 128V nominal nower sun | | | | 129 | | VDD_ST | | app. +2.8 V nominal power supply (depends on the S/T transmit amplitude) | | | | 130 | 1st function | T A7 | О | S/T interface no. 7 transmit data A | | 16 | | | 2nd function | GPIO15 | IO | General Purpose I/O pin 15 |
LVCMOS | 16 | | 131 | 1st function | T B7 | 0 | S/T interface no. 7 transmit data B | | 16 | | | 2nd function | GPIO14 | IO | General Purpose I/O pin 14 | LVCMOS | 16 | | 132 | 1st function | T B6 | 0 | S/T interface no. 6 transmit data B | | 16 | | 132 | 2nd function | GPIO13 | IO | General Purpose I/O pin 13 | LVCMOS | 16 | | | | | | A A | (continued o | | | Pin | Interface | Name | I/O | Description | $\mathbf{U_{in}} / \mathbf{V}$ | I_{out} / mA | |-----|------------------------------|-----------------|---------|--|--------------------------------|----------------| | | | | | | U _{in} / v | | | 133 | 1st function
2nd function | T_A6
GPIO12 | O
IO | S/T interface no. 6 transmit data A
General Purpose I/O pin 12 | LVCMOS | 16
16 | | 134 | | GND | | Ground | | | | 135 | | ADJ_LEV6 | Ood | S/T interface no. 6 level generator | | | | 136 | 1st function
2nd function | R_B6
GPI27 | I
I | S/T interface no. 6 receive input B
General Purpose Input pin 27 | S/T
LVCMOS | | | 137 | 1st function
2nd function | LEV_B6
GPI26 | I
I | S/T interface no. 6 level detect B
General Purpose Input pin 26 | S/T
LVCMOS | | | 138 | 1st function
2nd function | LEV_A6
GPI25 | I
I | S/T interface no. 6 level detect A
General Purpose Input pin 25 | S/T
LVCMOS | | | 139 | 1st function
2nd function | R_A6
GPI24 | I
I | S/T interface no. 6 receive input A
General Purpose Input pin 24 | S/T
LVCMOS | | | 140 | | GND | | Ground | | | | 141 | | VDD | | +3.3 V power supply | | | | 142 | 1st function
2nd function | R_A5
GPI23 | I
I | S/T interface no. 5 receive input A
General Purpose Input pin 23 | S/T
LVCMOS | | | 143 | 1st function
2nd function | LEV_A5
GPI22 | I
I | S/T interface no. 5 level detect A
General Purpose Input pin 22 | S/T
LVCMOS | | | 144 | 1st function
2nd function | LEV_B5
GPI21 | I
I | S/T interface no. 5 level detect B
General Purpose Input pin 21 | S/T
LVCMOS | | | 145 | 1st function
2nd function | R_B5
GPI20 | I
I | S/T interface no. 5 receive input B
General Purpose Input pin 20 | S/T
LVCMOS | | | 146 | | ADJ_LEV5 | Ood | S/T interface no. 5 level generator | | | | 147 | | VDD_ST | | app. +2.8 V nominal power supply (depends on the S/T transmit amplitude) | | | | 148 | 1st function
2nd function | T_A5
GPIO11 | O
IO | S/T interface no. 5 transmit data A
General Purpose I/O pin 11 | LVCMOS | 16
16 | | 149 | 1st function
2nd function | T_B5
GPIO10 | O
IO | S/T interface no. 5 transmit data B
General Purpose I/O pin 10 | LVCMOS | 16
16 | | 150 | 1st function
2nd function | T_B4
GPIO9 | O
IO | S/T interface no. 4 transmit data B
General Purpose I/O pin 9 | LVCMOS | 16
16 | | 151 | 1st function
2nd function | T_A4
GPIO8 | O
IO | S/T interface no. 4 transmit data A
General Purpose I/O pin 8 | LVCMOS | 16
16 | | 152 | | GND | | Ground | | | | 153 | | ADJ_LEV4 | Ood | S/T interface no. 4 level generator | | | | 154 | 1st function
2nd function | R_B4
GPI19 | I
I | S/T interface no. 4 receive input B
General Purpose Input pin 19 | S/T
LVCMOS | | | _ | | | | | (continued o | on next page) | | Pin | Interface | Name | I/O | Description | $\mathrm{U_{in}}/\mathrm{V}$ | I_{out} / mA | |-----|------------------------------|-----------------|--------|--|---------------------------------------|----------------| | | | | | | · · · · · · · · · · · · · · · · · · · | Tout / IIIA | | 155 | 1st function
2nd function | LEV_B4
GPI18 | I
I | S/T interface no. 4 level detect B
General Purpose Input pin 18 | S/T
LVCMOS | | | 156 | 1st function | LEV_A4 | I | S/T interface no. 4 level detect A | S/T | | | | 2nd function | GPI17 | I | General Purpose Input pin 17 | LVCMOS | | | 157 | 1st function | R_A4 | I | S/T interface no. 4 receive input A | S/T | | | | 2nd function | GPI16 | I | General Purpose Input pin 16 | LVCMOS | | | 158 | | VDD | | +3.3 V power supply | | | | 159 | 1st function | R_A3 | I | S/T interface no. 3 receive input A | S/T | | | | 2nd function | GPI15 | I | General Purpose Input pin 15 | LVCMOS | | | 160 | 1st function | LEV_A3 | I | S/T interface no. 3 level detect A | S/T | | | - | 2nd function | GPI14 | I | General Purpose Input pin 14 | LVCMOS | | | 161 | 1st function | LEV_B3 | I | S/T interface no. 3 level detect B | S/T | | | | 2nd function | GPI13 | I | General Purpose Input pin 13 | LVCMOS | | | 162 | 1st function | R_B3 | I | S/T interface no. 3 receive input B | S/T | | | | 2nd function | GPI12 | I | General Purpose Input pin 12 | LVCMOS | | | 163 | | ADJ_LEV3 | Ood | S/T interface no. 3 level generator | | | | 164 | | VDD_ST | | app. +2.8 V nominal power supply (depends on the S/T transmit | | | | | | | | amplitude) | | | | 165 | 1st function | T A3 | О | S/T interface no. 3 transmit data A | | 16 | | | 2nd function | GPIO7 | IO | General Purpose I/O pin 7 | LVCMOS | 16 | | 166 | 1st function | T_B3 | O | S/T interface no. 3 transmit data B | | 16 | | | 2nd function | GPIO6 | IO | General Purpose I/O pin 6 | LVCMOS | 16 | | 167 | 1st function | T_B2 | O | S/T interface no. 2 transmit data B | | 16 | | | 2nd function | GPIO5 | IO | General Purpose I/O pin 5 | LVCMOS | 16 | | 168 | 1st function | T_A2 | O | S/T interface no. 2 transmit data A | | 16 | | | 2nd function | GPIO4 | IO | General Purpose I/O pin 4 | LVCMOS | 16 | | 169 | | GND | | Ground | | | | 170 | | ADJ_LEV2 | Ood | S/T interface no. 2 level generator | | | | 171 | 1st function | R_B2 | I | S/T interface no. 2 receive input B | S/T | | | | 2nd function | GPI11 | I | General Purpose Input pin 11 | LVCMOS | | | 172 | 1st function | LEV_B2 | I | S/T interface no. 2 level detect B | S/T | | | | 2nd function | GPI10 | I | General Purpose Input pin 10 | LVCMOS | | | 173 | 1st function | LEV_A2 | I | S/T interface no. 2 level detect A | S/T | | | | 2nd function | GPI9 | I | General Purpose Input pin 9 | LVCMOS | | | 174 | 1st function | R_A2 | I | S/T interface no. 2 receive input A | S/T | | | | 2nd function | GPI8 | I | General Purpose Input pin 8 | LVCMOS | | | 175 | | VDD | | +3.3 V power supply | | | | | | | | | (continued o | | | Pin | Interface | Name | I/O | Description | $\mathbf{U_{in}}/\mathbf{V}$ | I_{out} / mA | |-----|--|-------------------------------------|-------------|--|--------------------------------------|----------------| | 176 | 1st function
2nd function | R_A1
GPI7 | I
I | S/T interface no. 1 receive input A
General Purpose Input pin 7 | S/T
LVCMOS | | | 177 | 1st function
2nd function | LEV_A1
GPI6 | I
I | S/T interface no. 1 level detect A
General Purpose Input pin 6 | S/T
LVCMOS | | | 178 | 1st function
2nd function | LEV_B1
GPI5 | I
I | S/T interface no. 1 level detect B
General Purpose Input pin 5 | S/T
LVCMOS | | | 179 | 1st function
2nd function | R_B1
GPI4 | I
I | S/T interface no. 1 receive input B
General Purpose Input pin 4 | S/T
LVCMOS | | | 180 | | ADJ_LEV1 | Ood | S/T interface no. 1 level generator | | | | 181 | | VDD_ST | | app. +2.8 V nominal power supply (depends on the S/T transmit amplitude) | | | | 182 | 1st function
2nd function | T_A1
GPIO3 | O
IO | S/T interface no. 1 transmit data A
General Purpose I/O pin 3 | LVCMOS | 16
16 | | 183 | 1st function
2nd function | T_B1
GPIO2 | O
IO | S/T interface no. 1 transmit data B
General Purpose I/O pin 2 | LVCMOS | 16
16 | | | | | | | | | | 184 | 1st function
2nd function | T_B0
GPIO1 | O
IO | S/T interface no. 0 transmit data B
General Purpose I/O pin 1 | LVCMOS | 16
16 | | 185 | 1st function
2nd function | T_A0
GPIO0 | O
IO | S/T interface no. 0 transmit data A
General Purpose I/O pin 0 | LVCMOS | 16
16 | | 186 | | GND | | Ground | | | | 187 | | ADJ_LEV0 | Ood | S/T interface no. 0 level generator | | | | 188 | 1st function
2nd function | R_B0
GPI3 | I
I | S/T interface no. 0 receive input B
General Purpose Input pin 3 | S/T
LVCMOS | | | 189 | 1st function
2nd function | LEV_B0
GPI2 | I
I | S/T interface no. 0 level detect B
General Purpose Input pin 2 | S/T
LVCMOS | | | 190 | 1st function
2nd function | LEV_A0
GPI1 | I
I | S/T interface no. 0 level detect A
General Purpose Input pin 1 | S/T
LVCMOS | | | 191 | 1st function
2nd function | R_A0
GPI0 | I
I | S/T interface no. 0 receive input A
General Purpose Input pin 0 | S/T
LVCMOS | | | 192 | | GND | | Ground | | | | 193 | | VDD | | +3.3 V power supply | | | | | | | Uni | iversal bus interface | | | | 194 | PCI
ISA PnP
PCMCIA
Processor
SPI | VDD
VDD
VDD
VDD
/SPISEL | I
I
I | +3.3 V power supply
+3.3 V power supply
+3.3 V power supply
+3.3 V power supply
SPI device select low active | LVCMOS
LVCMOS
LVCMOS
LVCMOS | | | | | | | | (continued o | on next page) | | D. | T | 3. 7 | T/O | | itinued from pr | 1 0 | |-----|---------------|-------------|-----|---|-----------------|--------------------------| | Pin | Interface | Name | I/O | Description | U_{in}/V | $I_{ m out} / { m mA}$ | | 195 | PCI | PME_IN | I | Power Management Event Input | LVCMOS | | | | ISA PnP | GND | | Ground | | | | | PCMCIA | GND | | Ground | | | | | Processor | GND | | Ground | | | | | SPI | SPI_RX | I | SPI receive data input | LVCMOS | | | 196 | PCI | PME | O | Power Management Event output | | 4 | | | ISA PnP | NC | | | | | | | PCMCIA | NC | | | | | | | Processor | NC | | | | | | | SPI | SPI_TX | O | SPI transmit data output | | 4 | |
197 | PCI | INTA# | Ood | Interrupt request | | 4 | | | ISA PnP | NC | | | | | | | PCMCIA | IREQ# | Ood | Interrupt request | | 4 | | | Processor | /INT | Ood | Interrupt request | | 4 | | | SPI | /INT | Ood | Interrupt request | | 4 | | 198 | PCI | RST# | I | Reset low active | LVCMOS | | | | ISA PnP | RESET | I | Reset high active | LVCMOS | | | | PCMCIA | RESET | I | Reset high active | LVCMOS | | | | Processor | RESET | I | Reset high active | LVCMOS | | | | SPI | RESET | I | Reset high active | LVCMOS | | | 199 | | GND | | Ground | | | | 200 | PCI | PCICLK | I | PCI Clock Input | LVCMOS | | | | ISA PnP | GND | | Ground | | | | | PCMCIA | GND | | Ground | | | | | Processor | GND | | Ground | | | | | SPI | SPICLK | I | SPI clock input | LVCMOS | | | 201 | | GND | | Ground | | | | 202 | | VDD | | +3.3 V power supply | | | | 203 | PCI | AD31 | IO | Address / Data bit 31 | LVCMOS | 8 | | | ISA PnP | SA15 | I | Address bit 15 | LVCMOS | | | | PCMCIA | A15 | I | Address bit 15 | LVCMOS | | | | Processor | FL0 | I | Fixed level (low), connect to ground via ext. pull-down | | | | | SPI | FL0 | I | Fixed level (low), connect to | | | | | | | | ground via ext. pull-down | | | | 204 | PCI | AD30 | IO | Address/Data bit 30 | LVCMOS | 8 | | | ISA PnP | SA14 | I | Address bit 14 | LVCMOS | | | | PCMCIA | A14 | I | Address bit 14 | LVCMOS | | | | Processor | FL0 | I | Fixed level (low), connect to ground via ext. pull-down | | | | | SPI | FL0 | I | Fixed level (low), connect to | | | | | | | | ground via ext. pull-down | | | | | | | | | | | | Pin | Interface | Name | I/O | Description | ${ m U_{in}/V}$ | $I_{ m out} / { m mA}$ | |-----|---------------|------|-----|---|-----------------|--------------------------| | 205 | PCI | AD29 | IO | Address/Data bit 29 | LVCMOS | 8 | | | ISA PnP | SA13 | I | Address bit 13 | LVCMOS | | | | PCMCIA | A13 | I | Address bit 13 | LVCMOS | | | | Processor | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | | | | | SPI | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | | | | 206 | PCI | AD28 | IO | Address/Data bit 28 | LVCMOS | 8 | | | ISA PnP | SA12 | I | Address bit 12 | LVCMOS | | | | PCMCIA | A12 | I | Address bit 12 | LVCMOS | | | | Processor | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | | | | | SPI | FL0 | Ι | Fixed level (low), connect to ground via ext. pull-down | | | | 207 | | GND | | Ground | | | | 208 | | VDD | | +3.3 V power supply | | | | Legend: | I | Input pin | |---------|------|--| | | O | Output pin | | | IO | Bidirectional pin | | | Ood | Output pin with open drain | | | IOpu | Bidirectional pin with internal pull-up resistor of app. $100k\Omega$ to VDD | | | NC | Not connected | | | R_A7 | Not connected, should be tied to ground if the pin is not used as GPI | | | | function | | | FL0 | Fixed level (low), must be connected to ground via external pull-down | | | | (e.g. $1 \mathrm{M}\Omega$) | | | VDD | Fixed level (high), must be connected to power supply via external | | | | external pull-up (e.g. $1\mathrm{M}\Omega$) | Unused input pins should be tied to ground. Unused I/O pins should be tied via a $1\,M\Omega$ resistor to ground. # **Important!** FLO and VDD pins might be driven as chip output during power-on. To prevent a short circuit these pins must either be connected via a resistor (e.g. $1\,\mathrm{M}\Omega$) to ground resp. power supply or they can directly be tied to ground resp. power supply, if RESET is always active during power-on. # Chapter 2 # Universal external bus interface (Overview tables of the HFC-4S/8S bus interface pins can be found at the beginning of the sections 2.2...2.6.) Table 2.1: Overview of the HFC-4S/8S bus interface registers | Write only | y registers: | Read only | registers: | | | |------------|--------------|-----------|------------|-----------|------| | Address | Name | Page | Address | Name | Page | | 0x00 | R_CIRM | 86 | 0x15 | R_RAM_USE | 91 | | 0x01 | R_CTRL | 87 | 0x16 | R_CHIP_ID | 92 | | 0x08 | R_RAM_ADDR0 | 88 | 0x1C | R_STATUS | 237 | | 0x09 | R_RAM_ADDR1 | 88 | 0x1F | R_CHIP_RV | 92 | | 0x0A | R_RAM_ADDR2 | 89 | | | | | 0x0C | R_RAM_MISC | 90 | | | | March 2003 (rev. A) Data Sheet 43 of 273 The HFC-4S/8S has an integrated universal external bus interface which can be configured as PCI, ISA PnP, PCMCIA, microprocessor interface and SPI. Table 2.2 shows how to select the bus mode via the two pins MODE0 and MODE1. Table 2.2: Access types | Bus mode | MODE1 | MODE0 | 8 bit | 16 bit | 32 bit | Page | |--------------------------------|-------|-------|----------|--------------|--------|------| | PCI | 0 | 0 | | | | 47 | | PCI memory mapped mode | | | ✓ | \checkmark | ✓ | | | PCI I/O mapped mode | | | ✓ | ✓ | ✓ | | | ISA Plug and Play | 1 | 0 | √ | ✓ | Х | 54 | | PCMCIA | 1 | 1 | √ | / | Х | 60 | | Processor Interface | 0 | 1 | | | | 63 | | Mode 2: Motorola | | | ✓ | ✓ | X | | | Mode 3: Intel, non-multiplexed | | | ✓ | \checkmark | X | | | Mode 4: Intel, multiplexed | | | ✓ | ✓ | ✓ | | | SPI * | 0 | 1 | √ | Х | × | 83 | ^{(*:} SPI mode is selected by using processor interface mode and connecting pin 200 to SPI clock.) The external bus interface supports 8 bit, 16 bit and 32 bit accesses. The available access types depend on the selected bus mode like shown in Table 2.2. The sections 2.2 to 2.6 explain how to use the HFC-4S/8S in the different bus modes. ### 2.1 Common features of all interface modes **Table 2.3:** Overview of common bus interface pins ¹ | Number | Name | Description | |-------------------------|---------------------------------------|--| | 99
100
102
103 | MODE0
MODE1
EE_SCL/EN
EE_SDA | Interface Mode pin 0 Interface Mode pin 1 EEPROM clock / EEPROM enable EEPROM data I/O | ### 2.1.1 EEPROM programming The ISA PnP and PCMCIA interfaces require an external EEPROM. For the PCI bus and the processor interface mode, this EEPROM is optional. The EEPROM programming specification is only available on special request from Cologne Chip to avoid destruction of configuration information by not authorized programs or software viruses. The EEPROM is used to store the configuration data for PCMCIA, PCI or ISA PnP. After a reset (hardware reset or EEPROM load with V_RLD_EPR = 1 of the register R_CIRM) the HFC-4S/8S copies a constant number of bytes from the EEPROM to the SRAM. The bytes which are not used by the configuration data can be filled with vendor defined data. This data (and the configuration data as well) can be read by RAM accesses to the HFC-4S/8S. Tables 2.4 and 2.5 show how many bytes are copied in the different modes and which start address is used for different SRAM sizes. Table 2.4: EEPROM load size | Mode | Number of bytes copied | |-------------------------|------------------------| | ISA PnP mode | 512 | | PCMCIA mode | 512 | | PCI mode | 128 | | parallel processor mode | 512 | Table 2.5: SRAM start address | SRAM size | Start address
in SRAM | |-----------|--------------------------| | 32k x 8 | 0x1A00 | | 128k x 8 | 0x2A00 | | 512k x 8 | 0x2A00 | | | | #### 2.1.2 EEPROM circuitry Figure 2.1 shows the connection of an EEPROM (e.g. 24C04 type) to the HFC-4S/8S pins EE_SCL/EN and EE SDA. If no EEPROM is used, pin EE_SCL/EN must be connected to ground while EE_SDA must remain open as shown in Figure 2.2. March 2003 (rev. A) Data Sheet 45 of 273 ¹See sections 2.2 to 2.6 for overview tables of the interface specific pins. Figure 2.1: EEPROM connection circuitry Figure 2.2: EE_SCL/EN and EE_SDA connection without EEPROM #### 2.1.3 Register access In PCI I/O mapped mode, ISA PnP, PCMCIA mode and SPI mode all registers are selected by writing the register address into the *Control Internal Pointer* (CIP) register. This is done by writing the CIP on the higher I/O addresses (AD2, SA2, A2, $A/\bar{D}=1$). The CIP register can also be read with AD2, SA2, A2, $A/\bar{D}=1$. All consecutive read or write data accesses (AD2, SA2, A2, $A/\bar{D}=0$) are done with the selected register until the CIP register is changed. In processor interface mode all internal registers can be directly accessed. The registers are selected by $A0 \dots A7$. In PCI mode internal A0 and A1 are generated from the byte enable lines. #### 2.1.4 RAM access The SRAM of the HFC-4S/8S can be accessed by the host. For doing so the desired RAM address has to be written in the $R_RAM_ADDR0 \dots R_RAM_ADDR2$ registers first. Then data can be read/written by reading/writing the register R_RAM_DATA . An automatic increment function can be set in the register R_RAM_ADDR2 . ## 2.2 PCI interface Table 2.6: Overview of the PCI interface pins | Number | Name | Description | |---------------|---------------|--------------------------------| | 203 206, 1 4 | AD31 AD24 | Address / Data byte 3 | | 817 | AD23AD16 | Address / Data byte 2 | | 31 39 | AD15AD8 | Address / Data byte 1 | | 4351 | AD7 AD0 | Address / Data byte 0 | | 6, 18, 30, 40 | C/BE3# C/BE0# | Bus command and Byte Enable 30 | | 7 | IDSEL | Initialisation Device Select | | 20 | FRAME# | Cycle Frame | | 21 | IRDY# | Initiator Ready | | 22 | TRDY# | Target Ready | | 23 | DEVSEL# | Device Select | | 24 | STOP# | Stop | | 25 | PERR# | Parity Error | | 26 | SERR# | System Error | | 27 | PAR | Parity Bit | | 195 | PME_IN | Power Management Event Input | | 196 | PME | Power Management Event output | | 197 | INTA# | Interrupt request | | 198 | RST# | Reset low active | | 200 | PCICLK | PCI Clock Input | The PCI mode is selected by MODE0 = 0 and MODE1 = 0. Only PCI target mode accesses are supported by the HFC-4S/8S. 5 V PCI bus signaling environment is supported with 3.3 V supply voltage of the HFC-4S/8S. Never connect the power supply of the
HFC-4S/8S to 5 V! The PCI interface is build according to the PCI Specification 2.2. ### 2.2.1 PCI command types Table 2.7 shows the supported PCI commands of the HFC-4S/8S. Memory Read Line and Memory Read Multiple commands are aliased to Memory Read. Memory Write and Invalidate is aliased to Memory Write. March 2003 (rev. A) Data Sheet 47 of 273 Figure 2.3: PCI configuration registers Table 2.7: PCI command types | C/BE3# | C/BE2# | C/BE1# | C/BE0# | nibble value | Command type | |--------|--------|--------|--------|--------------|-----------------------------| | 0 | 0 | 1 | 0 | 2 | I/O Read | | 0 | 1 | 1 | 0 | 6 | Memory Read | | 1 | 1 | 0 | 0 | 0xC | Memory Read Multiple | | 1 | 1 | 1 | 0 | 0xE | Memory Read Line | | 1 | 0 | 1 | 0 | 0xA | Configuration Read | | 0 | 0 | 1 | 1 | 3 | I/O Write | | 0 | 1 | 1 | 1 | 7 | Memory Write | | 1 | 1 | 1 | 1 | 0xF | Memory Write and Invalidate | | 1 | 0 | 1 | 1 | 0xB | Configuration Write | | | | | | | | Figure 2.4: PCI access in PCI I/O mapped mode Figure 2.5: PCI access in PCI memory mapped mode ### 2.2.2 PCI access description Two modes exist for register access: - 1. If HFC-4S/8S is used in *PCI memory mapped mode* all registers can directly be accessed by adding their CIP address to the configured Memory Base Address. - 2. In PCI I/O mapped mode HFC-4S/8S only occupies 8 bytes in the I/O address space. In PCI I/O mapped mode all registers are selected by writing the register address into the *Control Internal Pointer* (CIP) register. This is done by writing the HFC-4S/8S on the higher I/O addresses (AD2 = 1). If the auxiliary interface is used (see Chapter 11) the CIP write access must have a width of 16 bit. All consecutive read or write data accesses (AD2 = 0) use the selected register until the CIP register is changed. March 2003 (rev. A) Data Sheet 49 of 273 ### 2.2.3 PCI configuration registers The PCI configuration space is defined by the configuration register set which is illustrated in Figure 2.3. In the configuration address space 0x00 ... 0x47 the PCI configuration register values are either - set by the HFC-4S/8S default settings of the configuration values or - they can be written to upper configuration registers or - they are read from the external EEPROM. The external EEPROM is optional. If no EEPROM is available, the pin EE_SCL/EN has to be connected to GND and the pin EE_SDA has to be left open. Without EEPROM the PCI configuration registers will be loaded with the default values shown in Table 2.8. All configuration registers which can be set by the EEPROM can also be written by configuration write accesses to the upper addresses of the configuration register space (from 0xC0 upwards). The addresses for configuration writes are shown in Table 2.8. Unimplemented registers return all '0's when read. Table 2.8: PCI configuration registers | Register Name | Address | Width | Default Value | Remarks | |------------------|---------|-------|----------------------|--| | Vendor ID | 0x00 | Word | 0x1397 | Value can be set by EEPROM. Base address for configuration write is 0xC0. | | Device ID | 0x02 | Word | 0x08B4
0x16B8 | ID of HFC-4S ID of HFC-8S Value can be set by EEPROM. Base address for configuration write is 0xC0. | | Command Register | 0x04 | Word | 0x0000 | Bits Function | | | | | | 0 Enables / disables I/O space accesses 1 Enables / disables memory space accesses 52 fixed to 0 6 PERR# enable / disable 7 fixed to '0' 8 SERR# enable / disable 159 fixed to 0 | | | | | | (continued on next page) | 50 of 273 Data Sheet March 2003 (rev. A) Table 2.8: PCI configuration registers | Register Name | Address | Width | Default Value | Remarks | |---------------------|---------|---------|----------------------|---| | Status Register | 0x06 | Word | 0x0210 | Bits 0 7 can be set by EEPROM. Base address for configuration write is 0xC4. Bits Function | | | | | | 30 reserved 4 '1' = Capabilities List exists, fixed to '1' 5 '0' = 33 MHz capable (default) '1' = 66 MHz capable 6 reserved 7 '0' = fast Back-to-Back not capable (default) '1' = fast Back-to-Back capable 8 fixed to '0' 109 fixed to '01': timing of DEVSEL# is medium 11 fixed to '0' 1312 fixed to '00' 14 system error (address parity error) 15 any detected data or system parity error | | Revision ID | 0x08 | Byte | 0x01 | HFC-4S/8S Revision 01 | | Class Code | 0x09 | 3 Bytes | 0x020400 | Class code for 'ISDN controller'. Value can be set by EEPROM. Base address for configuration write is 0xC8. | | Header Type | 0x0E | Byte | 0x00 | Header type 0 | | BIST | 0x0F | Byte | 0x00 | No build in self test supported. | | I/O Base Address | 0x10 | DWord | | Bits 3 31 are r/w by configuration accesses. 8 Byte address space is used. | | Memory Base Address | 0x14 | DWord | | Bits 12 31 are r/w by configuration accesses. 4 kByte address space is used. | | Subsystem Vendor ID | 0x2C | Word | 0x1397 | Value can be set by EEPROM. Base address for configuration write is 0xEC. | | Subsystem ID | 0x2E | Word | 0x08B4
0x16B8 | ID of HFC-4S ID of HFC-8S Value can be set by EEPROM. Base address for configuration write is 0xEC. | | Cap_Ptr | 0x34 | Byte | 0x40 | Offset to Power Management register block. | | Interrupt Line | 0x3C | Byte | 0xFF | This register must be configured by configuration write. | | Interrupt Pin | 0x3D | Byte | 0x01 | INTA# supported | | Cap_ID | 0x40 | Byte | 0x01 | Capability ID. 0x01 identifies the linked list item as PCI Power Management registers. | | Next Item Ptr | 0x41 | Byte | 0x00 | There are no next items in the linked list. | Table 2.8: PCI configuration registers | Register Name | Address | Width | Default Value | Rema | rks | |---------------|---------|-------|---------------|-----------------------|---| | PMC *1 | 0x42 | Word | 0x7E22 | 'PCI
Specifican be | Management Capabilities, see also Bus Power Management Interface fication Rev. 1.1'.This register's value e set by EEPROM. Base address for turation write is 0xE0. | | | | | | Bits | Function | | | | | | 02 | '010' = PCI Power Management Spec.
Version 1.1. | | | | | | 3 | '0' = The HFC-4S/8S does not require PCI-clock to generate PME. | | | | | | 4 | Fixed to '0'. | | | | | | 5 | '1' = Device specific initialisation is required. | | | | | | 86 | '000' = No D3_cold support *1 . | | | | | | 9 | '1' = Supports D1 Power Management State *2. | | | | | | 10 | '1' = Supports D2 Power Management State *2. | | | | | | 1511 | PME can be asserted from D0, D1, D2 and D3_hot. | | PMCSR | 0x44 | Word | 0x0000 | Power | Management Control/Status | | | | | | Bits | Function | | | | | | 10 | PowerState : These bits are used both to determine the current power state of a function and to set the function into a new power state *2. '00': D0 | | | | | | | '01': D1 | | | | | | | '10': D2 | | | | | | | '11': D3_hot | | | | | | 72 | fixed to '0' | | | | | | 8 | PME_En: | | | | | | | '1' enables the function to assert PME. | | | | | | | '0' = PME assertion is disabled. | | | | | | 149 | fixed to 0 | | | | | | 15 | PME_Status: This bit is set when the function would normally assert the PME signal independent of the state of the PME_En bit. | | | | | | | Writing a '1' to this bit will clear it and cause the function to stop asserting a PME (if enabled). | | | | | | | Writing a '0' has no effect. | ^{*1:} D3_cold support is implemented but must be set in the EEPROM configuration data. 52 of 273 Data Sheet March 2003 (rev. A) ^{*2:} Changing the power management does not change the power dissipation. It is only implemented for PCI specification compatibility. ### 2.2.4 PCI connection circuitry Figure 2.6: PCI connection circuitry # 2.3 ISA Plug and Play interface Table 2.9: Overview of the ISA PnP interface pins | Number | Name | Description | |-------------|----------|---------------------------| | 203 206,1 4 | SA15SA8 | Address byte 1 | | 8 17 | SA7SA0 | Address byte 0 | | 3139 | SD15SD8 | Data byte 1 | | 43 51 | SD7SD0 | Data byte 0 | | 106112 | IRQ6IRQ0 | ISA Interrupt Request 6 0 | | 18 | /IOIS16 | 16 bit access enable | | 20 | /AEN | Address Enable | | 21 | /IOR | Read Enable | | 22 | /IOW | Write Enable | | 25 | /BUSDIR | Bus Direction | | 30 | /SBHE | High byte enable | | 198 | RESET | Reset high active | ISA Plug and Play mode is selected by MODE0 = 0 and MODE1 = 1. The HFC-4S/8S needs eight consecutive addresses in the I/O map of a PC for operation. Usually also one out of several ISA IRQ lines is used. Section 2.3.1 describes how to configure the interrupt lines of the HFC-4S/8S. The port address is selected by the lines SA0 ... SA15. The address with SA2 = '1' is used for register selection via the CIP (Control Internal Pointer) and the address with SA2 = '0' is used for data read / write like shown in Table 2.10. The bits SA3 ... SA15 are decoded by the address decoder to match the PnP configuration address. **Table 2.10:** *ISA* address decoding (X = don't care) | SA2 | /IOR | /IOW | /AEN | Operation | |-----|------|------|------|------------| | X | X | X | 1 | no access | | X | 1 | 1 | X | no access | | 0 | 0 | 1 | 0 | read data | | 0 | 1 | 0 | 0 | write data | | 1 | 0 | 1 | 0 | read CIP | | 1 | 1 | 0 | 0 | write CIP | The HFC-4S/8S has no memory or DMA access to any component on the ISA PC bus. Because of its
characteristic power drive no external driver for the ISA PC bus data lines is needed. If necessary (e.g. due to an old ISA specification which requires 24 mA output current) an external bus driver can be added. In this case the output signal /BUSDIR determines the driver direction. 54 of 273 Data Sheet March 2003 (rev. A) /BUSDIR = 0 means that the HFC-4S/8S is read and data is driven to the external bus. /BUSDIR = 1 means that data is driven (written) into the HFC-4S/8S. ### 2.3.1 IRQ assignment The IRQ lines are tristated after a hardware reset. The IRQ assigned by the PnP BIOS can be read from the bitmap V_PNP_IRQ of the register R_CHIP_ID. The bitmap V_IRQ_SEL of the register R_CIRM has to be set according to the IRQ wiring between HFC-4S/8S and the ISA slot on the PCB. Thus the IRQ number assigned by the PnP BIOS is connected to the right IRQ line on the ISA bus. ### 2.3.2 ISA Plug and Play registers Table 2.11: ISA Plug and Play registers | Card level
control register
address | Read/write
Mode | Accessable in state | Descr | ription | |---|--------------------|-------------------------------------|---|---| | 0x00 | W | Isolation state,
Config state *1 | Bits (| ead data port address register. O 7 become bits 2 9 of the port's I/O address. 10 and 11 are hardwired to '00' and bits 0 and 1 are wired to '11'. | | 0x01 | r | Isolation state | Serial isolation register. Used to read the serial identifier during the card isolation process. | | | 0x02 w | Sleep state, | Conf | iguration control register. | | | | | Isolation state,
Config state | Bits | Function | | | | | 0 | Reset Bit. The value '1' resets all of the card's configuration registers to their default state. The CSN is not affected. | | | | | 1 | Return to wait for key state. When set to one, all cards return to wait for key state. Their CSNs and configuration registers are not affected. This command is issued after all cards have been configured and activated. | | | | 2 | Reset CSN to zero. When set to one, all cards reset their CSN to zero. All bits are automatically cleared by the hardware. | | | | | | 73 | Reserved, must be zero | | | | | | (continued on next page) | March 2003 (rev. A) Data Sheet 55 of 273 Table 2.11: ISA Plug and Play registers | Card level
ontrol register
address | Read/write
Mode | Accessable in state | Description | |--|--------------------|------------------------------------|--| | 0x03 w | W | w Sleep state,
Isolation state, | Wake command register. Writing a CSN to this register has the following effects: | | | | Config state | • If the value written is 0x00, all cards in the sleep state with a CSN = 0x00 go to the isolation state. All cards in configure state (CSN not 0x00) go to the sleep state. | | | | | If the value written is not 0x00, all cards in the
sleep state with a matching CSN go to the config-
ure state. All cards in the isolation state go to the
sleep state. | | | | | Every write to a card's wake command register with a match on its CSN causes the pointer to the serial identifier/ resource data to be reset to the first byte of the serial identifier. | | 0x04 | r | Config state | Resource data register. This register is used to read the device's recource data. Each time when a read is performed from this register a byte of the resource data is returned and the resource data pointer is incremented. Prior to reading each byte, the programmer must read from the status register to determine if the next byte is available for reading from the resource data register. The card's serial identifier and checksum must be read prior to accessing the resource requirement list via this register. | | 0x05 | r | Config state | Status register. Prior to reading the next byte of the device's resource data, the programmer must read from this register and check bit 0 for a '1'. This is the resource data byte available bit. Bits 1 7 are reserved. | | 0x06 | r/w | Isolation state *2 Config state | Card select number (CSN) register. The configuration software uses the CSN register to assign a unique ID to the card. The CSN is then used to wake up the card's configuration logic whenever the configuration program must access its configuration registers. | | 0x07 | r | Config state | Logical device number register. The number in this register points to the logical device the next commands will operate on. The HFC-4S/8S only supports one logical device. This register is hardwired to all zeros. | | | | | (continued on next page) | Table 2.11: ISA Plug and Play registers | Card level
control register
address | Read/write
Mode | Accessable in state | Description | |---|--------------------|---------------------|---| | 0x30 | r/w | Config state | Activate register. Setting bit 0 to '1' activates the card on the ISA bus. When cleared, the card cannot respond to any ISA bus transactions (other than accesses to its Plug and Play configuration ports). Reset clears bit 0. Bits 1 7 are reserved and return zeros when read. The HFC-4S/8S only supports one logical device, so it is not necessary to write the logical device number into the card's logical device number register prior to writing to this register. | | 0x31 | r/w | Config state | I/O range check register. | | | | | Bits Function | | | | | When set, the logical device returns 0x55 in response to any read from the logical device's assigned I/O space. When cleared, 0xAA is returned. | | | | | When set to one, enables I/O range checking and disables in when cleared to zero. When enabled, bit 0 is used to select a pattern for the logical device to return. This bit is only valid if the logical device is deactivated (see <i>Activate register</i>). | | | | | 72 Reserved, return zero when read | | 0x60 | r/w | Config state | I/O decoder 0 base address upper byte. I/O port base address bits 8 15. | | 0x61 | r/w | Config state | I/O decoder 0 base address lower byte. I/O port base address bits 0 7. | | 0x70 | r/w | Config state | IRQ select configuration register 0. Bits 0 3 specify the selected IRQ number. Bits 4 7 are reserved. | | 0x71 | r/w | Config state | IRQ type configuration register 0. Bits 0 and 1 are ignored. Bits 2 7 are reserved. | | 0x74 | r | Config state | DMA configuration register 0. | | | | - | Bits Function | | | | | 20 Select which DMA channel (0 7) is used for DMA 0. DMA channel 4, the cascade channel, indicates no DMA channel is active. | | | | | 73 Reserved. | | | | | Because no DMA is used this register is hardwired to 0x04. | | | | | (continued on next page) | Table 2.11: ISA Plug and Play registers | Card level control register address | Read/write
Mode | Accessable in state | Desc | ription | |-------------------------------------|--------------------|---------------------|--------------|---| | 0x75 | r | Config state | | A configuration register 1. | | | | | Bits | Function | | | | | 20 | Select which DMA channel (0 7) is used for DMA 1. DMA channel 4, the cascade channel, indicates no DMA channel is active. | | | | | 73 | Reserved. | | | | | Beca
0x04 | use no DMA is used this register is hardwired to | ^{*1:} This is an extension to the Plug and Play Specification. ^{*2:} Only when the isolation process is finished. The last card remains in isolation state until a CSN is assigned. # **Important!** All ISA registers not implemented return 0x00 when read except the DMA configuration registers 0x74 and 0x75. These two registers return 0x04 when read. This means no DMA channel has been selected. ### 2.3.3 ISA connection circuitry Figure 2.7: ISA PnP circuitry ## 2.4 PCMCIA interface Table 2.12: Overview of the PCMCIA interface pins | Number | Name | Description | |--------------|---------|--| | 203 206, 1 4 | A15 A8 | Address byte 1 | | 817 | A7 A0 | Address byte 0 | | 3139 | D15 D8 | Data byte 1 | | 43 51 | D7 D0 | Data byte 0 | | 7 | REG# | PCMCIA Register and Attr. Mem. Select | | 18 | IOIS16# | 16 bit access enable | | 21 | IORD# | Read Enable | | 22 | IOWR# | Write Enable | | 23 | OE# | PCMCIA Output Enable for Attr. Mem. Read | | 24 | WE# | PCMCIA Write Enable for Conf. Reg. Write | | 25 | INPACK# | Read access | | 30 | CE2# | High byte enable | | 40 | CE1# | Low byte enable | | 197 | IREQ# | Interrupt request | | 198 | RESET | Reset high active | The PCMCIA mode is selected by MODE0 =
1 and MODE1 = 1. The HFC-4S/8S occupies eight consecutive addresses in the I/O map. The base I/O address must be 8 byte aligned. The lines A3 ... A15 are don't care for I/O accesses. The address with A2 = 1 is used for register selection via CIP. The address with A2 = 0 is used for data read/write. ### 2.4.1 Attribute memory After a hardware reset the card's information structure (CIS) is copied from the EEPROM to the SRAM, starting with the address shown in Table 2.5. The CIS is located on even numbered addresses from 0 to 0x3FE in the attribute memory space. The CIS occupies 512 byte. To avoid accesses in this copy phase the signal IREQ# of the HFC-4S/8S is active. This is interpreted as 'wait' by the PCMCIA host controller after card insertion. ### 2.4.2 PCMCIA registers Table 2.13: PCMCIA registers | Register Name | Address * | Width | Rem | arks | | | |---|-----------|-------|-----|--------------------|----------------|---| | Configuration Option
Register (COR) | 0x400 | Byte | Bit | Name | | eset
lue Function | | | | | 50 | Configura
Index | tion 0x | 00 Bit 0 must be set to '1' to enable accesses to the HFC-4S/8S. | | | | | 6 | LevIREQ | | This bit is not implemented and returns always '1' when read to indicate usage of | | | | | 7 | SRESET | | level mode interrupts. SRESET card. Setting this bit to '1' places the card in the reset state. This bit must be cleared to zero for normal operation. | | Card Configuration and
Status Register (CSR) | 0x402 | D-st- | | | D 4 | mai operation. | | | 0x402 | Byte | Bit | Name | Reset
value | Function | | | | | 0 | Rsvd | 0 | | | | | | 1 | Intr | 0 | Internal state of interrupt request (IREQ#). | | | | | 2 | PwrDwn | 0 | Unimplemented, returns '0' when read. | | | | | 3 | Audio | 0 | Unimplemented, returns '0' when read. | | | | | 4 | Rsvd | 0 | Unimplemented, returns '0' when read. | | | | | 5 | IOis8 | 0 | Returns '0' when read to indicate an 16 bit data path. | | | | | 6 | SigChg | 0 | Unimplemented, returns '0' when read. | | | | | 7 | Changed | 0 | Unimplemented, returns '0' when read. | (*: Register address in attribute memory) ## 2.4.3 PCMCIA connection circuitry Figure 2.8: PCMCIA circuitry # 2.5 Parallel processor interface Table 2.14: Overview of the parallel processor interface pins in mode 2 and 3 | Number | Name | Description | |---------------|-----------------|-------------------------| | 817 | A7 A0 | Address byte | | | D7 D0
D15 D8 | Data byte 0 Data byte 1 | | 6, 18, 30, 40 | /BE3/BE0 | Byte Enable 30 | | 20 | /CS | Chip Select | | 21 | /IOR | Read Enable | | 22 | /IOW | Write Enable | | 23 | /WD | Watch Dog Output | | 24 | ALE | Address Latch Enable | | 25 | /BUSDIR | Bus Direction | | 197 | /INT | Interrupt request | | 198 | RESET | Reset high active | **Table 2.15:** Overview of the processor interface pins in mode 4 | Number | Name | Description | |---------------|-----------|-----------------------| | 43 51 | AD7 AD0 | Address / Data byte 0 | | 31 39 | AD15 AD8 | Address / Data byte 1 | | 817 | AD23AD16 | Address / Data byte 2 | | 203 206, 1 4 | AD31 AD24 | Address / Data byte 3 | | 6, 18, 30, 40 | /BE3 /BE0 | Byte Enable 3 0 | | 20 | /CS | Chip Select | | 21 | /IOR | Read Enable | | 22 | /IOW | Write Enable | | 23 | /WD | Watch Dog Output | | 24 | ALE | Address Latch Enable | | 25 | /BUSDIR | Bus Direction | | 197 | /INT | Interrupt request | | 198 | RESET | Reset high active | The processor interface mode is selected by MODE0 = 1 and MODE1 = 0. Then 256 I/O addresses (A0...A7) are used for addressing the internal registers of the HFC-4S/8S directly by their address. In processor interface mode some user data can be stored in the EEPROM (see Section 2.1.1 for details). ### 2.5.1 Parallel processor interface modes The HFC-4S/8S has 3 different parallel processor interface modes. Due to name compatibility with other chips of the HFC series the processor interface modes are numbered 2 ... 4 like shown in Table 2.16. | HFC-4S | 6/8S pins | | Signal names | | |--------|-----------|---|--------------------------------------|----------------------------------| | Number | Name | Mode 2
(Motorola)
Non-multiplexed | Mode 3
(Intel)
Non-multiplexed | Mode 4
(Intel)
Multiplexed | | 20 | /CS | /CS | /CS | /CS | | 21 | /IOR | /DS | /RD | /RD | | 22 | /IOW | R/W | /WR | /WR | | 24 | ALE | '1' | '0' | ALE | Table 2.16: Pins and signal names of the HFC-4S/8S processor interface modes Processor interface modes 2 and 3 use separate lines for address and data. These two modes are selected by ALE. This pin must have a fixed level and should be directly connected to ground or power supply. Mode 4 has multiplexed address / data lines. The address is latched from lines D7... D0 with the falling edge of ALE. The processor interface mode is determined during hardware reset time (pin RESET). For modes 2 and 3 the ALE pin must have the appropriate level. Mode 4 is selected after reset with the first rising edge of ALE. The HFC-4S/8S then switches permanently from mode 2 or mode 3 into mode 4. The HFC-4S/8S cannot switch to mode 4 until end of reset time. Rising and falling edges of ALE are ignored during reset time. ALE must be stable after reset except in processor interface mode 4. ## 2.5.2 Signal and timing characteristics Table 2.17 shows the interface signal levels for the different processor interface modes. Timing characteristics are shown in Figures 2.9 to 2.12 for mode 2 and mode 3. Figures 2.13 to 2.18 show mode 4 timing characteristics. Please see Table 2.18 for a quick timing and symbol list finding. In processor interface mode 4 it is possible to access byte, word or double word on the lines AD31...AD0. Due to the multiplexed lines the PCI pin names are used in this case. In processor interface mode 2 and mode 3 the pins AD31...AD24 are not available. Unused byte enable pins should be connected to power supply via pull-up resistors. In mode 4 unused bus lines AD[31..] should be connected to ground via pull-down resistors to avoid floating inputs. 64 of 273 Data Sheet March 2003 (rev. A) **Table 2.17:** Overview of read and write accesses in processor interface mode (X = don't care) | /CS | /IOR
(/DS, /RD) | /IOW
(R/W, /WR) | ALE | Operation | Processor interface mode | |--------|--------------------|--------------------|------------|-------------------------|--------------------------| | 1
X | X
1 | X
1 | X
X | no access | all
all | | 0 | 0 | 1 0 | 1 1 | read data
write data | mode 2 | | 0 | 0 | 1 0 | 0 | read data
write data | mode 3 | | 0 | 0 | 1 0 | 0 *
0 * | read data
write data | mode 4 | (*: 1-pulse latches register address) Table 2.18: Timing diagrams of the parallel processor interface | Mode | Processor | Access type | | Tir | ning | Timing values | | |-------|-----------|----------------|-------|--------|---------|---------------|---------| | | | | | Figure | on page | table | on page | | 2 & 3 | 8 bit | 8 bit | read | 2.9 | 66 | 2.20 | 70 | | 2 & 3 | 8 bit | 8 bit | write | 2.10 | 68 | 2.21 | 72 | | 2 & 3 | 16 bit | 16 bit & 8 bit | read | 2.11 | 69 | 2.20 | 70 | | 2 & 3 | 16 bit | 16 bit & 8 bit | write | 2.12 | 71 | 2.21 | 72 | | 4 | 8 bit | 8 bit | read | 2.13 | 73 | 2.23 | 78 | | 4 | 8 bit | 8 bit | write | 2.14 | 74 | 2.24 | 80 | | 4 | 16 bit | 16 bit | read | 2.15 | 75 | 2.23 | 78 | | 4 | 16 bit | 16 bit | write | 2.16 | 76 | 2.24 | 80 | | 4 | 32 bit | 32 bit | read | 2.17 | 77 | 2.23 | 78 | | 4 | 32 bit | 32 bit | write | 2.18 | 79 | 2.24 | 80 | and ## **Important!** /BE2 and /BE3 must always be '1' in mode 2 and mode 3. #### 2.5.2.1 8 bit processors in mode 2 (Motorola) and mode 3 (Intel) Figure 2.9: Read access from 8 bit processors in mode 2 (Motorola) and mode 3 (Intel) 8 bit processors read data like shown in Figure 2.9. Timing values are listed in Table 2.20. /BE3 ... /BE1 must always be '1'. /BE0 can be fixed to '0' or must be low during access to switch the data bus D7 ... D0 from tristate into data driven state. Data can be read in mode 2 (Motorola) with² $$/BE0 = '0'$$ and $(/DS + /CS) = '0'$ and $R/W = '1'$. In mode 3 (Intel, non-multiplexed) the states $$/BE0 = '0'$$ and $(/RD + /CS) = '0'$ and $/WR = '1'$ must be fulfilled to drive data out. The data bus is stable after t_{RDmin} and returns into tristate after t_{DRDH} . 66 of 273 Data Sheet March 2003 (rev. A) ²/DS + /CS means logical OR function of the two signals. Address and /BE0 (if not fixed to low) require a setup time t_{AS} which starts when all address and byte enable signals are valid. The hold time of these lines is t_{AH} . # ad ### Short read method In some applications it may be difficult to implement a long read access ($t_{RD} \ge 5 \cdot t_{CLKI}$) for only some registers (here called *target register*). For this reason there is an alternative method with two register read accesses with $t_{RD} \geq 20 \, \mathrm{ns}$ each: - 1. The read access to the target register initiates a data transmission from the RAM to the target register. This job is always done correctly with long and short t_{RD} , but after a short t_{RD} the data is not yet 'arrived' at the target register. Thus the data which is read with a short t_{RD} must be ignored ... - 2. ...but the data byte is already internally buffered and can be read from the register R_INT_DATA. This second register read access can also be executed with a short $t_{RD} \geq 20~\mathrm{ns}$. For the time from the first access to the second one t_{CYCLE} must be met, of course. The short read method is practical for all read registers in the address range 0xC0 ... 0xFF, these target registers are R IRQ FIFO BL0...R IRQ FIFO BL7 and R RAM DATA. Figure 2.10: Write access from 8 bit processors in mode
2 (Motorola) and mode 3 (Intel) 8 bit processors write data like shown in Figure 2.10. Timing values are listed in Table 2.21. /BE3 ... /BE1 must always be '1'. /BE0 controls the data bus D7 ... D0 and can be fixed to '0'. Data is written with $_$ of (/DS + /CS) in mode 2 (Motorola) respective (/WR + /CS) in mode 3 (Intel, non-multiplexed). The HFC-4S/8S requires a data setup time t_{DWRS} and a data hold time t_{DWRH} . Address and /BE0 (if not fixed to low) require a setup time t_{AS} which starts when all address and byte enable signals are valid. The hold time of these lines is t_{AH} . ### 2.5.2.2 16 bit processors in mode 2 (Motorola) and mode 3 (Intel) Figure 2.11: Byte and word read access from 16 bit processors in mode 2 (Motorola) and mode 3 (Intel) 16 bit processors can either read data with byte or word access like shown in Figure 2.11. FIFO and F-/Z-counter read access have 8 bit or 16 bit width alternatively. The 16 bit processor must support byte access because all other register read accesses must have a width of 8 bit. /BE2 and /BE3 must always be '1'. /BE0 and /BE1 switch the data bus D15 ... D0 from tristate into data driven state (see Table 2.19). Data can be read in mode 2 (Motorola) with $$/BE = '0'$$ and $(/DS + /CS) = '0'$ and $R/W = '1'$. In mode 3 (Intel, non-multiplexed) the states $$/BE = '0'$$ and $(/RD + /CS) = '0'$ and $/WR = '1'$ March 2003 (rev. A) Data Sheet 69 of 273 Table 2.19: Data access width in mode 2 and 3 | A[0] | /BE1 | /BE0 | Data access | |------|------|------|------------------------| | 'X' | '1' | '1' | no access | | '0' | '1' | '0' | byte access on D[7:0] | | '1' | '0' | '1' | byte access on D[15:8] | | '0' | '0' | '0' | word access | must be fulfilled to drive data out. The data bus is stable after t_{RDmin} and returns into tristate after t_{DRDH} . Address and /BE require a setup time t_{AS} which starts when all address and byte enable signals are valid. The hold time of these lines is t_{AH} . Table 2.20: Symbols of read accesses in Figures 2.9 and 2.11 | Symbol | min / ns | max / ns | Characteristic | |------------------------|----------------------|----------|---| | $\overline{t_{AS}}$ | 10 | | Address and /BE valid to /DS+/CS (/RD+/CS) □ setup time | | t_{AH} | 10 | | Address hold time after /DS+/CS (/RD+/CS) _ | | t_{DRDZ} | 2 | | /DS+/CS (/RD+/CS) \tag to data buffer turn on time | | t_{DRDH} | 2 | 15 | /DS+/CS (/RD+/CS) | | t_{RWS} | 2 | | R/W setup time to /DS+/CS \setminus | | t_{RWH} | 2 | | R/W hold time after /DS+/CS \Box | | $\overline{t_{RD}}$ | | | Read time: | | | 20 | | A[7] = '0' (address range 0 0x7F: normal register access) | | | 20 | | A[7,6] = '10' (address range 0x80 0xBF: FIFO data access) | | | $5 \cdot t_{CLKI}$ | | A[7,6] = '11' (address range 0xC0 0xFF: direct RAM access, FIFO interrupt registers) * | | $\overline{t_{CYCLE}}$ | | | Cycle time between two consecutive /DS+/CS (/RD+/CS) _ | | | $1.5 \cdot t_{CLKI}$ | | A[7] = '0' (address range 0 0x7F: normal register access) | | | | | A[7,6] = '10' (address range 0x80 0xBF: FIFO data access) | | | $5.5 \cdot t_{CLKI}$ | | after byte access | | | $6.5 \cdot t_{CLKI}$ | | after word access | | | $5.5 \cdot t_{CLKI}$ | | A[7,6] = '11' (address range 0xC0 0xFF: direct RAM access, FIFO interrupt registers) | (*: See 'Short read method' on page 67.) Figure 2.12: Byte and word write access from 16 bit processors in mode 2 (Motorola) and mode 3 (Intel) 16 bit processors can either write data with byte or word access like shown in Figure 2.12. FIFO write access have 8 bit or 16 bit width alternatively. The 16 bit processor must support byte access because all other register write accesses must have a width of 8 bit. /BE2 and /BE3 must always be '1'. /BE0 and /BE1 control the low byte and high byte of the data bus D15 ... D0 (see Table 2.19). Data is written with $_$ rof (/DS + /CS) in mode 2 (Motorola) respective (/WR + /CS) in mode 3 (Intel, non-multiplexed). The HFC-4S/8S requires a data setup time t_{DWRS} and a data hold time t_{DWRH} . Address and /BE require a setup time t_{AS} which starts when all address and byte enable signals are valid. The hold time of these lines is t_{AH} . **Table 2.21:** Symbols of write accesses in Figures 2.10 and 2.12 | Symbol | min / ns | max / ns | Characteristic | |------------|----------------------|----------|--| | t_{AS} | 10 | | Address and /BE valid to /DS+/CS (/RD+/CS) _ setup time | | t_{AH} | 10 | | Address hold time after /DS+/CS (/RD+/CS) _ | | t_{DWRS} | 20 | | Write data setup time to /DS+/CS (/WR+/CS) \(\square\) | | t_{DWRH} | 10 | | Write data hold time from /DS+/CS (/WR+/CS) _ | | t_{RWS} | 2 | | R/W setup time to /DS+/CS \supset | | t_{RWH} | 2 | | R/W hold time after /DS+/CS | | t_{WR} | 20 | | Write time | | t_{IDLE} | | | /DS+/CS (/RD+/CS) high time | | | $1.5 \cdot t_{CLKI}$ | | A[7] = '0' (address range 0 0x7F: normal register access) | | | | | A[7,6] = '10' (address range 0x80 0xBF: FIFO data access) | | | $3.5 \cdot t_{CLKI}$ | | after byte access | | | $4.5 \cdot t_{CLKI}$ | | after word access | | | $3.5 \cdot t_{CLKI}$ | | A[7,6] = '11' (address range 0xC0 0xFF: direct RAM access) | ## 2.5.2.3 8 bit processors in mode 4 (Intel, multiplexed) Figure 2.13: Read access from 8 bit processors in mode 4 (Intel, multiplexed) 8 bit processors read data like shown in Figure 2.13. Timing values are listed in Table 2.23. /BE3 ... /BE1 must always be '1'. /BE0 can be fixed to '0' or must be low during access to switch the data bus D7 ... D0 from tristate into data driven state. Data can be read in mode 4 (Intel, multiplexed) with³ $$/BE0 = '0'$$ and $(/RD + /CS) = '0'$ and $/WR = '1'$. The data bus is stable after t_{RDmin} and returns into tristate after t_{DRDH} . Address and /BE0 (if not fixed to low) require a setup time t_{AS} which starts with the \neg of ALE. The hold time of these lines is t_{AH} . If two consecutive read accesses are on the same address, multiple register address write is not required. March 2003 (rev. A) Data Sheet 73 of 273 ³/RD + /CS means logical OR function of the two signals. Figure 2.14: Write access from 8 bit processors in mode 4 (Intel, multiplexed) 8 bit processors write data like shown in Figure 2.14. Timing values are listed in Table 2.24. /BE3 ... /BE1 must always be '1'. /BE0 controls the data bus D7 ... D0 and can be fixed to '0'. Data is written with \neg of (/WR + /CS) in mode 4 (Intel, multiplexed). The HFC-4S/8S requires a data setup time t_{DWRS} and a data hold time t_{DWRH} . Address and /BE0 (if not fixed to low) require a setup time t_{AS} which starts with the \neg of ALE. The hold time of these lines is t_{AH} . If two consecutive write accesses are on the same address, multiple register address write is not required. ## 2.5.2.4 16 bit processors in mode 4 (Intel, multiplexed) Figure 2.15: Word read access from 16 bit processors in mode 4 (Intel, multiplexed) 16 bit processors can either read data with byte or word access. Only 8 bit are used for address decoding. Thus the address on lines AD31 ... AD8 are ignored. A word read is shown in Figure 2.15. FIFO and F-/Z-counter read access have 8 bit or 16 bit width alternatively. The 16 bit processor must support byte access because all other register read accesses must have a width of 8 bit. /BE2 and /BE3 must always be '1'. /BE0 and /BE1 switch the data bus D15... D0 from tristate into data driven state (see Table 2.22 on page 77). In mode 4 (Intel, multiplexed) the states $$/BE = '0'$$ and $(/RD + /CS) = '0'$ and $/WR = '1'$ must be fulfilled to drive data out. The data bus is stable after t_{RDmin} and returns into tristate after t_{DRDH} . Address and /BE require a setup time t_{AS} which starts with the \neg of ALE. The hold time of these lines is t_{AH} . If two consecutive read accesses are on the same address, multiple register address write is not required. An 8 bit read access (low byte) is performed in the same way as it is done with 8 bit processors. Thus see Figure 2.13 for the timing specification. Figure 2.16: Word write access from 16 bit processors in mode 4 (Intel, multiplexed) 16 bit processors can either write data with byte or word access. Only 8 bit are used for address decoding. Thus the address on lines AD31 ... AD8 are ignored. A word write is shown in Figure 2.16. FIFO write access have 8 bit or 16 bit width alternatively. The 16 bit processor must support byte access because all other register write accesses must have a width of 8 bit. /BE2 and /BE3 must always be '1'. /BE0 and /BE1 control the low byte and high byte of the data bus D15 ... D0 (see Table 2.22 on page 77). Data is written with \lceil of /WR + /CS in mode 4 (Intel, multiplexed). The HFC-4S/8S requires a data setup time t_{DWRS} and a data hold time t_{DWRH} . Address and /BE require a setup time t_{AS} which starts with the \neg of ALE. The hold time of these lines is t_{AH} . If two consecutive write accesses are on the same address, multiple register address write is not required. An 8 bit write access (low byte) is performed in the same way as it is done with 8 bit processors. Thus see Figure 2.14 for the timing specification. ## 2.5.2.5 32 bit processors in mode 4 (Intel, multiplexed) Figure 2.17: Double word read access from 32 bit processors in mode 4 (Intel, multiplexed) 32 bit processors can either read data with byte, word or double word access. Only 8 bit are used for address decoding. Thus the address on lines AD31 ... AD8 are ignored. A double word read is shown in Figure 2.17. FIFO and Z-counter read access have 8 bit, 16 bit or 32 bit width alternatively, F-counter read access have 8 bit or 16 bit width
alternatively. The 32 bit processor must support byte access because all other register read accesses must have a width of 8 bit. Table 2.22: Data access width in mode 4 | A[0] | /BE3 | /BE2 | /BE1 | /BE0 | Data access | |------|------|------|------|------|--------------------------| | 'X' | '1' | '1' | '1' | '1' | no access | | '0' | '1' | '1' | '1' | '0' | byte access on AD[7:0] | | '1' | '1' | '1' | '0' | '1' | byte access on AD[15:8] | | '0' | '1' | '0' | '1' | '1' | byte access on AD[23:16] | | '1' | '0' | '1' | '1' | '1' | byte access on AD[31:24] | | '0' | '1' | '1' | '0' | '0' | word access on AD[15:0] | | '0' | '0' | '0' | '1' | '1' | word access on AD[31:16] | | '0' | '0' | '0' | '0' | '0' | double word access | | | | | | | | /BE3 \dots /BE0 switch the bus lines AD31 \dots AD0 from tristate into data driven state during data phase (see Table 2.22). In mode 4 (Intel, multiplexed) the states $$/BE = '0'$$ and $(/RD + /CS) = '0'$ and $/WR = '1'$ March 2003 (rev. A) Data Sheet 77 of 273 must be fulfilled to drive data out. The data bus is stable after t_{RDmin} and returns into tristate after t_{DRDH} . Address and /BE require a setup time t_{AS} which starts with the \neg of ALE. The hold time of these lines is t_{AH} . If two consecutive read accesses are on the same address, multiple register address write is not required. An 8 bit read access (low byte) is performed in the same way as it is done with 8 bit processors. Thus see Figure 2.13 for the timing specification. Table 2.23: Symbols of read accesses in Figures 2.13, 2.15 and 2.17 | Symbol | min / ns | max / ns | Characteristic | |-------------|----------------------|----------|--| | t_{ALE} | 10 | | Address latch time | | t_{ALEH} | 0 | | ALE _ to /WR+/CS _ | | t_{AS} | 10 | | Address and /BE valid to /RD+/CS \square setup time | | t_{AH} | 10 | | Address hold time after /RD+/CS _ | | t_{DRDZ} | 2 | | /RD+/CS \tau to data buffer turn on time | | t_{DRDH} | 2 | 15 | $/RD+/CS \perp$ to data buffer turn off time | | t_{RD} | 20 | | Read time: | | | 20 | | A[7] = '0' (address range 0 0x7F: normal register access) | | | 20 | | A[7,6] = '10' (address range 0x80 0xBF: FIFO data access) | | | $5 \cdot t_{CLKI}$ | | A[7,6] = '11' (address range 0xC0 \dots 0xFF: direct RAM access, FIFO interrupt registers) * | | t_{CYCLE} | | | Cycle time between two consecutive /RD+/CS \Box | | | $1.5 \cdot t_{CLKI}$ | | A[7] = '0' (address range 0 0x7F: normal register access) | | | | | A[7,6] = '10' (address range 0x80 0xBF: FIFO data access) | | | $5.5 \cdot t_{CLKI}$ | | after byte access | | | $6.5 \cdot t_{CLKI}$ | | after word access | | | $5.5 \cdot t_{CLKI}$ | | A[7,6] = '11' (address range 0xC0 0xFF: direct RAM access, FIFO interrupt registers) | (*: See 'Short read method' on page 67.) Figure 2.18: Write access from 32 bit processors in mode 4 (Intel, multiplexed) 32 bit processors can either write data with byte, word or double word access. Only 8 bit are used for address decoding. Thus the address on lines AD31 ... AD8 are ignored. A double word write is shown in Figure 2.18. FIFO write access have 8 bit, 16 bit or 32 bit width alternatively. The 32 bit processor must support byte access because all other register write accesses must have a width of 8 bit. /BE3 ... /BE0 control the bus lines AD31 ... AD0 during data phase (see Table 2.22). Data is written with $\lceil \text{of /WR} + / \text{CS} \text{ in mode 4 (Intel, multiplexed)}$. The HFC-4S/8S requires a data setup time t_{DWRS} and a data hold time t_{DWRH} . Address and /BE require a setup time t_{AS} which starts with the \neg of ALE. The hold time of these lines is t_{AH} . If two consecutive write accesses are on the same address, multiple register address write is not required. An 8 bit write access (low byte) is performed in the same way as it is done with 8 bit processors. Thus see Figure 2.14 for the timing specification. **Table 2.24:** Symbols of write accesses in Figures 2.14, 2.16 and 2.18 | Symbol | min / ns | max / ns | Characteristic | |----------------------|----------------------|----------|--| | $\overline{t_{ALE}}$ | 10 | | Address latch time | | t_{ALEH} | 0 | | ALE \Box to /WR+/CS \Box | | t_{AS} | 10 | | Address and /BE valid to /WR+/CS _ setup time | | t_{AH} | 10 | | Address hold time after /WR+/CS _ | | t_{DWRS} | 20 | | Write data setup time to $/WR+/CS \Box$ | | t_{DWRH} | 10 | | Write data hold time from /WR+/CS _ | | t_{WR} | 20 | | Write time | | t_{IDLE} | | | /WR+/CS high time | | | $1.5 \cdot t_{CLKI}$ | | A[7] = '0' (address range 0 0x7F: normal register access) | | | | | A[7,6] = '10' (address range 0x80 0xBF: FIFO data access) | | | $3.5 \cdot t_{CLKI}$ | | after byte access | | | $4.5 \cdot t_{CLKI}$ | | after word access | | | $3.5 \cdot t_{CLKI}$ | | A[7,6] = '11' (address range 0xC0 0xFF: direct RAM access) | ## 2.5.3 Examples of processor connection circuitries Figure 2.19: 8 bit Intel/Motorola processor circuitry example (mode 2) Figure 2.20: 16 bit Intel processor circuitry example (mode 4, multiplexed) ## 2.6 Serial processor interface (SPI) Table 2.25: Overview of the SPI interface pins | Number | Name | Description | |--------|---------|------------------------------| | 194 | /SPISEL | SPI device select low active | | 195 | SPI_RX | SPI receive data input | | 196 | SPI_TX | SPI transmit data output | | 197 | /INT | Interrupt request | | 198 | RESET | Reset high active | | 200 | SPICLK | SPI clock input | The SPI interface mode is selected by MODE0 = 1, MODE1 = 0 and connecting pin 200 to SPI clock. /SPISEL must be high during reset. The first positive edge on SPICLK switches the interface from processor interface mode into SPI mode. This may be the first positive clock at the start of an SPI access. The interface has 4 pins as shown in Table 2.25. For further information please see the SPI specification. ## 2.6.1 SPI read and write access In SPI mode each data transfer is 16 bit long. From the first 8 bits only the bits R/\overline{W} and ADR/\overline{DAT} are used. The other 6 bits must be zero. Depending on the R/\overline{W} bit the second 8 bits are read from the HFC-4S/8S or written into the HFC-4S/8S as shown in the Figures 2.21 and 2.22. So all data accesses in SPI mode handle 8 data bits. Figure 2.21: SPI read access It is allowed to interrupt the /SPISEL signal between the two bytes. In this case the transmission pauses and will be continued after /SPISEL returns to low level. An example for an interrupted read access is shown in Figure 2.23. March 2003 (rev. A) Data Sheet 83 of 273 Figure 2.22: SPI write access Figure 2.23: Interrupted SPI read access ## 2.6.2 SPI connection circuitry Figure 2.24: SPI connection circuitry March 2003 (rev. A) Data Sheet 85 of 273 ## 2.7 Register description ## 2.7.1 Write only registers | R_CIR | R_CIRM (write only) | | e only) 0x00 | | | | |--------|------------------------------|-----------|---|--|--|--| | Interr | Interrupt and reset register | | | | | | | Bits | Reset | Name | Description | | | | | | Value | | | | | | | 20 | 0 | V_IRQ_SEL | IRQ channel selection in ISA PnP mode '000' = interrupt lines disable '001' = IRQ0 '010' = IRQ1 '011' = IRQ2 '100' = IRQ3 '101' = IRQ4 '110' = IRQ5 '111' = IRQ6 | | | | | 3 | 0 | V_SRES | Soft reset This reset is similar to the hardware reset. The selected I/O address (CIP) remains unchanged. The reset is active until the bit is cleared. '0' = deactivate reset '1' = activate reset | | | | | 4 | 0 | V_HFCRES | HFC-reset Sets all FIFO and HDLC registers to their initial values. The reset is active until the bit is cleared. '0' = deactivate reset '1' = activate reset | | | | | 5 | 0 | V_PCMRES | PCM reset Sets all PCM registers to their initial values. The reset is active until the bit is cleared. '0' = deactivate reset '1' = activate reset | | | | | 6 | 0 | V_STRES | S/T-reset '0' = deactivate reset '1' = activate reset | | | | | 7 | 0 | V_RLD_EPR | EEPROM reload '0' = normal operation '1' = reload EEPROM to SRAM This bit must be cleared by software. The reload is started when the bit is cleared. | | | | (For reset group description see Table 12.4 on page 231.) | R_CTI | RL | (| (write only) 0x01 | | | |-------|-------------------------|--------------|--|--|--| | Comm | Common control register | | | | | | Bits | Reset
Value | Name | Description | | | | 0 | 0 | (reserved) | Must be '0'. | | | | 1 | 0 | V_FIFO_LPRIO | FIFO access priority for host accesses '0' = normal priority '1' = low priority | | | | 2 | 0 | V_SLOW_RD | One additional wait cycle for PCI read accesses '0' = normal operation '1' = additional wait (must be set for 66 MHz PCI operation) | | | | 3 | 0 | V_EXT_RAM | Use external RAM The internal SRAM is switched off when external SRAM is used. '0' = internal SRAM is used in lower 32 kByte address space '1' = external SRAM is used | | | | 4 | 0 | (reserved) | Must be '0'. | | | | 5 | 0 | V_CLK_OFF | CLK oscillator '0' = normal operation '1' = CLK oscillator is switched off This bit is reset at every write access to the HFC-4S/8S. | | | | 76 | 0 | V_ST_CLK | S/T clock selection '00' = system clock / 4 '01' = system clock / 8 '10' = system clock (normally unused) '11' = system clock / 2 (normally unused) S/T clock must be 6.144 MHz, system clock is normaly 24.576
MHz. | | | | R_RAI | R_RAM_ADDR0 | | e only) | 0x08 | | | |----------|---|-------------|------------------|------|--|--| | Addres | Address pointer, register 0 | | | | | | | 1st addı | 1st address byte for internal / external SRAM access. | | | | | | | Bits | Reset | Name | Description | | | | | | Value | | | | | | | 70 | 0x00 | V_RAM_ADDR0 | Address bits 7 0 | | | | | R_RAI | M_ADDR | (write | only) | 0x09 | | | |---------|---|-------------|-------------------|------|--|--| | Addres | Address pointer, register 1 | | | | | | | 2nd add | 2nd address byte for internal / external SRAM access. | | | | | | | Bits | Reset | Name | Description | | | | | | Value | | | | | | | 70 | 0x00 | V_RAM_ADDR1 | Address bits 15 8 | | | | | R_RAI | M_ADDF | e only) | 0x0A | | |---------|-------------|--------------------------------|--|--| | Addres | s pointer | , register 2 | | | | High ac | ddress bits | s for internal / external SRAM | access and access configuration. | | | Bits | Reset | Name | Description | | | | Value | | | | | 30 | 0 | V_RAM_ADDR2 | Address bits 19 16 | | | 54 | | (reserved) | Must be '00'. | | | 6 | 0 | V_ADDR_RES | Address reset '0' = normal operation '1' = address bits 0 15 are set to zero This bit is automatically cleared. | | | 7 | 0 | V_ADDR_INC | Address increment '0' = no address increment '1' = automatically increment of the address every write or read on register R RAM DA | | | R_RA | M_MISC | (write | te only) 0x0C | |---|----------------|--------------|---| | RAM size setup and miscellaneous functions register | | | | | Bits | Reset
Value | Name | Description | | 10 | 0 | V_RAM_SZ | RAM size '00' = 32k x 8 '01' = 128k x 8 '10' = 512k x 8 '11' = reserved After setting V_RAM_SZ to a value different from '00' a soft reset should be initiated. | | 32 | | (reserved) | Must be '00'. | | 4 | 0 | V_PWM0_16KHZ | 16 kHz signal on pin PWM0 '0' = normal PWM0 function '1' = 16 kHz output | | 5 | 0 | V_PWM1_16KHZ | 16 kHz signal on pin PWM1 '0' = normal PWM1 function '1' = 16 kHz output | | 6 | | (reserved) | Must be '0'. | | 7 | 0 | V_FZ_MD | Exchange F -/ Z -counter context (for transmit FIFOs only) '0' = A_Z1L, A_Z1H = $Z1(F1)$ and A_Z2L, A_Z2H = $Z2(F1)$ (normal operation) '1' = A_Z1L, A_Z1H = $Z1(F1)$ and A_Z2L, A_Z2H = $Z2(F2)$ (exchanged operation) This bit can be used to check the actual RAM usage of transmit FIFOs. | ## 2.7.2 Read only registers | R_RAI | M_USE (read only) | | only) | 0x15 | | | |---------|--|------------------------|--|------|--|--| | SRAM | SRAM duty factor | | | | | | | Usage o | Usage of SRAM access bandwidth by the internal data processor. | | | | | | | Bits | Reset | Reset Name Description | | | | | | | Value | | | | | | | 70 | | V_SRAM_USE | Relative duty factor 0x00 = 0% bandwidth used 0x7C = 100% bandwidth used | | | | | R_RAI | M_DATA | (read | /write) 0xC0 | | | | |----------|---|------------------|---|--|--|--| | SRAM | SRAM data access | | | | | | | Direct a | Direct access to internal / external SRAM | | | | | | | Bits | Reset | Name Description | | | | | | | Value | | | | | | | 70 | 0 | V_RAM_DATA | SRAM data access The address must be written into the registers R_RAM_ADDR0 R_RAM_ADDR2 in advance. | | | | | R_CHI | P_ID | (read only) Ox1 | | | |---------|------------|-----------------|---|--| | Chip id | entificati | on register | | | | Bits | Reset | Name | Description | | | | Value | | | | | 30 | 0 | V_PNP_IRQ | IRQ assigned by the PnP BIOS (only in ISA PnP mode) V_IRQ_SEL of the R_CIRM register must be set to the value corresponding to the hardware connected IRQ lines. | | | 74 | | V_CHIP_ID | Chip identification code
'1100' means HFC-4S,
'1000' means HFC-8S. | | | R_CHIP_RV | | | (read only) | 0x1F | |-----------|----------|------------|--|------| | HFC-4 | S/8S rev | rision | | | | | | | | | | | | Г | T | | | Bits | Reset | Name | Description | | | | Value | | | | | 30 | 1 | V CHIP RV | Chip revision 1 | | | | | | (Engineering samples were revision 0.) | | | 74 | 0 | (reserved) | | | # **Chapter 3** # HFC-4S/8S data flow **Table 3.1:** Overview of the HFC-4S/8S data flow registers | Write only | registers: | | | | | |------------|--------------|------|---------|-------------|------| | Address | Name | Page | Address | Name | Page | | 0x0B | R_FIRST_FIFO | 118 | 0x34 | A_ST_SQ_WR | 165 | | 0x0D | R_FIFO_MD | 119 | 0xF4 | A_CH_MSK | 123 | | 0x0F | R_FIFO | 120 | 0xFA | A_CON_HDLC | 124 | | 0x0F | R_FSM_IDX | 120 | 0xFB | A_SUBCH_CFG | 125 | | 0x10 | R_SLOT | 121 | 0xFC | A_CHANNEL | 126 | | 0xD0 | A_SL_CFG | 122 | 0xFD | A_FIFO_SEQ | 126 | March 2003 (rev. A) Data Sheet 93 of 273 ## 3.1 Data flow concept The HFC-4S/8S has a programmable data flow unit, in which the FIFOs are connected with the PCM and the S/T interfaces. Moreover the data flow unit can directly connect PCM and S/T interfaces or two PCM time slots ¹. The fundamental features of the HFC-4S/8S data flow are as follows: - programmable interconnection capability between FIFOs, PCM time slots and S/T-channels - 4 (HFC-4S) resp. 8 (HFC-8S) S/T interfaces - in transmit and receive direction there are - up to 32 FIFOs - 16, 32 or 64 PCM time slots - 32 HFC-channels to connect the above-mentioned data interfaces - 3 data flow modes to satisfy different application tasks - subchannel processing for bitwise data handling The complete HFC-4S/8S data flow block diagram is shown in Figure 3.1. Basically, data routing requires an allocation number at each block. So there are three areas where numbering is based on FIFOs, HFC-channels and PCM time slots. Figure 3.1: Data flow block diagram FIFO handling and HDLC controller, PCM and S/T interfaces are described in Chapters 4 to 6. So this chapter deals with the data flow unit which is located between and including the channel assigner, the PCM slot assigner and the S/T interface assigner. #### **Term definitions** Figure 3.2 clarifies the relationship and the differences between the numbering of FIFOs, HFC-channels and PCM time slots. The inner circle symbolizes the HFC-channel oriented part of the data flow, while the outer circle shows the connection of three data sources and data drains respectively. The S/T interfaces have a fixed mapping between HFC-channels and S/T-channels so that there is no need of a separate S/T-channel numbering. Figure 3.2: Areas of FIFO oriented, HFC-channel oriented and PCM time slot oriented numbering **FIFO:** The FIFOs are buffers between the universal bus interface and the PCM and S/T interfaces. The HDLC controllers are located on the non host bus side of the FIFOs. The number of FIFOs depends on the FIFO size configuration (see Section 4.2) and starts with number 0. The maximum FIFO number is 31. Furthermore data directions transmit and receive are associated with every FIFO number. **HFC-channel:** HFC-channels are used to define data paths between FIFOs on the one side and PCM and S/T interfaces on the other side. The HFC-channels are numbered 0 ... 31. Furthermore data directions transmit and receive are associated with every HFC-channel number. It is important not to mix up the HFC-channels of the here discussed data flow (inner circle of Figure 3.2) with the S/T-channels of the multiple S/T interfaces. **PCM time slot:** The PCM data stream is organized in time slots. The number of PCM time slots depends on the data rate, i.e. there are 32 time slots (2 MBit/s), 64 time slots (4 MBit/s) or 128 time slots (8 MBit/s). As data directions transmit and receive are associated with every time slot number, slots are numbered 0 . . . 15, 0 . . . 31 or 0 . . . 63. Each FIFO, HFC-channel and time slot number exist for transmit and receive direction. The data rate is always 8 kByte/s for every S/T-channel and every PCM time slot. FIFOs, HFC-channels, S/T-channels and PCM time slots have always a width of 8 bit. ## 3.2 Flow controller The various connections between FIFOs, S/T-channels and PCM time slots are set up by programming the flow controller, the channel assigner and the PCM slot assigner. The flow controller sets up connections between FIFOs and the S/T interface, FIFOs and the PCM interface and between the S/T and PCM interface. The bitmap V_DATA_FLOW of the register A_CON_HDLC (which exists for each FIFO) configures these connections. The numbering of transmit and corresponding receive FIFOs, HFC-channels and PCM time slots is independent from each March 2003 (rev. A) Data Sheet 95 of 273 ¹In this data sheet the shorter expression "slot" instead of "time slot" is also used with the same meaning. other. But in practice the connection table is more clear if the same number is chosen for corresponding transmit and receive direction. A direct connection between two PCM time slots can be set up inside the PCM slot assigner and will be described in Section 3.3. The flow controller operates on HFC-channel data. Nevertheless it is programmed with a bitmap of a FIFO-indexed array register. With this
concept it is possible to change the FIFO-to-HFC-channel assignment of a ready-configured FIFO without re-programming its parameters again. The internal structure of the flow controller contains - 4 switching buffers, i.e. one for the S/T and PCM interface in transmit and receive direction each and - 3 switches to control the data paths. ## **Switching buffers** The switching buffers decouple the data inside the flow controller from the data that is transmitted/received from/to the S/T and PCM interfaces. With every 125 μ s cycle the switching buffers change their pointers. If a byte is read from the FIFO and written into a switching buffer, it is transmitted by the connected interface during the *next* 125 μ s cycle. In the reverse case, a received byte which is stored in a switching buffer is copied to the FIFO during the next 125 μ s cycle. A direct PCM-to-S/T connection delays each data byte two cycles. That means the received byte is stored in the switching buffer during the first 125 μ s cycle, then copied into the transmit buffer during the second 125 μ s cycle and finally transmitted from the interface during the third 125 μ s cycle. If the conference unit is switched on, there is an additional 125 μ s delay, because the summation of the whole frame is processed in the memory (see Section 8). ## **Timed sequence** The data transmission algorithm of the flow controller is FIFO-oriented and handles all FIFOs every 125 μ s in the following sequence²: - 1. FIFO[0,TX] - 2. FIFO[0,RX] - 3. FIFO[1,TX] - 4. FIFO[1,RX] : - 63. FIFO[31,TX] - 64. FIFO[31,RX] If a faulty configuration writes data from several sources into the same switching buffer, the last write access overwrites the previous ones. Only in this case it is necessary to know the process sequence of the flow controller. The HFC-4S/8S has three data flow modes. One of them (*FIFO sequence mode*) is used to configure a programmable FIFO sequence which can be used instead of the ascending FIFO numbering. This is explained in Section 3.4. ²Due to the FIFO size setup (see Section 4.2) the maximum number of FIFOs might be less than 31. #### **Transmit operation** In transmit operation one HDLC or transparent byte is read and can be transmitted to the S/T and the PCM interface as shown in Figure 3.3. Furthermore, data can be transmitted from the S/T interface to the PCM interface. From the flow controller point of view, the switches select the source for outgoing data. The switches are controlled by the bitmap $V_DATA_FLOW[2..0]$ of the register A CON HDLC[n,TX] where n is a FIFO number. Figure 3.3: The flow controller in transmit operation - FIFO data is only transmitted to the S/T interface if V DATA FLOW[1] = 0. - The PCM interface can transmit a data byte which comes either from the FIFO or from the S/T interface. Bit V_DATA_FLOW[2] selects the source for the PCM transmit slot (see Figure 3.3). The receiving S/T-channel has always the same number as the transmitting S/T-channel. - The bit V DATA FLOW[0] is ignored in transmit operation. ## **Receive operation** Figure 3.4 shows the flow controller structure in receive operation. The two switches are controlled with the bitmap V_DATA_FLOW[2..0]. FIFO data can either be received from the S/T or PCM interface. Furthermore, data can be transmitted from the PCM interface to the S/T interface. - Bit V_DATA_FLOW[0] selects the source for the receive FIFO which can either be the PCM or the S/T interface. - Furthermore, the received PCM byte can be transferred to the S/T interface. This requires bit V DATA FLOW[1] = 1. - The bit V_DATA_FLOW[2] is ignored in receive FIFO operation. March 2003 (rev. A) Data Sheet 97 of 273 Figure 3.4: The flow controller in receive FIFO operation ## **Connection summary** Table 3.2 shows the flow controller connections as a whole. Bidirectional connections³ are pointed out with a gray box because they are typically used to establish the data transmissions. These rows have always an additional connection to a second destination. | V_DATA_FLOW | , | Transmit | Receive | FIFO | |-------------|---|---|--|---| | 000
001 | $FIFO \rightarrow S/T$ $FIFO \rightarrow S/T$ | $FIFO \rightarrow PCM$ $FIFO \rightarrow PCM$ | $FIFO \leftarrow S/T$ $FIFO \leftarrow PCM$ | | | 010
011 | $FIFO \rightarrow PCM$ $FIFO \rightarrow PCM$ | | $FIFO \leftarrow S/T$ $FIFO \leftarrow PCM$ | $S/T \leftarrow PCM$ $S/T \leftarrow PCM$ | | 100
101 | $FIFO \rightarrow S/T$ $FIFO \rightarrow S/T$ | $S/T \to PCM$ $S/T \to PCM$ | $FIFO \leftarrow S/T$ $FIFO \leftarrow PCM$ | | | 110
111 | $S/T \to PCM$ $S/T \to PCM$ | | $\begin{aligned} \text{FIFO} &\leftarrow \text{S/T} \\ \text{FIFO} &\leftarrow \text{PCM} \end{aligned}$ | $S/T \leftarrow PCM$ $S/T \leftarrow PCM$ | Table 3.2: Flow controller connectivity The most important connections are data transmissions to a single destination. For these connections it is possible to manage the configuration programming of V_DATA_FLOW with only four different values for transmit and receive FIFO operations. Table 3.3 shows the suitable programming values which can be used to simplify the programming algorithm. ³In fact, all connections are unidirectional. However, in typical applications there is always a pair of transmit and receive data which belong together. Instead of "transmit and corresponding receive data connection" the shorter expression | Table 3.3: V_DATA_FI | FLOW programming values for single-destination connect | ions | |----------------------|--|------| |----------------------|--|------| | Conne | ction | | Required V_DATA_FLOW | Equalized V_DATA_FLOW | Data
direction | |--------------|--|------------|----------------------|-----------------------|-------------------| | FIFO
FIFO | $\begin{array}{c} \rightarrow \\ \leftarrow \end{array}$ | S/T
S/T | '10x'
'x00' | '100' | transmit receive | | FIFO
FIFO | $\begin{array}{c} \rightarrow \\ \leftarrow \end{array}$ | PCM
PCM | '01x'
'x01' | '011'
'001' | transmit receive | | S/T
S/T | $\overset{\rightarrow}{\leftarrow}$ | PCM
PCM | '11x'
'x10' | '110' | transmit receive | ## 3.3 Assigners The data flow block diagram in Figure 3.1 contains three assigners. These functional blocks are used to connect FIFOs, HFC-channels and S/T-channels and PCM time slots respectively with each other. ## 3.3.1 HFC-channel assigner The channel assigner functionality depends on the data flow mode described in Section 3.4. ## 3.3.2 PCM slot assigner The PCM slot assigner can connect each HFC-channel to an arbitrary PCM time slot. Therefore, for a specified time slot⁴ the connected HFC-channel number and data direction must be written into the register A SL CFG[SLOT] as follows: $$\begin{split} A_SL_CFG: \ V_CH_DIR1[SLOT] &= < HFC\text{-channel data direction} > \\ &: \ V_CH_NUM1[SLOT] &= < HFC\text{-channel number} > \end{split}$$ Typically, the data direction of a HFC-channel and its connected slot is the same. However, for a direct connection between a PCM time slot and an S/T-channel, transmit and receive direction have to be connected. If two PCM time slots are connected to each other, incoming data on a PCM time slot is transferred to the PCM slot assigner and stored in the PCM receive switching buffer of the connected HFC-channel. From there it is read (i.e. same HFC-channel) and transmitted to a transmit PCM time slot which is also connected to the HFC-channel. ## 3.3.3 S/T interface assigner Table 3.4 shows the assignment between HFC-channels and the S/T-channels. There is no possibility to change this allocation, so there are no registers for programming the S/T interface assigner. March 2003 (rev. A) Data Sheet 99 of 273 [&]quot;bidirectional connection" is used in this data sheet. ⁴A time slot is specified by writing its number and data direction into the register R_SLOT. Then all accesses to the slot array registers belong to this time slot. Please see Chapter 6 for details. Table 3.4: S/T interface assigner | HFC-channel | S/T-channel | HFC-channel | S/T-channel | HFC-channel | S/T-channel | |---------------------|-----------------------------------|---------------------|-----------------------------------|-------------|-----------------------------------| | number
direction | interface
channel
direction | number
direction | interface
channel
direction | number | interface
channel
direction | | [0,TX] | #0 B1 TX | [12,TX] | #3 B1 TX | [24,TX] | #6 B1 TX | | [0,RX] | #0 B1 RX | [12,RX] | #3 B1 RX | [24,RX] | #6 B1 RX | | [1,TX] | #0 B2 TX | [13,TX] | #3 B2 TX | [25,TX] | #6 B2 TX | | [1,RX] | #0 B2 RX | [13,RX] | #3 B2 RX | [25,RX] | #6 B2 RX | | [2,TX] | #0 D TX | [14,TX] | #3 D TX | [26,TX] | #6 D TX | | [2,RX] | #0 D RX | [14,RX] | #3 D RX | [26,RX] | #6 D RX | | [3,TX] | #0 – TX | [15,TX] | #3 – TX | [27,TX] | #6 – TX | | [3,RX] | #0 E RX | [15,RX] | #3 E RX | [27,RX] | #6 E RX | | [4,TX] | #1 B1 TX | [16,TX] | #4 B1 TX | [28,TX] | #7 B1 TX | | [4,RX] | #1 B1 RX | [16,RX] | #4 B1 RX | [28,RX] | #7 B1 RX | | [5,TX] | #1 B2 TX | [17,TX] | #4 B2 TX | [29,TX] | #7 B2 TX | | [5,RX] | #1 B2 RX | [17,RX] | #4 B2 RX | [29,RX] | #7 B2 RX | | [6,TX] | #1 D TX | [18,TX] | #4 D TX | [30,TX] | #7 D TX | | [6,RX] | #1 D RX | [18,RX] | #4 D RX | [30,RX] | #7 D RX | | [7,TX] | #1 – TX | [19,TX] | #4 – TX | [31,TX] | #7 – TX | | [7,RX] | #1 E RX | [19,RX] | #4 E RX | [31,RX] | #7 E RX | | [8,TX] | #2 B1 TX | [20,TX] | #5 B1 TX | | | | [8,RX] | #2 B1 RX | [20,RX] | #5 B1 RX | | | | [9,TX] | #2 B2 TX | [21,TX] | #5 B2 TX | | | | [9,RX] | #2 B2 RX |
[21,RX] | #5 B2 RX | | | | [10,TX] | #2 D TX | [22,TX] | #5 D TX | | | | [10,RX] | #2 D RX | [22,RX] | #5 D RX | | | | [11,TX] | #2 – TX | [23,TX] | #5 – TX | | | | [11,RX] | #2 E RX | [23,RX] | #5 E RX | | | If S/T-channels are coded as B1-channel = 0 B2-channel = 1 $\hbox{D-channel} \ = \ 2$ E-channel = 3 it is possible to calculate HFC-channel number = interface number $\cdot 4 + S/T$ -channel code . For a given HFC-channel number the belonging S/T-channel is calculated with⁵ ${\rm interface\ number} = {\rm HFC\text{-}channel\ number\ div\ 4}$ S/T-channel code = ${\rm HFC\text{-}channel\ number\ mod\ 4}$. In both cases the equivalence HFC-channel direction = S/T-channel direction is valid. ## **Important!** The HFC-4S has only four S/T interfaces. For this reason, only HFC-channels $0\dots 15$ are valid and can be used from the S/T interface assigner. ## 3.4 Data flow modes The internal operation of the channel assigner and the subchannel processor depends on the selected data flow mode. The three available modes - Simple Mode (SM) - Channel Select Mode (CSM) - FIFO Sequence Mode (FSM) are described in this section. ## 3.4.1 Simple Mode In *Simple Mode* (SM) only one-to-one connections are possible. That means one FIFO, one S/T-channel or one PCM time slot can be connected to each other. All combinations except the FIFO-to-FIFO connection are possible. The number of connections is limited by the number of FIFOs. It is possible to establish as many connections as there are FIFOs⁶. The actual number of FIFOs depends on the FIFO setup (see Section 4.2). Simple Mode is selected with $V_CSM_MD = V_FSM_MD = 0$ in the register R_FIFO_MD . The FIFO number is always the same as the HFC-channel number whereas the PCM time slot number can be chosen independently from the HFC-channel number. Due to the fixed correspondence between FIFO number and HFC-channel, a pair of transmit and receive FIFOs is allocated even if a bidirectional data connection between the PCM interface and the S/T interface is established. Please note that in this case the FIFO must be enabled to enable the data transmission. March 2003 (rev. A) Data Sheet 101 of 273 ⁵div is the integer division. mod is the division remainder $i \mod j = (i \div j - i \operatorname{div} j) * j$. ⁶Except PCM-to-PCM connections which do not need a FIFO resource if the involved HFC-channel number is higher than the maximum FIFO number. A direct coupling of two PCM time slots uses a PCM switching buffer. This connection requires a HFC-channel number (resp. the same FIFO number). An arbitrary HFC-channel number can be chosen. If there are less than 31 transmit and receive FIFOs it is usefull to chose a HFC-channel number that is greater than the maximum FIFO number generally. This saves FIFO resources where no data is stored in a FIFO. ## **Subchannel processing** If the data stream of a FIFO does not require full 8 kByte/s data rate, the subchannel processor might be used. Unused bits can be masked out with an arbitrary mask byte. For D- and E-channel processing the subchannel functionality must be enabled. Only two bits of a data byte are processed every 125 μ s. In transparent mode only the non-masked bits of a byte are transmitted. Masked bits are taken from the register A_CH_MSK. So the effective FIFO data rate always remains 8 kByte/s whereas the usable data rate depends on the number of non-masked bits. In HDLC mode the data rate of the FIFO is reduced according to how many bits are not masked out. Please see Section 3.5 on page 113 for details concerning the subchannel processor. ## **Example for SM** Figure 3.5 shows an example with three bidirectional connections (FIFO-to-S/T, FIFO-to-PCM and PCM-to-S/T). The FIFO box on the left side contains number and direction of the used FIFOs. The S/T and PCM boxes on the right side contain the S/T-channels and PCM time slot numbers and directions which are used in this example. Black lines illustrate data paths, whereas dotted lines symbolize blocked resources. These are not used for data transmission, but they are necessary to enable the settings. ## Please note! All settings in Figure 3.5 are configured in bidirectional data paths due to typical applications of the HFC-4S/8S. However, transmit and receive directions are independent from each other and could occur one at a time as well. The following settings demonstrate the required register values to establish the connection. All involved FIFOs have to be enabled with $V_HDLC_TRP + V_TRP_IRQ \neq 0$ in the register A_CON_HDLC[FIFO]. The non-specified bitmap values depend on the desired FIFO configuration. #### • FIFO-to-S/T As HFC-channel and FIFO numbers are the same, a selected S/T-channel specifies the corresponding FIFO (and same in inverse, of course). There is no need of programming this assigner. | R_FIFO | $: V_FIFO_DIR = 0$ | (transmit FIFO) | |-----------------|--------------------------------------|--------------------------------------| | | $: V_FIFO_NUM = 9$ | (FIFO #9) | | A_CON_HDLC[9,TX | $X]: V_DATA_FLOW = '100'$ | $\text{FIFO} \rightarrow \text{S/T}$ | | | | | | R_FIFO | $: V_FIFO_DIR = 1$ | (receive FIFO) | | R_FIFO | : V_FIFO_DIR = 1
: V_FIFO_NUM = 9 | (receive FIFO)
(FIFO #9) | Figure 3.5: SM example ## **2** FIFO-to-PCM The FIFO-to-PCM connection can use different numbers for the involved HFC-channels and PCM time slots. The desired numbers are linked together in the PCM slot assigner. | R_FIFO | : V_FIFO_DIR | = 0 | (transmit FIFO) | |------------------|----------------------------|-----------|--| | | : V_FIFO_NUM | = 13 | (FIFO #13) | | A_CON_HDLC[13,TX | (): V_DATA_FLOW | / = '011' | $(\text{FIFO} \rightarrow \text{PCM})$ | | R_SLOT | : V_SL_DIR | = 0 | (transmit slot) | | | : V_SL_NUM | = 23 | (slot #23) | | A_SL_CFG[23,TX] | : V_CH_DIR1 | = 0 | (transmit HFC-channel) | | | : V_CH_NUM1 | = 13 | (HFC-channel #13) | | R_FIFO | : V_FIFO_DIR | = 1 | (receive FIFO) | | | : V_FIFO_NUM | = 13 | (FIFO #13) | | A_CON_HDLC[13,RX | <pre>K]: V_DATA_FLOW</pre> | / = '001' | $(FIFO \leftarrow PCM)$ | | R_SLOT | : V_SL_DIR | = 1 | (receive slot) | | | : V_SL_NUM | = 23 | (slot #23) | | A_SL_CFG[23,RX] | : V_CH_DIR1 | = 1 | (receive HFC-channel) | | | : V CH NUM1 | = 13 | (HFC-channel #13) | ## **9** PCM-to-S/T A direct PCM-to-S/T coupling is shown in the last connection set. FIFO[12,TX] and FIFO[12,RX] contain the data flow settings, so they must be configured and enabled to switch on the data transmission. March 2003 (rev. A) Data Sheet 103 of 273 | R_FIFO | : V_FIFO_DIR | = 0 | (transmit FIFO) | |------------------|---|----------------------------------|---| | | : V_FIFO_NUM | = 12 | (FIFO #12) | | A_CON_HDLC[12,TX | (): V_DATA_FLOW | ′ = '110' | $(S/T \rightarrow PCM)$ | | R_SLOT | : V_SL_DIR | = 0 | (transmit slot) | | | : V_SL_NUM | = 22 | (slot #22) | | A_SL_CFG[22,TX] | : V_CH_DIR1 | = 1 | (receive HFC-channel) | | | : V_CH_NUM1 | = 12 | (HFC-channel #12) | | R FIFO | : V FIFO DIR | 1 | (: FIEO) | | _ | . V_I II O_DIIX | = 1 | (receive FIFO) | | | : V_FIFO_NUM | | (FIFO #12) | | A_CON_HDLC[12,RX | : V_FIFO_NUM | = 12 | ` ' | | _ | : V_FIFO_NUM | = 12 | (FIFO #12) | | A_CON_HDLC[12,R2 | : V_FIFO_NUM
K]: V_DATA_FLOW | = 12
' = '110'
= 1 | (FIFO #12)
(S/T \leftarrow PCM) | | A_CON_HDLC[12,R2 | : V_FIFO_NUM
K]: V_DATA_FLOW
: V_SL_DIR | = 12
' = '110'
= 1
= 22 | (FIFO #12)
(S/T ← PCM)
(receive slot) | ## Rule In Simple Mode for every used FIFO[n] the HFC-channel[n] is also used. This is valid in reverse case, too. ## 3.4.2 Channel Select Mode The Channel Select Mode (CSM) allows an arbitrary assignment between a FIFO and the connected HFC-channel as shown in Figure 3.6 (left side). Beyond this, it is possible to connect several FIFOs to one HFC-channel (Fig. 3.6, right side). This works in transmit and receive direction and can be used to allocate only one 8 kByte/s S/T-channel or PCM time slot with multiple data streams with lower data rate of the assigned FIFOs. In this case the subchannel processor is involved. Figure 3.6: Channel assigner in CSM The Channel Select Mode is selected with $V_CSM_MD = 1$ and $V_FSM_MD = 0$ in the register R FIFO MD. ## Channel assigner The connection between a FIFO and a HFC-channel can be established by the A_CHANNEL register for each FIFO. For a specified FIFO, the HFC-channel to be connected must be written to V_CH_NUMO. Typically, the data direction in V_CH_DIRO is the same as the FIFO data direction V_FIFO_DIR in the register R_FIFO. With the register settings ``` A_CHANNEL: V_CH_DIR0[FIFO] = V_FIFO_DIR : V_CH_NUM0[FIFO] = n ``` the channel assigner connects the nominated FIFO to HFC-channel n. A direct connection between a PCM time slot and an S/T-channel allocates one FIFO although this FIFO does not store any data. In *Channel Select Mode* – in contrast to *Simple Mode* – an arbitrary FIFO can be chosen. This FIFO must be enabled to switch on the data transmission. If there are less than 31 FIFOs in transmit and receive direction, it is necessary to select an existing FIFO number. #### **Subchannel Processing** If more than one FIFO is to be connected to one HFC-channel, this HFC-channel number must be written into the V_CH_NUM0 bitmap of all these FIFOs. In this case every FIFO contributes one or more bits to construct one HFC-channel byte. Unused bits of a HFC-channel byte can be set with an arbitrary mask byte. In transparent mode the FIFO data rate always remains 8 kByte/s. In HDLC mode the FIFO data rate is determined by the number of bits transmitted to the HFC-channel. Please see Section 3.5 on page 113 for details concerning the subchannel processor. ## **Example for CSM** The example of a *Channel Select Mode* configuration in Figure 3.7 shows four bidirectional connections (FIFO-to-S/T, FIFO-to-PCM, PCM-to-S/T and multiple FIFOs
to S/T). The black lines illustrate data paths, whereas the dotted lines symbolize blocked resources. These are not used for data transmission, but they are necessary to enable the settings. The following settings demonstrate only the required register values to establish the connections. All involved FIFOs have to be enabled with $V_{HDLC_TRP} + V_{TRP_IRQ} \neq 0$ in the register A_CON_HDLC[FIFO]. The non-specified bitmap values depend on the desired FIFO configuration. #### • FIFO-to-S/T HFC-channel and FIFO numbers can be chosen independently from each other. This is shown with the FIFO-to-S/T connection: | R_FIFO | $: V_FIFO_DIR = 0$ | (transmit FIFO) | |-----------------|---|-----------------------------| | | $: V_FIFO_NUM = 4$ | (FIFO #4) | | A_CON_HDLC[4,TX | X]: $V_DATA_FLOW = '100'$ | $(FIFO \rightarrow S/T)$ | | A_CHANNEL[4,TX] | $: V_CH_DIR0 = 0$ | (transmit HFC-channel) | | | $: V_CH_NUM0 = 0$ | (HFC-channel #0) | | | | | | R_FIFO | : V_FIFO_DIR = 1 | (receive FIFO) | | R_FIFO | : V_FIFO_DIR = 1
: V_FIFO_NUM = 4 | (receive FIFO)
(FIFO #4) | | _ | | , | | _ | $: V_FIFO_NUM = 4$ $X[: V_DATA_FLOW = '100']$ | (FIFO #4) | ## **2** FIFO-to-PCM The FIFO-to-PCM connection blocks two S/T-channels and it requires two slot configuration settings: March 2003 (rev. A) Data Sheet 105 of 273 Figure 3.7: CSM example | R_FIFO | : V_FIFO_DIR | = 0 | (transmit FIFO) | |------------------|-----------------|-----------|--| | | : V_FIFO_NUM | = 13 | (FIFO #13) | | A_CON_HDLC[13,TX |]: V_DATA_FLOW | / = '011' | $(\text{FIFO} \rightarrow \text{PCM})$ | | A_CHANNEL[13,TX] | : V_CH_DIR0 | = 0 | (transmit HFC-channel) | | | : V_CH_NUM0 | = 21 | (HFC-channel #21) | | R_SLOT | : V_SL_DIR | = 0 | (transmit slot) | | | : V_SL_NUM | = 17 | (slot #17) | | A_SL_CFG[17,TX] | : V_CH_DIR1 | = 0 | (transmit HFC-channel) | | | : V_CH_NUM1 | = 21 | (HFC-channel #21) | | R_FIFO | : V_FIFO_DIR | = 1 | (receive FIFO) | | | : V_FIFO_NUM | = 13 | (FIFO #13) | | A_CON_HDLC[13,RX | []: V_DATA_FLOW | / = '001' | $(\text{FIFO} \leftarrow \text{PCM})$ | | A_CHANNEL[13,RX] | : V_CH_DIR0 | = 1 | (receive HFC-channel) | | | : V_CH_NUM0 | = 21 | (HFC-channel #21) | | R_SLOT | : V_SL_DIR | = 1 | (receive slot) | | | : V_SL_NUM | = 17 | (slot #17) | | A_SL_CFG[17,RX] | : V_CH_DIR1 | = 1 | (receive HFC-channel) | | | : V_CH_NUM1 | = 21 | (HFC-channel #21) | ## **9** PCM-to-S/T The PCM-to-S/T connection blocks two FIFOs⁷. Although there is no data stored in these FIFOs, they must be enabled to switch on the data transmission between the PCM and the S/T interface. | R_FIFO | : V_FIFO_DIR | = 0 | (transmit FIFO) | |-------------------------|---|--|---| | | : V_FIFO_NUM | = 5 | (FIFO #5) | | A_CON_HDLC[5,TX | (): V_DATA_FLOW | ′ = '110' | $(PCM \leftarrow S/T)$ | | A_CHANNEL[5,TX] | : V_CH_DIR0 | = 0 | (transmit HFC-channel) | | | : V_CH_NUM0 | = 8 | (HFC-channel #8) | | R_SLOT | : V_SL_DIR | = 0 | (transmit slot) | | | : V_SL_NUM | = 7 | (slot #7) | | A_SL_CFG[7,TX] | : V_CH_DIR1 | = 1 | (receive HFC-channel) | | | : V_CH_NUM1 | = 8 | (HFC-channel #8) | | | | | | | R_FIFO | : V_FIFO_DIR | = 1 | (receive FIFO) | | R_FIFO | : V_FIFO_DIR
: V_FIFO_NUM | = 1
= 5 | (receive FIFO)
(FIFO #5) | | R_FIFO A_CON_HDLC[5,R3 | : V_FIFO_NUM | = 5 | | | _ | : V_FIFO_NUM
{]: V_DATA_FLOW | = 5 | (FIFO #5) | | A_CON_HDLC[5,RX | : V_FIFO_NUM
{]: V_DATA_FLOW | = 5
' = '110' | (FIFO #5)
(PCM \rightarrow S/T) | | A_CON_HDLC[5,RX | : V_FIFO_NUM
(): V_DATA_FLOW
: V_CH_DIR0 | = 5
' = '110'
= 1 | (FIFO #5)
(PCM \rightarrow S/T)
(receive HFC-channel) | | A_CON_HDLC[5,RX] | : V_FIFO_NUM (]: V_DATA_FLOW : V_CH_DIR0 : V_CH_NUM0 | = 5
' = '110'
= 1
= 8
= 1 | (FIFO #5)
(PCM → S/T)
(receive HFC-channel)
(HFC-channel #8) | | A_CON_HDLC[5,RX] | : V_FIFO_NUM \(\vec{V}\) DATA_FLOW : V_CH_DIR0 : V_CH_NUM0 : V_SL_DIR | = 5
' = '110'
= 1
= 8
= 1
= 7 | (FIFO #5)
(PCM → S/T)
(receive HFC-channel)
(HFC-channel #8)
(receive slot) | ## **4** multiple FIFOs to S/T Finally, the bidirectional connection between two FIFOs and one S/T-channel completes the example. | R_FIFO | $: V_FIFO_DIR = 0$ | (transmit FIFO) | |---|--|--| | | $: V_FIFO_NUM = 12$ | (FIFO #12) | | A_CON_HDLC[12,TX | $]: V_DATA_FLOW = '100'$ | $O' (FIFO \rightarrow S/T)$ | | A CHANNEL[12,TX] | : V CH DIR0 = 0 | (transmit HFC-channel) | | _ | : V CH NUM0 = 20 | (HFC-channel #20) | | | | (| | R_FIFO | $: V_FIFO_DIR = 0$ | (transmit FIFO) | | | $: V_FIFO_NUM = 11$ | (FIFO #11) | | A_CON_HDLC[11,TX |]: V_DATA_FLOW = '100 | $(FIFO \rightarrow S/T)$ | | A_CHANNEL[11,TX] | $: V_CH_DIR0 = 0$ | (transmit HFC-channel) | | _ | : V_CH_NUM0 = 20 | (HFC-channel #20) | | R FIFO | : V FIFO DIR = 1 | (receive FIFO) | | 11 11 0 | $V \cap V \cap V \cap V = V$ | (ICCCIVC I'II'O) | | K_111 0 | : V_FIFO_DIK = 1
: V_FIFO_NUM = 11 | (FIFO #11) | | _ | | (FIFO #11) | | _ | : V_FIFO_NUM = 11
[]: V_DATA_FLOW = '100 | (FIFO #11) | | A_CON_HDLC[11,RX | : V_FIFO_NUM = 11
[]: V_DATA_FLOW = '100 | (FIFO #11) (FIFO \leftarrow S/T) | | A_CON_HDLC[11,RX
A_CHANNEL[11,RX] | : V_FIFO_NUM = 11
I]: V_DATA_FLOW = '100
: V_CH_DIR0 = 1
: V_CH_NUM0 = 20 | (FIFO #11)
(FIFO ← S/T)
(receive HFC-channel)
(HFC-channel #20) | | A_CON_HDLC[11,RX | : V_FIFO_NUM = 11
: V_DATA_FLOW = '100
: V_CH_DIR0 = 1
: V_CH_NUM0 = 20
: V_FIFO_DIR = 1 | (FIFO #11) (FIFO ← S/T) (receive HFC-channel) (HFC-channel #20) (receive FIFO) | | A_CON_HDLC[11,RX
A_CHANNEL[11,RX]
R_FIFO | : V_FIFO_NUM = 11
: V_DATA_FLOW = '100
: V_CH_DIR0 = 1
: V_CH_NUM0 = 20
: V_FIFO_DIR = 1
: V_FIFO_NUM = 12 | (FIFO #11) (FIFO ← S/T) (receive HFC-channel) (HFC-channel #20) (receive FIFO) (FIFO #12) | | A_CON_HDLC[11,RX] A_CHANNEL[11,RX] R_FIFO A_CON_HDLC[12,RX | : V_FIFO_NUM = 11 []: V_DATA_FLOW = '100 : V_CH_DIR0 = 1 : V_CH_NUM0 = 20 : V_FIFO_DIR = 1 : V_FIFO_NUM = 12 []: V_DATA_FLOW = '100 | (FIFO #11)
(FIFO \leftarrow S/T)
(receive HFC-channel)
(HFC-channel #20)
(receive FIFO)
(FIFO #12)
(FIFO \leftarrow S/T) | | A_CON_HDLC[11,RX
A_CHANNEL[11,RX]
R_FIFO | : V_FIFO_NUM = 11 []: V_DATA_FLOW = '100 : V_CH_DIR0 = 1 : V_CH_NUM0 = 20 : V_FIFO_DIR = 1 : V_FIFO_NUM = 12 []: V_DATA_FLOW = '100 | (FIFO #11) (FIFO ← S/T) (receive HFC-channel) (HFC-channel #20) (receive FIFO) (FIFO #12) | ⁷Hint: Here it is possible to occupy HFC-channels that are assigned to E-channels (HFC-channel[3, 7, 11, ..., 31]) because these are normally not used. March 2003 (rev. A) Data Sheet 107 of 273 In addition to the above register settings, the subchannel processor must be configured now. It is important to see that the subchannel processor programming has no influence to the connection setup. So there is no need to describe these settings here. Please see Section 3.5 on page 113 for a detailed subchannel description. #### Rule In Channel Select Mode - every HFC-channel used requires at least one enabled FIFO (except for the PCM-to-PCM connection) with the same data direction and - every PCM time slot used requires one HFC-channel (except for the PCM-to-PCM connection where a full duplex connection allocates one HFC-channel). ## 3.4.3 FIFO Sequence Mode In contrast to the PCM and S/T-channels, the FIFO data rate is not fixed to 8 kByte/s. In the previous section the CSM allows the functional capability of a FIFO data rate less than 8 kByte/s. In this section, the third data flow mode shows how to use FIFOs with a higher data rate with the *FIFO Sequence Mode* (FSM). In transmit direction one FIFO can cyclically distribute its data to several HFC-channels. In opposite direction, received data from several HFC-channels can be collected cyclically in one FIFO (see Fig. 3.8, right side). A one-to-one connection between FIFO and HFC-channel is of course possible in FSM, too (Fig. 3.8, left side). Figure 3.8: FIFO/channel assigner FIFO Sequence Mode is selected with V_FSM_MD = '1' in the register R_FIFO_MD). CSM and FSM should be used at the same time. Actually, this is necessary for nearly all FSM applications. The HFC-4S/8S works in Simple Mode if none of these two modes is selected. ## FIFO sequence To achieve a FIFO data rate higher than 8 kByte/s a FIFO must be connected to more than one HFC-channel. As there is only one register A_CHANNEL[FIFO] the FSM programming path must differ from the previous modes. In FSM all FIFOs are organized in a list with up to 64 entries. Every list entry is assigned to a FIFO. FIFO configuration can be set up as usual. I.e. HFC-channel allocation, flow controller programming and subchannel processing can be configured as described in the previous sections. Additionally, each list entry specifies the next FIFO of the sequence. The list is terminated by an 'end of list' entry. This procedure is shown in Figure 3.9 with j+1 list entries. Figure 3.9: FSM list processing A quite simple FSM configuration with every FIFO and every HFC-channel specified only one time in the list, would have the same data transmission result as the CSM with an equivalent FIFO \longleftrightarrow HFC-channel setup. But if a specific FIFO is selected n times in the list and connected to n different HFC-channels, the FIFO data rate is $n \cdot 8 \, \mathrm{kByte/s}$. The complete list is processed every $125 \,\mu s$ with ascending list index beginning with
0. Suppose the transmit FIFO m occurs several times in the list. Then the first FIFO byte is transferred to the first connected HFC-channel, the second byte of FIFO m to the second connected HFC-channel and so on. This is similar to the receive data direction. The first byte written into FIFO m comes from the first connected HFC-channel, the second byte from the second connected HFC-channel and so on. #### **Important!** FIFO data rates higher than 8 kByte/s require an arbitrary assignment between a FIFO number and the connected HFC-channel. Therefore, the *Channel Select Mode* must be enabled. For this reason FSM is mostly selected in combination with CSM. All data transfer configuration possible with FSM but without CSM are also possible with CSM only – but with lower configuration effort! March 2003 (rev. A) Data Sheet 109 of 273 #### **FSM** programming The list index register R_FSM_IDX specifies the list index with bitmap V_IDX in the range of 0...63. R_FSM_IDX has the same address as R_FIFO because in FSM it replaces R_FIFO for list programming. So all array registers indexed with [FIFO] are indexed with the V_IDX value instead. The first FIFO of the list has to be specified in the register R_FIRST_FIFO with the direction bit V_FIRST_FIFO_DIR and the FIFO number V_FIRST_FIFO_NUM. The next FIFO has to be specified in the register A_FIFO_SEQ. Referring to Figure 3.9 the array registers of the list entry i + 1 are assigned to FIFO q because 'next FIFO' entry at list index i is 'FIFO q'. A FIFO handles more than one HFC-channel if this FIFO is entered several times in the 'next FIFO' entries. The connected HFC-channel and the FIFO configuration must be programmed in the same way as in CSM. These settings belong to the FIFO which is specified in the previous list entry under 'next FIFO' (or the R FIRST FIFO register for the first list entry). The FIFO sequence list terminates with $V_SEQ_END = 1$ in the register A_FIFO_SEQ . The other list entries must set $V_SEQ_END = 0$ to continue the sequence processing with the next entry. #### **Example for FSM** Figure 3.10 shows an example with three bidirectional connections. The black lines illustrate data paths, whereas the dotted lines symbolize blocked HFC-channels. These are not used for data transmission, but they are necessary to enable the settings. Figure 3.10: FSM example All FIFOs can be arranged in arbitrary order. In the example the list specification of Table 3.5 is chosen. To select FIFO[12,TX] as first FIFO R_FIRST_FIFO is set as follows: | $R_FIRST_FIFO: V_FIRST_FIFO_DIR = 0$ | (transmit FIFO) | |--------------------------------------|-----------------| | : $V_FIRST_FIFO_NUM = 12$ | (FIFO #12) | Table 3.5: List specification of the example in Figure 3.10 | List index | Connection | | | |------------|-------------|---------------|-----------------------| | 0 | FIFO[12,TX] | \rightarrow | S/T interf. #3, B1 TX | | 1 | FIFO[12,RX] | \leftarrow | S/T interf. #3, B1 RX | | 2 | FIFO[13,RX] | \leftarrow | PCM slot[21,RX] | | 3 | FIFO[13,TX] | \rightarrow | PCM slot[21,TX] | | 4 | FIFO[14,TX] | \rightarrow | S/T interf. #4, B2 TX | | 5 | FIFO[14,RX] | \leftarrow | S/T interf. #4, B2 RX | | 6 | FIFO[14,TX] | \rightarrow | S/T interf. #5, B1 TX | | 7 | FIFO[14,RX] | \leftarrow | S/T interf. #5, B1 RX | # • FIFO-to-S/T The bidirectional FIFO-to-S/T connection allocates the list indices 0 and 1 as follows: | R_FSM_IDX | : V_IDX | = 0 | (list index 0, FIFO[12,TX]) | |---------------|-------------------|---------|-----------------------------| | A_CON_HDLC[0 |]: V_DATA_FLOW | = '100' | $(FIFO \rightarrow S/T)$ | | A_CHANNEL[0] | : V_CH_DIR0 | = 0 | (transmit HFC-channel) | | | : V_CH_NUM0 | = 12 | (HFC-channel #12) | | A_FIFO_SEQ[0] | : V_NEXT_FIFO_DIR | = 1 | (next: receive FIFO) | | | : V_NEXT_FIFO_NUM | 1 = 12 | (next: FIFO #12) | | | : V_SEQ_END | = 0 | (continue) | | R_FSM_IDX | : V_IDX | = 1 | (list index 1, FIFO[12,RX]) | | A_CON_HDLC[1 |]: V_DATA_FLOW | = '100' | $(FIFO \leftarrow S/T)$ | | A_CHANNEL[1] | : V_CH_DIR0 | = 1 | (receive HFC-channel) | | | : V_CH_NUM0 | = 12 | (HFC-channel #12) | | A_FIFO_SEQ[1] | : V_NEXT_FIFO_DIR | = 1 | (next: receive FIFO) | | | : V_NEXT_FIFO_NUM | 1 = 13 | (next: FIFO #13) | | | : V_SEQ_END | = 0 | (continue) | #### **2** FIFO-to-PCM The following two list entries (indices 2 and 3) define the bidirectional FIFO-to-PCM connections. Two S/T-channels are blocked. But S/T-channel resources are saved because HFC-channels that are assigned to not used E-channels are selected. March 2003 (rev. A) Data Sheet 111 of 273 | R FSM IDX | : V IDX | = 2 | (list index 2, FIFO[13,RX]) | |----------------|-------------------|---------|--| | | : V_DATA_FLOW | = '011' | $(FIFO \leftarrow PCM)$ | | A_CHANNEL[2] | | = 1 | (receive HFC-channel) | | | : V_CH_NUM0 | = 15 | (HFC-channel #15) | | R_SLOT | : V_SL_DIR | = 1 | (receive slot) | | | : V_SL_NUM | = 21 | (slot #21) | | A_SL_CFG[21,RX |]: V_CH_DIR1 | = 1 | (receive HFC-channel) | | | : V_CH_NUM1 | = 15 | (HFC-channel #15) | | A_FIFO_SEQ[2] | : V_NEXT_FIFO_DIR | = 0 | (next: transmit FIFO) | | | : V_NEXT_FIFO_NUM | = 13 | (next: FIFO #13) | | | : V_SEQ_END | = 0 | (continue) | | R_FSM_IDX | : V_IDX | = 3 | (list index 3, FIFO[13,TX]) | | A_CON_HDLC[3] | : V_DATA_FLOW | = '011' | $(\text{FIFO} \rightarrow \text{PCM})$ | | A_CHANNEL[3] | : V_CH_DIR0 | = 0 | (transmit HFC-channel) | | | : V_CH_NUM0 | = 15 | (HFC-channel #15) | | R_SLOT | : V_SL_DIR | = 0 | (transmit slot) | | | : V_SL_NUM | = 21 | (slot #21) | | A_SL_CFG[21,TX |]: V_CH_DIR1 | = 0 | (transmit HFC-channel) | | | : V_CH_NUM1 | = 15 | (HFC-channel #15) | | A_FIFO_SEQ[32] | : V_NEXT_FIFO_DIR | = 0 | (next: transmit FIFO) | | | : V_NEXT_FIFO_NUM | = 14 | (next: FIFO #14) | | | | | | # **3** FIFO to multiple S/T-channels The last settings connect one FIFO with two S/T-channels in transmit and in receive direction. So both FIFOs have a data rate of $16\,\mathrm{kByte/s}$. | A_FIFO_SEQ[4] : V_
: V_ | _DATA_FLOW
_CH_DIR0
_CH_NUM0 | = 0
= 17
= 1 | (list index 4, FIFO[14,TX])
(FIFO → S/T)
(transmit HFC-channel)
(HFC-channel #17)
(next: receive FIFO)
(next: FIFO #18)
(continue) | |----------------------------|------------------------------------|--------------------|--| | A_FIFO_SEQ[5] : V_
: V_ | _DATA_FLOW
_CH_DIR0
_CH_NUM0 | = 1
= 17
= 0 | (list index 5, FIFO[14,RX])
(FIFO → S/T)
(receive HFC-channel)
(HFC-channel #17)
(next: transmit FIFO)
(next: FIFO #14)
(continue) | | A_FIFO_SEQ[6] : V_
: V_ | _DATA_FLOW
_CH_DIR0
_CH_NUM0 | = 1 | (list index 6, FIFO[14,TX]) (FIFO ← S/T) (transmit HFC-channel) (HFC-channel #20) (next: receive FIFO) (next: FIFO #14) (continue) | # 3.5 Subchannel Processing Data transmission between a FIFO and the connected HFC-channel can be controlled by the subchannel processor. The behavior of this functional unit depends on the selected data flow mode (*Channel Select Mode* enabled / disabled) and the operation mode of the HDLC controller (transparent or HDLC mode). The subchannel controller allows to process less than 8 bits of the transferred FIFO data bytes. A general overview of the subchannel processor in transmit direction is given in Figure 3.11. It shows an example with three FIFOs connected to one HFC-channel. Details of subchannel processing are described in the following sections, categorized into the different modes of the data flow and the HDLC controller. Figure 3.11: General structure of the subchannel processor shown with an example of three connected FIFOs The essence of the subchannel processor is a bit extraction (transmit) respectively insertion (receive) unit for every FIFO and a byte mask for every HFC-channel. The subchannel parameters V_BIT_CNT and V_START_BIT of the register A_SUBCH_CFG define the bits of the HFC-channel byte that are claimed by the FIFO. On the other side, the channel mask defines the bit values of those HFC-channel data bits, that are not occupied by FIFO data. #### **Registers** The FIFO bit extraction / insertion requires two register settings. V_BIT_CNT defines the number of bits to be extracted / inserted. The start bit can be selected with V_START_BIT in the range of 0 ... 7. Both values are located in the register A SUBCH CFG[FIFO]. The channel mask can be stored in the register A_CH_MSK[FIFO]. This mask is only used for transmit data. The processed FIFO bits are stored in this register, so it must be re-initialized after changing the settings in A SUBCH CFG[FIFO]. Each HFC-channel has its own mask byte. To March 2003 (rev. A) Data Sheet 113 of 273 write this byte for HFC-channel [n,TX] the HFC-channel must be written into the R_FIFO register first. After this index selection the desired mask byte m can be written with A CH MSK = m. ### **Important!** Typically, the R_FIFO register contains always an FIFO index. There is one exception where the R_FIFO value has a different meaning: The HFC-channel mask byte is programmed by writing the HFC-channel into the R_FIFO register. The default subchannel configuration of the register A_SUBCH_CFG leads to a transparent behavior. That means, only complete data bytes are transmitted in receive and transmit direction. ## **Important!** The A_CH_MSK array register is indexed by R_FIFO to write the mask byte. However the mask is assigned to a HFC-channel, namely that HFC-channel which is assigned to the indexing FIFO. #### 3.5.1 Transparent mode In transparent mode every FIFO has a data rate of $8 \, \text{kByte/s}$. Every $125 \, \mu \text{s}$ one byte of a FIFO is processed. The subchannel processor takes only the bits that are defined by the FIFO parameters and inserts them into the channel mask A CH MSK. Received HFC-channel data bytes are
stored completely in the FIFO and are independently from the V BIT CNT and V START BIT settings. #### Simple Mode As the FIFO and HFC-channel numbers are the same in *Simple Mode*, only one FIFO can be connected to a HFC-channel. Subchannel processing can do nothing more than mask out some bits of every transmitted data byte. Suppose FIFO[m,TX] has the register A_SUBCH_CFG settings V_BIT_CNT = 3 and V_START_BIT = 2 (see Fig. 3.11). Further, the channel mask is defined as A_CH_MSK = [$M_7 \dots M_0$]. Then the FIFO[m,TX] data bytes $m1 \dots mi$ with bit index $0 \dots 7$ build up the HFC-channel data bytes as shown in Table 3.6. From every FIFO byte only three bits are transmitted to the HFC-channel. These bits are accentuated in the table. The other bits are defined by the channel mask. In receive direction, the subchannel processor has no effect in *Simple mode* combined with transparent mode. So received HFC-channel bytes are stored in the FIFO without changing. ## **Channel Select Mode** In *Channel Select Mode* it is possible to connect more than one FIFO to a HFC-channel. The configuration in Figure 3.11 with three FIFOs can be taken as example. The bit extraction/insertion units must be configured with the following register settings: Table 3.6: Subchannel processing example in SM combined with transparent mode (transmit direction) | | 7 | 0 | |------------------------------|---|-------| | channel mask: | $M_7 \mid M_6 \mid M_5 \mid M_4 \mid M_3 \mid M_2 \mid M_1 \mid M_5$ | I_0 | | HFC-channel transmit byte 1: | $oxed{M_7 \mid M_6 \mid M_5 \mid m1_4 \mid m1_3 \mid m1_2 \mid M_1 \mid M_1}$ | I_0 | | HFC-channel transmit byte 2: | $oxed{M_7 \mid M_6 \mid M_5 \mid m2_4 \mid m2_3 \mid m2_2 \mid M_1 \mid M_2}$ | I_0 | | HFC-channel transmit byte 3: | $M_7 \mid M_6 \mid M_5 \mid m3_4 \mid m3_3 \mid m3_2 \mid M_1 \mid M_1$ | I_0 | | | | | A_SUBCH_CFG[m,TX]: V_BIT_CNT = 3 (3 bits) : V_START_BIT = 2 (beginning at bit 2) A_SUBCH_CFG[n,TX]: V_BIT_CNT = 2 (2 bits) : V_START_BIT = 0 (beginning at bit 0) A_SUBCH_CFG[o,TX]: V_BIT_CNT = 1 (1 bit) : V_START_BIT = 6 (bit 6) Each FIFO occupies one or more bits in a HFC-channel data byte. In this example 2 bits are not used for data. They are filled with the channel mask bits M_7 and M_5 . Table 3.7 shows the HFC-channel data bytes which are constructed from three FIFOs. Table 3.7: Subchannel processing example in CSM combined with transparent mode (transmit direction) | | 7 0 | |------------------------------|---| | channel mask: | $M_7 \mid M_6 \mid M_5 \mid M_4 \mid M_3 \mid M_2 \mid M_1 \mid M_0 \mid$ | | HFC-channel transmit byte 1: | $oxed{M_7 \mid o1_6 \mid M_5 \mid m1_4 \mid m1_3 \mid m1_2 \mid n1_1 \mid n1_0 \mid}$ | | HFC-channel transmit byte 2: | $egin{array}{ c c c c c c c c c c c c c c c c c c c$ | | HFC-channel transmit byte 3: | $egin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | | In the opposite data direction the incoming HFC-channel bytes are stored unchanged in all connected FIFOs. Therefore it is unnecessary to connect more than one receive FIFO to a receive HFC-channel if CSM and transparent mode are selected. #### 3.5.2 HDLC mode HDLC mode allows to reduce the data rate of a FIFO. In the example of Figure 3.11 FIFO[m,TX] delivers 3 bits every 125 μ s which leads to a FIFO data rate of e.g. 3 kByte/s. With $V_BIT_CNT = x$, the first x bits of a FIFO byte are transferred to the connected HFC-channel during the first 125 μ s cycle. During the next 125 μ s cycle the next x bits of the same byte are March 2003 (rev. A) Data Sheet 115 of 273 processed, and so on. When 8 FIFO bits are processed, the next FIFO byte is processed. The byte boundaries are neglected. # Simple Mode HDLC mode combined with *Simple Mode* can transmit one FIFO bit stream (e.g. of FIFO[m,TX]) to the connected HFC-channel. The result is given in Table 3.8 ⁸. Table 3.8: Subchannel processing example in SM combined with HDLC mode (transmit direction) | | 7 | 0 | |------------------------------|--|-------| | channel mask: | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | M_0 | | HFC-channel transmit byte 1: | $oxed{M_7 \mid M_6 \mid M_5 \mid m1_2 \mid m1_1 \mid m1_0 \mid M_1}$ | M_0 | | HFC-channel transmit byte 2: | $oxed{M_7 \mid M_6 \mid M_5 \mid m1_5 \mid m1_4 \mid m1_3 \mid M_1}$ | M_0 | | HFC-channel transmit byte 3: | $M_7 \mid M_6 \mid M_5 \mid m2_0 \mid m1_7 \mid m1_6 \mid M_1$ | M_0 | | HFC-channel transmit byte 4: | $oxed{M_7 \mid M_6 \mid M_5 \mid m2_3 \mid m2_2 \mid m2_1 \mid M_1}$ | M_0 | | ••• | | | Received HFC-channel data are processed similar. FIFO[m,RX] with the setting $$\label{eq:A_SUBCH_CFG} \begin{split} A_SUBCH_CFG[m,RX]: \ V_BIT_CNT &= 3 & (3 \ bits) \\ : \ V_START_BIT &= 2 & (beginning \ at \ bit \ 2) \end{split}$$ stores 3 bits every 125 μ s cycle. These bits are taken from the connected HFC-channel at position [4...2]. #### **Channel Select Mode** In *Channel Select Mode* several FIFOs can transmit a bit stream to one connected HFC-channel. Figure 3.11 with three connected FIFOs to HFC-channel[a,TX] is taken again as an example. HFC-channel transmit data for this configuration is shown in Table 3.9 9. Received HFC-channel data are processed similary. Assuming that three receive FIFOs are configured with the same settings as their corresponding transmit FIFOs, then FIFO[m,RX] receives a bit stream with 3 kByte/s, FIFO[n,RX] receives 2 kByte/s and FIFO[o,RX] receives 1 kByte/s. ⁸HDLC bit stuffing is not shown in this example. ⁹HDLC bit stuffing is not shown in this example. Table 3.9: Subchannel processing example in CSM combined with HDLC mode (transmit direction) | 7 | 0 | |--|--| | $M_7 \mid M_6 \mid M_5 \mid M_4 \mid M_3 \mid M_2 \mid M_1$ | M_0 | | $oxed{M_7 \mid o1_0 \mid M_5 \mid m1_2 \mid m1_1 \mid m1_0 \mid n1_1}$ | $n1_0$ | | $oxed{M_7 \mid o1_1 \mid M_5 \mid m1_5 \mid m1_4 \mid m1_3 \mid n1_3}$ | $n1_2$ | | $oxed{M_7 \mid o1_2 \mid M_5 \mid m2_0 \mid m1_7 \mid m1_6 \mid n1_5}$ | $n1_4$ | | $oxed{M_7 \mid o1_3 \mid M_5 \mid m2_3 \mid m2_2 \mid m2_1 \mid n1_7}$ | $n1_6$ | | $oxed{M_7 \mid o1_4 \mid M_5 \mid m2_6 \mid m2_5 \mid m2_4 \mid n2_1}$ | $n2_0$ | | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | March 2003 (rev. A) Data Sheet 117 of 273 # 3.6 Register description | R_FIRST_FIFO | (write only) | 0x0B | |----------------------------------|--------------|------| | Einst EIEO of the EIEO goggeones | | | #### First FIFO of the FIFO sequence This register is only used in *FIFO Sequence Mode*, see register R_FIFO_MD for mode selection. | Bits | Reset | Name | Description | |------|-------|------------------|---| | | Value | | | | 0 | 0 | V_FIRST_FIFO_DIR | Data direction This bit defines the data direction of the first FIFO in FIFO sequence. '0' = transmit FIFO data '1' = receive FIFO data | | 51 | 0x00 | V_FIRST_FIFO_NUM | FIFO number This bitmap defines the number of the first FIFO in FIFO sequence. | | 76 | | (reserved) | Must be '00'. | | R_FIF | D_MD | (write only) 0x0E | | | | |--------|-------------------------|-------------------|--|--|--| | FIFO n | FIFO mode configuration | | | | | | Bits | Reset | Name | Description | | | | | Value | | | | | | 10 | 0 | V_FIFO_MD | FIFO mode This bitmap and V_FIFO_SZ are used to organize the FIFOs in the internal or external SRAM. | | | | 2 | 0 | V_CSM_MD | Channel select mode (CSM) '0' = disable CSM (FIFO number = HFC-channel number) '1' = enable CSM Note: The HFC-4S/8S works in Simple Mode (SM) if CSM and FSM are both disabled. | | | | 3 | 0 | V_FSM_MD | FIFO sequence mode (FSM) '0' = disable FSM '1' = enable FSM Note: In most cases where FSM is selected, also CSM should be enabled. | | | | 54 | 0 | V_FIFO_SZ | FIFO size This bitmap and V_FIFO_MD are used to organize the FIFOs in the internal or external SRAM. The actual FIFO sizes depend on the used SRAM size. | | | | 76 | | (reserved) | Must be '00'. | | | (See Table 4.3 on page 130 for suitable V_FIFO_MD and V_FIFO_SZ values.) March 2003 (rev. A) Data Sheet 119 of 273 | R FIFO | (write only) | 0x0F | |--------|--------------|------| | | | | # FIFO selection register This multi-register is selected with bitmap $V_FSM_MD = 0$ of the register R_FIFO_MD . It is only used in SM and CSM. | | 1 | | | |------|-------|------------|--| | Bits | Reset | Name | Description | | | Value | | | | 0 | 0 | V_FIFO_DIR | FIFO data direction '0' = transmit FIFO data '1' = receive FIFO data | | 51 | 0x00 | V_FIFO_NUM | FIFO number | | 6 | | (reserved) | Must be '0'. | | 7 | 0 | V_REV | Bit order '0' = normal bit order '1' = reversed bit order Normal bit order means LSB first in HDLC mode and MSB first in transparent mode. The bit order is being reversed for the data stored into the FIFO or when the data is read from the FIFO. | | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | R_FSM_IDX | (write only) | 0x0F | |---|-----------|--------------|------| |---|-----------|--------------|------| ## Index register of the FIFO sequence
This multi-register is selected with bitmap $V_FSM_MD = 1$ of the register R_FIFO_MD . It is only used in FSM. | Bits | Reset
Value | Name | Description | |------|----------------|------------|---| | 50 | 0 | V_IDX | List index The list index must be in the range 0 63. | | 76 | | (reserved) | Must be '00'. | | l | R SLOT | (write only) | 0x10 | |---|--------|--------------|------| | | | | | ## PCM time slot selection The selected time slot is used for all slot depending registers. Depending on the V_PCM_DR value in the R_PCM_MD1 register 16, 32 or 64 time slots are available for each data direction. | Bits | Reset | Name | Description | |------|-------|----------|---| | | Value | | | | 0 | 0 | V_SL_DIR | PCM time slot data direction '0' = transmit PCM data '1' = receive PCM data | | 71 | 0x00 | V_SL_NUM | PCM time slot number | March 2003 (rev. A) Data Sheet 121 of 273 A_SL_CFG [SLOT] (write only) 0xD0 # HFC-channel assignment for the selected PCM time slot and PCM output buffer configuration With this register a HFC-channel can be assigned to the selected PCM time slot. Additionally, the PCM buffers can be configured. Before writing this array register the PCM time slot must be selected by the register R SLOT. | Bits | Reset | Name | Description | |------|-------|-----------|--| | | Value | | | | 0 | 0 | V_CH_DIR1 | HFC-channel data direction '0' = HFC-channel for transmit data '1' = HFC-channel for receive data | | 51 | 0 | V_CH_NUM1 | HFC-channel number (0 31) | | 76 | 0 | V_ROUT | PCM output buffer configuration For transmit time slots: '00' = disable output buffers, no data transmision '01' = transmit data internally, output buffers disabled '10' = output buffer enable for STIO1 '11' = output buffer enable for STIO2 For receive time slots: '00' = input data is ignored '01' = loop PCM data internally '10' = data in from STIO2 '11' = data in from STIO1 | (See Figure 6.1 on page 175 for detailed information). A_CH_MSK [FIFO] (write only) 0xF4 ## HFC-channel data mask for the selected transmit HFC-channel For receive FIFOs this register is ignored. Before writing this array register the HFC-channel must be selected by the register R_FIFO. | Bits | Reset | Name | Description | |------|-------|----------|---| | | Value | | | | 70 | 0 | V_CH_MSK | Mask byte This bitmap defined bit values for not processed bits of a HFC-channel. All not processed bits of a HFC-channel are set to the value defined in this register. This register has only a meaning when V_BIT_CNT ≠ 0 in the register A_SUBCH_CFG. | March 2003 (rev. A) Data Sheet 123 of 273 # A_CON_HDLC [FIFO] (write only) 0xFA # HDLC and connection settings of the selected FIFO Before writing this array register the FIFO must be selected by register R_FIFO . | Bits | Reset | Name | Description | | |------|-------|-------------|---|--| | | Value | | | | | 0 | 0 | V_IFF | Inter frame fill '0' = write HDLC flags 0x7F as inter frame fill '1' = write all '1' s as inter frame fill Note: For D-channel this bit must be '1'. | | | 1 | 0 | V_HDLC_TRP | HDLC mode / transparent mode selection '0' = HDLC mode '1' = transparent mode Note: For D-channel this bit must be '0'. | | | 42 | 0 | V_TRP_IRQ | Transparent mode interrupt selection An interrupt is generated all 2^n bytes when the bits [n-1:0] of the $Z1$ - or $Z2$ -counter become '1'. 0 = interrupt disabled 1 = all $2^6 = 64$ bytes an interrupt is generated 2 = all $2^7 = 128$ bytes an interrupt is generated 3 = all $2^8 = 256$ bytes an interrupt is generated 4 = all $2^9 = 512$ bytes an interrupt is generated 5 = all $2^{10} = 1024$ bytes an interrupt is generated 6 = all $2^{11} = 2048$ bytes an interrupt is generated 7 = all $2^{12} = 4096$ bytes an interrupt is generated Note: No interrupt occurs, if the Z -counters do never reach the selected values. This depends on the Z_{MAX} setting. | | | 75 | 0 | V_DATA_FLOW | Data flow configuration 0 = FIFO \leftrightarrow S/T, FIFO \rightarrow PCM 1 = FIFO \leftrightarrow PCM, FIFO \rightarrow S/T 2 = FIFO \rightarrow PCM, S/T \rightarrow FIFO, PCM \rightarrow S/T 3 = FIFO \leftrightarrow PCM, PCM \rightarrow S/T 4 = FIFO \leftrightarrow S/T, S/T \rightarrow PCM 5 = FIFO \rightarrow S/T, S/T \rightarrow PCM, PCM \rightarrow FIFO 6 = S/T \leftrightarrow PCM, S/T \rightarrow FIFO 7 = S/T \leftrightarrow PCM, PCM \rightarrow FIFO | | (For details on bitmap V_DATA_FLOW see Fig. 3.3 and 3.4 on page 97.) # **Important!** A FIFO is disabled if $V_HDLC_TRP + V_TRP_IRQ = 0$ in the register A_CON_HDLC[FIFO]. This setting is useful to reduce RAM accesses if a FIFO is not used at all. If HFC-channel data is routed through the switches of the flow controller (Fig.3.3 and 3.4) the FIFO must be enabled. That applies to all connections except the PCM-to-PCM data transmission. # A SUBCH_CFG [FIFO] (write only) 0xFB # Subchannel parameters for bit processing of the selected FIFO Before writing this array register the FIFO must be selected by register R FIFO. **Note:** For D-channel this register must be 0x02. | Bits | Reset | Name | Description | |------|-------|-------------|--| | | Value | | | | 20 | 0 | V_BIT_CNT | Bit counter for HDLC and transparent mode This bitmap contains the number of bits to be processed. '000' = process 8 bits (64 kbit/s) '001' = process 1 bit (8 kbit/s) '010' = process 2 bits (16 kbit/s) '011' = process 3 bits (24 kbit/s) '100' = process 4 bits (32 kbit/s) '101' = process 5 bits (40 kbit/s) '111' = process 6 bits (48 kbit/s) '111' = process 7 bits (56 kbit/s) | | 53 | 0 | V_START_BIT | Start bit for HDLC and transparent mode '000' = start processing with bit 0 '001' = start processing with bit 1 '010' = start processing with bit 2 '011' = start processing with bit 3 '100' = start processing with bit 4 '101' = start processing with bit 5 '110' = start processing with bit 6 '111' = start processing with bit 7 | | 6 | 0 | V_LOOP_FIFO | FIFO loop '0' = normal operation '1' = repeat current frame (in transparent mode only) | | 7 | 0 | V_INV_DATA | Inverted data '0' = normal data out '1' = inverted data out | March 2003 (rev. A) Data Sheet 125 of 273 # A_CHANNEL [FIFO] (write only) 0xFC # HFC-channel assignment for the selected FIFO This register is only used in Channel Select Mode and FIFO Sequence Mode. Before writing this array register the FIFO must be selected by register R_FIFO. | Bits | Reset | Name | Description | |------|-------|------------|---| | | Value | | | | 0 | 0 | V_CH_DIR0 | HFC-channel data direction '0' = HFC-channel for transmit data '1' = HFC-channel for receive data | | 51 | 0 | V_CH_NUM0 | HFC-channel number (0 31) | | 76 | 0 | (reserved) | Must be '00'. | # A_FIFO_SEQ [FIFO] (write only) 0xFD ## FIFO sequence list This register is only used in FIFO Sequence Mode. Before writing this array register the FIFO must be selected by register R FIFO. | Bits | Reset | Name | Description | |------|-------|-----------------|---| | | Value | | | | 0 | 0 | V_NEXT_FIFO_DIR | FIFO data direction This bit defines the data direction of the next FIFO in FIFO sequence. '0' = transmit FIFO data '1' = receive FIFO data | | 51 | 0 | V_NEXT_FIFO_NUM | FIFO number This bitmap defines the FIFO number of the next FIFO in FIFO sequence. | | 6 | 0 | V_SEQ_END | End of FIFO list '0' = FIFO list goes on '1' = FIFO list is terminated after this FIFO (V_NEXT_FIFO_DIR and V_NEXT_FIFO_NUM are ignored) | | 7 | 0 | (reserved) | Must be '0'. | # **Chapter 4** # FIFO handling and HDLC controller Table 4.1: Overview of the HFC-4S/8S FIFO registers | Write only registers: | | | Read only register: | | | Read/write registers: | | | |-----------------------|----------------|-----|---------------------|------------|------|-----------------------|--------------------|------| | Address | Name Page | | Address | Name | Page | Address | Name | Page | | 0x0E | R_INC_RES_FIFO | 136 | 0x04 | A_Z1L | 137 | 0x80 | A_FIFO_DATA0 | 141 |
| 0x0F | R_FIFO | 120 | 0x05 | A_Z1H | 137 | 0x84 | A_FIFO_DATA0_NOINC | 142 | | 0x0F | R_FSM_IDX | 120 | 0x06 | A_Z2L | 138 | | | | | 0xFA | A_CON_HDLC | 124 | 0x07 | A_Z2H | 138 | | | | | 0xFB | A_SUBCH_CFG | 125 | 0x0C | A_F1 | 139 | | | | | | | | 0x0D | A_F2 | 139 | | | | | | | | 0x88 | R_INT_DATA | 140 | | | | March 2003 (rev. A) Data Sheet 127 of 273 There are up to 32 receive FIFOs and up to 32 transmit FIFOs with 64 HDLC controllers in whole. The HDLC circuits are located on the S/T interface side of the FIFOs. Thus plain data is always stored in the FIFOs. Automatic zero insertion is done in HDLC mode when HDLC data goes from the FIFOs to the S/T interface or to the PCM bus (transmit FIFO operation). Automatic zero deletion is done in HDLC mode when the HDLC data comes from the S/T interface or PCM bus (receive FIFO operation). There is a transmit and a receive FIFO for each B-channel and for each D-channel. The FIFO control registers are used to select and control the FIFOs of the HFC-4S/8S. The FIFO register set exists for every FIFO number and receive / transmit direction. The FIFO is selected by the FIFO select register R FIFO. All FIFOs are disabled after reset (hardware reset, soft reset or HFC reset). With the register A_CON_HDLC the selected FIFO is enabled by setting at least one of V_HDLC_TRP or V_TRP_IRQ to a value different from zero. #### 4.1 FIFO counters The FIFOs are realized as ring buffers in the internal or external SRAM. They are controlled by counters. The counter sizes depend on the setting of the FIFO sizes. Z1 is the FIFO input counter and Z2 is the FIFO output counter. Each counter points to a byte position in the SRAM. On a FIFO input operation Z1 is incremented. On an output operation Z2 is incremented. If Z1 = Z2 the FIFO is empty. After every pulse on the F0IO signal HDLC bytes are written into the S/T interface (from a transmit FIFO) and HDLC bytes are read from the S/T interface (to a receive FIFO). The D-channel data is processed in exactly the same way as the B-channel data, except that the D-FIFO data rate is reduced. Additionally there are two counters F1 and F2 for every FIFO for counting the HDLC frames. Their width is 4 bit for 32 kByte SRAM and 5 bit for larger SRAMs. They form a ring buffer as Z1 and Z2 do, too. Table 4.2: F-counter range with different RAM sizes | RAM size | $\mathbf{F}_{\mathbf{MIN}}$ | F_{MAX} | |----------|-----------------------------|-----------| | 32k x 8 | 0x00 | 0x0F | | 128k x 8 | 0x00 | 0x1F | | 512k x 8 | 0x00 | 0x1F | F1 is incremented when a complete frame has been received and stored in the FIFO. F2 is incremented when a complete frame has been read from the FIFO. If F1 = F2 there is no complete frame in the FIFO. The reset state of the Z- and F-counters is - $Z1 = Z2 = Z_{MAX}^{-1}$ and - $F1 = F2 = F_{MAX}^2$. This initialization can be carried out with a soft reset or a HDLC reset. For this, the bit V_SRES or the bit V_HFCRES in the register R_CIRM have to be set. Individual FIFOs can be reset with bit V_RES_F of the register R_INC_RES_FIFO. In addition, a hardware reset initializes the counters. #### **Important!** #### Busy status after FIFO change, FIFO reset and F1/F2 incrementation Changing a FIFO, reseting a FIFO or incrementing the F-counters causes a short BUSY period of the HFC-4S/8S. This means an access to FIFO control registers is not allowed until BUSY status is reset (bit V_BUSY of R_STATUS register). The maximum duration takes 25 clock cycles (\sim 1 μ s). Status, interrupt and control registers can be read and written at any time. #### Please note! The counter state Z_{MIN} (resp. F_{MIN}) of the Z-counters (resp. F-counters) follows counter state Z_{MAX} (resp. F_{MAX}) in the FIFOs. Please note that Z_{MIN} and Z_{MAX} depend on the FIFO number and FIFO size (s. Section 4.2 and Table 4.3). # 4.2 FIFO size setup The HFC-4S/8S can operate with 32k x 8 internal or alternatively with 128k x 8 or 512k x 8 external SRAM. The bitmap V_RAM_SZ of the register R_RAM_MISC must be set accordingly to the RAM size. Table 4.3 shows how the FIFO size can be varied with the different RAM sizes. Additionally, the initial Z_{max} and Z_{min} values are given in Table 4.3. After changing the FIFO size or RAM size a soft reset should be initiated. March 2003 (rev. A) Data Sheet 129 of 273 ¹See Z_{max} value in Table 4.3. ²See F_{max} value in Table 4.2. Table 4.3: FIFO size setup 512k x 8 RAM (external) 128k x 8 RAM (external) 512k x 8 RAM (external) FIFO handling and HDLC controller | | | 3 | | AM (intern
_ SZ = 0x0 | · 1 | 1 | | AM (extern | , | | | AM (externate) _ SZ = 0x02 | · · | |-----------|-----------|---------------------------|--------------------------|--|---------------------|---------------------------|--------------------------|-----------------------------|---------------------|----------------------------|--------------------------|--|---------------------| | | | $\mathbf{F}_{\mathbf{M}}$ | $_{IN} = 0x00$ |), F _{MAX} = | 0x0F | $\mathbf{F}_{\mathbf{M}}$ | IN = 0x0 | $0, \mathbf{F_{MAX}} =$ | 0x1F | $\mathbf{F}_{\mathbf{MI}}$ | $_{\rm IN} = 0$ x00 | $\mathbf{F_{MAX}} =$ | 0x1F | | V_FIFO_MD | V_FIFO_SZ | FIFO
number | $\mathbf{Z}_{ ext{MIN}}$ | $\mathbf{Z}_{ ext{MAX}}$ | FIFO size
(byte) | FIFO
number | $\mathbf{Z}_{ ext{MIN}}$ | $\mathbf{Z}_{\mathbf{MAX}}$ | FIFO size
(byte) | FIFO
number | $\mathbf{Z}_{ ext{MIN}}$ | $\mathbf{Z}_{\mathbf{MAX}}$ | FIFO size
(byte) | | '00' | '00' | 031 | 0x80 | 0x1FF | 384 | 0 31 | 0xC0 | 0x07FF | 1856 | 031 | 0xC0 | 0x1FFF | 8000 | | '10' | '00' | 0 15 | 0x80 | 0x0FF | 128 | 0 15 | 0xC0 | 0x03FF | 832 | 0 15 | 0xC0 | 0x0FFF | 3904 | | | | 16 31 | 0x00 | 0x1FF | 512 | 16 31 | 0x00 | 0x07FF | 2048 | 16 31 | 0x00 | 0x1FFF | 8192 | | '10' | '01' | 0 23 | 0x80 | 0x0FF | 128 | 0 23 | 0xC0 | 0x03FF | 832 | 023 | 0xC0 | 0x0FFF | 3904 | | | | 24 31 | 0x00 | 0x3FF | 1024 | 24 31 | 0x00 | 0x0FFF | 4096 | 24 31 | 0x00 | 0x3FFF | 16384 | | '10' | '10' | 0 27 | 0x80 | 0x0FF | 128 | 0 27 | 0xC0 | 0x03FF | 832 | 0 27 | 0xC0 | 0x0FFF | 3904 | | | | 28 31 | 0x00 | 0x7FF | 2048 | 28 31 | 0x00 | 0x1FFF | 8192 | 28 31 | 0x00 | 0x7FFF | 32768 | | '10' | '11' | 0 29 | 0x80 | 0x0FF | 128 | 0 29 | 0xC0 | 0x03FF | 832 | 0 29 | 0xC0 | 0x0FFF | 3904 | | | | 30 31 | 0x00 | 0xFFF | 4096 | 30 31 | 0x00 | 0x3FFF | 16384 | 30 31 | 0x00 | 0xFFFF | 65536 | | '11' | '00' | 0 15 | 0x00 | 0x0FF | 256 | 0 15 | 0x00 | 0x03FF | 1024 | 0 15 | 0x00 | 0x0FFF | 4096 | | | | 16 31 | 0x00 | 0x1FF | 512 | 16 31 | 0x00 | 0x07FF | 2048 | 16 31 | 0x00 | 0x1FFF | 8192 | | '11' | '01' | 07 | 0x00 | 0x1FF | 512 | 07 | 0x00 | 0x07FF | 2048 | 07 | 0x00 | 0x1FFF | 8192 | | | | 8 15 | 0x00 | 0x3FF | 1024 | 8 15 | 0x00 | 0x0FFF | 4096 | 8 15 | 0x00 | 0x3FFF | 16384 | | '11' | '10' | 03 | 0x00 | 0x3FF | 1024 | 03 | 0x00 | 0x0FFF | 4096 | 03 | 0x00 | 0x3FFF | 16384 | | | | 47 | 0x00 | 0x7FF | 2048 | 47 | 0x00 | 0x1FFF | 8192 | 47 | 0x00 | 0x7FFF | 32768 | | '11' | '11' | 01 | 0x00 | 0x7FF | 2048 | 01 | 0x00 | 0x1FFF | 8192 | 01 | 0x00 | 0x7FFF | 32768 | | | | 23 | 0x00 | 0xFFF | 4096 | 23 | 0x00 | 0x3FFF | 16384 | 23 | 0x00 | 0xFFFF | 65536 | # 4.3 FIFO operation Without F0IO and C4IO clocks the HDLC controller does not work! #### 4.3.1 HDLC transmit FIFOs Data can be transmitted from the host bus interface to the FIFO with write access to the registers A_FIFO_DATA0 and A_FIFO_DATA0_NOINC. The HFC-4S/8S converts the data into HDLC code and transfers it from the FIFO to the S/T or the PCM bus interface. Figure 4.1: FIFO organization The HFC-4S/8S checks Z1 and Z2. If Z1=Z2 (FIFO empty) the HFC-4S/8S generates a HDLC flag ('01111110') or continuous '1's (depending on the bit V_IFF of the register A_CON_HDLC) and transmits it to the S/T interface. In this case Z2 is not incremented. If also F1=F2 only HDLC flags or continuous '1's are sent to the S/T interface and all counters remain unchanged. If the frame counters are unequal F2 is incremented and the HFC-4S/8S tries to transmit the next frame to the S/T interface. At the end of a frame (Z2 reaches Z1) it automatically generates the 16 bit CRC checksum and adds an ending flag. If there is another frame in the FIFO ($F1 \neq F2$) the F2 counter is incremented again. With every byte being written from the host bus side to the FIFO, Z1 is incremented automatically. If a complete frame has been sent into the FIFO F1 must be incremented to transmit the next frame. If the frame counter F1 is incremented the Z-counters may also change because Z1 and Z2 are functions of F1 and F2. Thus there are Z1(F1), Z2(F1), Z1(F2) and Z2(F2) (see Fig. 4.1). Z1(F1) is used for the frame which is just written from the host bus side. Z2(F2) is used for the March 2003 (rev. A) Data Sheet 131 of 273 frame which is just being transmitted to the S/T interface side of the HFC-4S/8S. Z1(F2) is the end of frame pointer of the current output frame. In the transmit HFC-channels F1 is only incremented from the host interface side if the software driver wants to say "end of transmit frame". This is done by setting the bit V_INC_F in register R_INC_RES_FIFO. Then the current value of Z1 is stored, F1 is incremented and Z1 is used as start address of the next frame. Z2(F2) can not be accessed while Z1(F2) can be accessed for transmit FIFOs if V FZ MD in the register R RAM MISC is set. #### 4.3.2 Automatical D-channel frame repetition The D-channel transmit FIFO has a special feature. If the S/T interface signals a D-channel contention before the CRC is sent the Z2 counter is set to the starting address of the current frame and the HFC-4S/8S tries to repeat the frame automatically. #### Please note! The HFC-4S/8S begins to transmit the bytes from a FIFO at the moment the FIFO is changed (writing R_FIFO) or the F1 counter is incremented. Switching
to the FIFO that is already selected also starts the transmission. Thus by selecting the same FIFO again transmission can be started. Figure 4.2: FIFO data organization in HDLC mode #### 4.3.3 FIFO full condition in HDLC transmit HFC-channels Due to the limited number of registers in the HFC-4S/8S the driver software must maintain a list of frame start and end addresses to calculate the actual FIFO size and to check the FIFO full condition. Because there is a maximum of 32 (resp. 16 with 32k RAM) frame counter values and the start address of a frame is the incremented value of the end address of the last frame the memory table needs to have only 32 (resp. 16) values of 16 bit instead of 64 (resp. 32). Remember that an increment of Z-value Z_{MAX} is Z_{MIN} in all FIFOs! There are two different FIFO full conditions. The first one is met when the FIFO contents comes up to 31 frames (128k or 512k RAM) or 15 frames (32k RAM). There is no possibility for HFC-4S/8S to manage more frames even if the frames are very small. The second limitation is the overall size of the FIFO. #### 4.3.4 HDLC receive FIFOs The receive HFC-channels receive data from the S/T or PCM bus interface read registers. The data is converted from HDLC into plain data and sent to the FIFO. The data can then be read via the host bus interface. The HFC-4S/8S checks the HDLC data coming in. If it finds a flag or more than 5 consecutive '1's it does not generate any output data. In this case Z1 is not incremented. Proper HDLC data being received is converted by the HFC-4S/8S into plain data. After the ending flag of a frame the HFC-4S/8S checks the HDLC CRC checksum. If it is correct one byte with all '0's is inserted behind the CRC data in the FIFO named STAT (see Fig. 4.2). This last byte of a frame in the FIFO is different from all '0's if there is no correct CRC field at the end of the frame. If the STAT value is 0xFF, the HDLC frame ended with at least 8 bits '1's. This is similar to an abort HDLC frame condition. The ending flag of a HDLC frame can also be the starting flag of the next frame. After a frame is received completely F1 is incremented by the HFC-4S/8S automatically and the next frame can be received. After reading a frame via the host bus interface F2 has to be incremented. If the frame counter F2 is incremented also the Z-counters may change because Z1 and Z2 are functions of F1 and F2. Thus there are Z1(F1), Z2(F1), Z1(F2) and Z2(F2) (see Fig. 4.1). Z1(F1) is used for the frame which is just received from the S/T interface side of the HFC-4S/8S. Z2(F2) is used for the frame which is just beeing transmitted to the host bus interface. Z1(F2) is the end of frame pointer of the current output frame. To calculate the length of the current receive frame the software has to evaluate Z1-Z2+1. When Z2 reaches Z1 the complete frame has been read. In the receive HFC-channels F2 must be incremented from the host interface side after the software detects an end of receive frame (Z1=Z2) and $F1\neq F2$. Then the current value of Z2 is stored, F2 is incremented and Z2 is copied as start address of the next frame. This is done by setting the bit V_{NC} in the register R_{NC} RES_FIFO. If Z1=Z2 and F1=F2 the FIFO is totally empty. Z1(F1) can not be accessed. #### **Important!** Before reading a new frame, a change FIFO operation (write access to the register R_FIFO) has to be done even if the desired FIFO is already selected. The change FIFO operation is required to update the internal buffer of the HFC-4S/8S. Otherwise the first 4 bytes of the FIFO will be taken from the internal buffer and may be invalid. March 2003 (rev. A) Data Sheet 133 of 273 #### 4.3.5 FIFO full condition in HDLC receive HFC-channels Because of the ISDN B-channels not having a hardware based flow control there is no possibility to stop input data if a receive FIFO is full. Thus there is no FIFO full condition implemented in the HFC-4S/8S. The HFC-4S/8S assumes that the FIFOs are deep enough that the host processor's hardware and software is able to avoid any overflow of the receive FIFOs. Overflow conditions are again more than 31 input frames (resp. 15 frames with 32k RAM) or a memory overflow of the FIFO because of excessive data. Because HDLC procedures only know a window size of 7 frames no more than 7 frames are sent without software intervention. Due to the great size of the HFC-4S/8S FIFOs it is easy to poll the HFC-4S/8S even in large time intervalls without having to fear a FIFO overflow condition. To avoid any undetected FIFO overflows the software driver should check F1 - F2, i.e. the number of frames in the FIFO. If F1 - F2 is less than the number in the last reading, an overflow took place if there was no reading of a frame in between. After a detected FIFO overflow condition this FIFO must be reset by setting the FIFO reset bit V_RES_F in the register R_INC_RES_FIFO. #### 4.3.6 Transparent mode of the HFC-4S/8S It is possible to switch off the HDLC operation for each FIFO independently by the bit V_HDLC_TRP in register A_CON_HDLC. If this bit is set, data from the FIFO is sent directly to the S/T or PCM bus interface and data from the S/T or PCM bus interface is sent directly to the FIFO. Be sure to switch into transparent mode only if F1 = F2. Being in transparent mode the F-counters remain unchanged. Z1 and Z2 are the input and output pointers respectively. Because F1 = F2, the Z-counters are always accessable and have valid data for FIFO input and output. If a transmit FIFO changes to FIFO empty condition no CRC is generated and the last data byte written into the FIFO is repeated until there is new data. Normally the last byte is undefined because of the Z-counter pointing to a previously unwritten address. To define the last byte, the last write access to the FIFO must be done without Z increment (see register A FIFO DATAO NOINC). In receive HFC-channels there is no check on flags or correct CRCs and no status byte added. Unlike in HDLC mode, where byte synchronization is achieved with HDLC flags, the byte boundaries are not arbitrary. The data is just the same as it comes from or is sent to the S/T or PCM bus interface. Transmit and receive transparent data can be done in two ways. The usual way is transporting FIFO data to the S/T interface with the LSB first as usual in HDLC mode. The second way is transmitting the bytes in reverse bit order as usual for PCM data. So the first bit is the MSB. The bit order can be reversed by setting bit V_REV of the register R_FIFO when the FIFO is selected. #### **Important!** For normal data transmission the register A_SUBCH_CFG must be set to 0x00. To use 56 kbit/s restricted mode for U.S. ISDN lines the register A SUBCH CFG must be set to 0x07 for B-channels. # 4.3.7 Reading F- and Z-counters For all asynchronous host accesses to the HFC-4S/8S there is a small chance that a register is changed just in the moment when it is read. Because of slightly different delays of individual bits, it is even possible that the read value is fully invalid. Therefore we advise to read a F- or Z-counter register until two consecutive readings find the same value. This is not necessary for a time period of at least 125 μ s after writing R_FIFO. It is also not necessary for Z-counters of receive FIFOs if $F1 \neq F2$. Then a whole frame has been received and the counters Z1(F2) and Z2(F2) are stable and valid. # 4.4 Register description # 4.4.1 Write only registers | R_INC_RES_FIFO [FIFO] | (write only) | 0x0E | |-----------------------|--------------|------| |-----------------------|--------------|------| # Increment and reset FIFO register This register is automatically cleared. Before reading this array register the FIFO must be selected by register R_FIFO. | Bits | Reset
Value | Name | Description | |------|----------------|------------|---| | 0 | value | V_INC_F | Increment the <i>F</i> -counters of the selected FIFO '0' = no increment '1' = increment | | 1 | | V_RES_F | FIFO reset '0' = no reset '1' = reset selected FIFO (<i>F</i> - and <i>Z</i> -counters and channel mask are resetted, but not the A_CON_HDLC register) | | 2 | | V_RES_LOST | LOST error bit reset '0' = no reset '1' = reset LOST | | 73 | | (reserved) | Must be '00000'. | # 4.4.2 Read only registers | A_Z1L [FIFO] | (read only) | 0x04 | |--------------|-------------|------| |--------------|-------------|------| #### FIFO input counter Z1, low byte This address can also be accessed with word and double word width to read the complete Z1-counter or Z1- and Z2-counters together (see registers A_Z1 and A_Z12). Before reading this array register the FIFO must be selected by the register R_FIFO. | Bits | Reset
Value | Name | Description | |------|----------------|-------|---------------------------------| | 70 | | V_Z1L | Bits [70] counter value of $Z1$ | (See Table 4.3 for reset value.) # A_Z1H [FIFO] (read only) 0x05 # FIFO input counter Z1, high byte Before reading this array register the FIFO must be selected by the register R FIFO. | Bits | Reset
Value | Name | Description | |------|----------------|-------|----------------------------------| | 70 | | V_Z1H | Bits [158] counter value of $Z1$ | (See Table 4.3 for reset value.) | A_Z1 [| Z1 [FIFO] (read only) | | | | | | | | |---------------|--|---------------|----------------------------------|--|--|--|--|--| | FIFO in | FIFO input counter $Z1$ | | | | | | | | | Before 1 | Before reading this array register the FIFO must be selected by the register R_FIFO. | | | | | | | | | Bits | Reset | Name | Description | | | | | | | | Value | | | | | | | | | 150 | | V_ Z 1 | Bits [150] counter value of $Z1$ | | | | | | (See Table 4.3 for reset value.) | A
Z2L [FIFO] (read only) | 0x06 | |--------------------------|------| |--------------------------|------| # FIFO output counter $\mathbb{Z}2$, low byte This address can also be accessed with word width to read the complete Z2-counter (see register A_Z2). Before reading this array register the FIFO must be selected by register R_FIFO. | Bits | Reset
Value | Name | Description | |------|----------------|-------|--| | 70 | 0 | V_Z2L | Bits [70] counter value of $\mathbb{Z}2$ | (See Table 4.3 for reset value.) | A_Z2H | A_Z2H [FIFO] (read only) | | | 0x07 | | | | |--------|--|-------|---|------|--|--|--| | FIFO o | FIFO output counter $\mathbb{Z}2$, high byte | | | | | | | | Before | Before reading this array register the FIFO must be selected by the register R_FIFO. | | | | | | | | Bits | Reset | Name | Description | | | | | | | Value | | | | | | | | 70 | 0 | V_Z2H | Bits [158] counter value of $\mathbb{Z}2$ | | | | | | | | | | | | | | (See Table 4.3 for reset value.) | FIFO] | (read | only) 0x06 | |--|-------------|--| | FIFO output counter Z2 | | | | Before reading this array register the FIFO must be selected by register R_FIFO. | | | | Bits Reset Name Description | | | | Value | | | | 0 | V_Z2 | Bits [150] counter value of $\mathbb{Z}2$ | | | Reset Value | reading this array register the FIFO must $egin{array}{c} \textbf{Reset} & \textbf{Name} \\ \textbf{Value} & \end{array} \label{eq:counter}$ | (See Table 4.3 for reset value.) | A_Z12 | [FIFO] | (read only) | | 0x04 | | |----------|--|-------------|--|------|--| | FIFO in | FIFO input counters $Z1$ and $Z2$ | | | | | | Before 1 | Before reading this array register the FIFO must be selected by the register R_FIFO. | | | | | | Bits | Reset | Name | ame Description | | | | | Value | | | | | | 310 | | V_Z12 | Bits [150] are counter value of $Z1$ and bi [3116] are counter value of $Z2$ | ts | | (See Table 4.3 for reset value.) | A_F1 [FIFO] | (read only) | 0x0C | |--------------------|-------------|------| |--------------------|-------------|------| ## **FIFO** input HDLC frame counter F1 This address can also be accessed with word width to read the F1- and F2-counters together (see register A_F12). Before reading this array register the FIFO must be selected by the register R_FIFO. | Bits | Reset
Value | Name | Description | |------|----------------|------|--| | 70 | | V_F1 | Counter value Up to 31 HDLC frames (resp. 15 with 32k RAM) can be stored in each FIFO. | (See Table 4.3 for reset value.) | A_F2 [| FIFO] | | (read only) | 0x0D | | |--------|--|------------------|--|---------------|--| | FIFO o | FIFO output HDLC frame counter $F2$ | | | | | | Before | Before reading this array register the FIFO must be selected by the register R_FIFO. | | | IFO. | | | Bits | Reset | Name Description | | | | | | Value | | | | | | 70 | | V_F2 | Counter value Up to 31 HDLC frames (resp. 15 can be stored in each FIFO. | with 32k RAM) | | (See Table 4.3 for reset value.) March 2003 (rev. A) Data Sheet 139 of 273 | A_F12 | [FIFO] | (read | (read only) 0x0 | | | |----------|--|-------|---|------|--| | FIFO i | FIFO input HDLC frame counter $F1$ | | | | | | Before 1 | Before reading this array register the FIFO must be selected by the register R_FIFO. | | | | | | Bits | Reset | Name | ne Description | | | | | Value | | | | | | 70 | | V_F1 | Bits [70] are counter value of $F1$ and bit | s | | | | | | [158] are counter value of $F2$ | | | | | | | Up to 31 HDLC frames (resp. 15 with 32k F | RAM) | | | | | | can be stored in each FIFO. | | | (See Table 4.3 for reset value.) | R_INT | DATA | (read only) 0x | | | |----------|--|----------------|----------------------|--| | Interna | Internal data register | | | | | This reg | This register can be read to access data with short read signal. | | | | | Bits | Bits Reset Name Description | | Description | | | | Value | | | | | 70 | | V_INT_DATA | Internal data buffer | | # 4.4.3 Read/write registers | A_FIFO_DATA0 [FIFO] | (read/write) | 0x80 | |---------------------|--------------|------| |---------------------|--------------|------| #### FIFO data register This address can also be accessed with word and double word width to access two or four data bytes (see registers A FIFO DATA1 and A FIFO DATA2). Before writing or reading this array register the FIFO must be selected by the register R_FIFO. | Bits | Reset
Value | Name | Description | |------|----------------|--------------|--| | 70 | 0 | V_FIFO_DATA0 | Data byte Read/write one byte from/to the FIFO selected in the R_FIFO register and increment Z-counter by 1. | | A_FIFO_DATA1 [FIFO] | (read / write) | 0x80 | |---------------------|----------------|------| | | | | # FIFO data register Before writing or reading this array register the FIFO must be selected by the register R FIFO. | Bits | Reset
Value | Name | Description | |------|----------------|--------------|--| | 150 | 0 | V_FIFO_DATA1 | Data word Read/write one word from/to the FIFO selected in the R_FIFO register and increment Z-counter by 2. | March 2003 (rev. A) Data Sheet 141 of 273 | A_FIF | A_FIFO_DATA2 [FIFO] (read/write) 0x8 | | | | | |--------|---|--------------|--|--|--| | FIFO d | FIFO data register | | | | | | | Before writing or reading this array register the FIFO must be selected by the register R_FIFO. | | | | | | Bits | Reset | Name | Description | | | | | Value | | | | | | 310 | 0 | V_FIFO_DATA2 | Data double word Read/write two words from/to the FIFO selected | | | | A FIFO DATAD NOINCIFIED | (read/write) | 0v84 | |-------------------------|--------------|------| in the R_FIFO register and increment Z-counter # FIFO data register This address can also be accessed with word and double word width to access two or four data bytes (see registers A FIFO DATA1 NOINC and A FIFO DATA2 NOINC). Before writing or reading this array register the FIFO must be selected by the register R_FIFO . | Bits | Reset | Name | Description | |------|-------|--------------------|--| | | Value | | | | 70 | 0 | V_FIFO_DATA0_NOINC | Data byte Read access: Read one byte from the FIFO selected in the R_FIFO register and increment Z-counter by 1. Write access: Write one byte to the FIFO selected in the R_FIFO register without incrementing Z-counter. | (This register can be used to store the last FIFO byte in transparent transmit mode. Then this byte is repeately transmitted automatically.) # A_FIFO_DATA1_NOINC[FIFO] (read/write) 0x84 ## FIFO data register Before writing or reading this array register the FIFO must be selected by the register R_FIFO . | Bits | Reset | Name | Description | |------|-------|--------------------|--| | | Value | | | | 150 | 0 | V_FIFO_DATA1_NOINC | Data word Read access: Read one word from the FIFO selected in the R_FIFO register and increment Z-counter by 2. Write access: Write one word to the FIFO selected in the R_FIFO register without incrementing Z-counter. | # A_FIFO_DATA2_NOINC[FIFO] (read/write) 0x84 # FIFO data register Before writing or reading this array register the FIFO must be selected by the register R FIFO. | Bits | Reset | Name | Description | |------|-------|--------------------|---| | | Value | | | | 310 | 0 | V_FIFO_DATA2_NOINC | Data double word Read access: Read two words from the FIFO selected in the R_FIFO register and increment Z-counter by 4. Write access: Write two words to the FIFO selected in the R_FIFO register without incrementing Z-counter. | March 2003 (rev. A) Data Sheet 143 of 273 # **Chapter 5** # S/T interface Table 5.1: Overview of the HFC-4S/8S bus interface register | Write onl | y register: | | Read only | y register: | | |-----------|--------------|------|-----------|-------------|------| | Address | Name | Page | Address | Name | Page | | 0x12 | R_SCI_MSK | 159 | 0x12 | R_SCI | 168 | | 0x16 | R_ST_SEL | 160 | 0x1C | R_STATUS | 237 | | 0x17 | R_ST_SYNC | 161 | 0x30 | A_ST_RD_STA | 169 | | 0x30 | A_ST_WR_STA | 162 | 0x34 | A_ST_SQ_RD | 170 | | 0x31 |
A_ST_CTRL0 | 163 | 0x3C | A_ST_B1_RX | 170 | | 0x32 | A_ST_CTRL1 | 164 | 0x3D | A_ST_B2_RX | 171 | | 0x33 | A_ST_CTRL2 | 165 | 0x3E | A_ST_D_RX | 171 | | 0x34 | A_ST_SQ_WR | 165 | 0x3F | A_ST_E_RX | 172 | | 0x37 | A_ST_CLK_DLY | 166 | | | | | 0x3C | A_ST_B1_TX | 167 | | | | | 0x3D | A_ST_B2_TX | 167 | | | | | 0x3E | A_ST_D_TX | 168 | | | | March 2003 (rev. A) Data Sheet 145 of 273 Table 5.2: Overview of the HFC-4S and HFC-8S S/T pins | HFC-8S | only: | | | HFC-4S | and HFC-8S: | | | |--------|----------|---------|-----------------|--------|-------------|---------|-----------------| | Number | Name | Interf. | Description | Number | Name | Interf. | Description | | 124 | R_A7 | 7 | RX input A | 159 | R_A3 | 3 | RX input A | | 125 | LEV_A7 | 7 | level detect A | 160 | LEV_A3 | 3 | level detect A | | 126 | LEV_B7 | 7 | level detect B | 161 | LEV_B3 | 3 | level detect B | | 127 | R_B7 | 7 | RX input B | 162 | R_B3 | 3 | RX input B | | 128 | ADJ_LEV7 | 7 | level generator | 163 | ADJ_LEV3 | 3 | level generator | | 129 | VDD_ST | 7&6 | power supply | 164 | VDD_ST | 3 & 2 | power supply | | 130 | T_A7 | 7 | TX data A | 165 | T_A3 | 3 | TX data A | | 131 | T_B7 | 7 | TX data B | 166 | T_B3 | 3 | TX data B | | 132 | T_B6 | 6 | TX data B | 167 | T_B2 | 2 | TX data B | | 133 | T_A6 | 6 | TX data A | 168 | T_A2 | 2 | TX data A | | 135 | ADJ_LEV6 | 6 | level generator | 170 | ADJ_LEV2 | 2 | level generator | | 136 | R_B6 | 6 | RX input B | 171 | R_B2 | 2 | RX input B | | 137 | LEV_B6 | 6 | level detect B | 172 | LEV_B2 | 2 | level detect B | | 138 | LEV_A6 | 6 | level detect A | 173 | LEV_A2 | 2 | level detect A | | 139 | R_A6 | 6 | RX input A | 174 | R_A2 | 2 | RX input A | | 142 | R_A5 | 5 | RX input A | 176 | R A1 | 1 | RX input A | | 143 | LEV_A5 | 5 | level detect A | 177 | LEV A1 | 1 | level detect A | | 144 | LEV_B5 | 5 | level detect B | 178 | LEV B1 | 1 | level detect B | | 145 | R_B5 | 5 | RX input B | 179 | R B1 | 1 | RX input B | | 146 | ADJ_LEV5 | 5 | level generator | 180 | ADJ LEV1 | 1 | level generator | | 147 | VDD_ST | 5 & 4 | power supply | 181 | VDD ST | 1 & 0 | power supply | | 148 | T_A5 | 5 | TX data A | 182 | T A1 | 1 | TX data A | | 149 | T_B5 | 5 | TX data B | 183 | _
T_B1 | 1 | TX data B | | 150 | T_B4 | 4 | TX data B | 184 | _
T B0 | 0 | TX data B | | 151 | T_A4 | 4 | TX data A | 185 | T A0 | 0 | TX data A | | 153 | ADJ_LEV4 | 4 | level generator | 187 | ADJ LEV0 | 0 | level generator | | 154 | R_B4 | 4 | RX input B | 188 | R B0 | 0 | RX input B | | 155 | LEV_B4 | 4 | level detect B | 189 | LEV B0 | 0 | level detect B | | 156 | LEV_A4 | 4 | level detect A | 190 | LEV A0 | 0 | level detect A | | 157 | R_A4 | 4 | RX input A | 191 | R_A0 | 0 | RX input A | The HFC-4S/8S is equiped with 4 respectively 8 S/T interfaces according to ITU-T I.430 and ETSI TBR03 specifications. They can all individually be configured into TE or NT mode by setting V_{ST_MD} in the register A_ST_CTRL0. ## 5.1 State machine A specification conform state machine for TE and NT mode is implemented. So the Fx or Gx state can be read out of the register A_ST_RD_STA. However, it is possible to overwrite the state machine by setting the bit V_ST_LD_STA of the register A_ST_WR_STA. Activation and deactivation can be initiated by writing the bitmap V_ST_ACT in the same register. Before starting the Fx/Gx state machine, the register A_ST_CLK_DLY of its S/T interface must be set. For TE the default value is 0x0F and for NT the default value is 0x6C. There is an overview register R_SCI which reports a state change of all S/T interfaces. Bits which are masked as enabled in the register R_SCI_MSK also generate an interrupt. All bits in R_SCI are cleared after reading the register. #### **Important!** The S/T state machine is stuck to '0' after a reset. In this state the HFC-4S/8S sends no signal on the S/T line and is not able to activate it by incoming INFOx. Writing a '0' to bit V_ST_LD_STA of the A_ST_WR_STA register restarts the state machine. **NT mode:** The NT state machine does not change automatically from G2 to G3 if the TE side sends INFO3 frames. This transition must be activated each time by V_G2_G3 of the A_ST_RD_STA register or by setting bit V_G2_G3_EN of the A_ST_CTRL1 register. March 2003 (rev. A) Data Sheet 147 of 273 ## 5.2 Clock synchronization ## 5.2.1 Clock synchronization in NT mode Figure 5.1: S/T clock synchronization shown with one S/T interface in NT mode ## 5.2.2 Clock synchronization in TE mode The C4IO clock is adjusted in the last time slot of the PCM frame 1 to 4 times by a half clock cycle at the 16384 kHz clock (see R_PCM_MD1 register). This is useful if another HFC series ISDN controller is connected as slave in NT mode to the PCM bus. The sync source can be selected by the R PCM MD2 register settings. Figure 5.2: S/T clock synchronization shown with one S/T interface in TE mode In *auto select mode* (see Figure 5.2) a synchronized TE is selected as synchronization source. If synchronization is lost on this TE the next one with active synchronization is selected. March 2003 (rev. A) Data Sheet 149 of 273 ## 5.2.3 Clock synchronization with several TEs connected to different CO switches Several TEs of the HFC-4S/8S S/T interfaces can be interconnected with different central offices. An example of this szenario is illustrated in Figure 5.3. Figure 5.3: Synchronization scenario with TEs connected to unsynchronized central office switches Instead of the external PLL shown in Figure 5.3 the internal PLL can also be used. The sychronization registers of Figure 5.3 are shown in detail in Figure 5.4. The window detection block (guard window) changes it's output signal level when the phase offset between FSC and F0 is smaller than approximately $25 \,\mu s$. The timing characteristics of two unsynchronized TEs and the signals F0IO and AF0 is shown in Figure 5.5. In this example TE0 is synchronization source for the PLL. Thus the timing offset between FSCO and F0IO is $62.5 \,\mu$ s. The figure shows one sample transmit data flow and one sample receive data flow on TE1. Figure 5.5 shows single samples of a transmit and a receice transmission. In transmit direction, the transmission is done either with the $TX_{data_F0IO} \longrightarrow TX_{F0IO_FSC1}$ or with the $TX_{data_AF0} \longrightarrow TX_{AF0_FSC1}$ depending on the phase signal (see Fig. 5.4). A receive transmission is done either on $RX_{F0IO_FSC1} \longrightarrow RX_{data_F0IO}$ or $RX_{AF0_FSC1} \longrightarrow RX_{data_AF0}$ as well. #### 5.3 Data transmission To transfer any data over the B-channels they have to be enabled for transmission by setting V B1 EN or V B2 EN in register A_ST_CTRLO. Receive is enabled by setting V_B1_RX_EN Figure 5.4: Synchronization registers (detail of Figure 5.3) Figure 5.5: Timing example of one transmit and one receive transmission or V $B2_RX_EN$ in the register A_ST_CTRL2. ## 5.4 S/T modules and transformers Customers of Cologne Chip can chose of a variety of S/T transformers for ISDN basic rate interface. All transformers are compatible to the "HFC-S" series of Cologne Chip that fulfil two criteria: • Turns Ratio of 1:2 March 2003 (rev. A) Data Sheet 151 of 273 Table 5.3: Symbols of Figures 5.5 | Symbol | Characteristic | |-----------------------|----------------------------------| | t_A | Frame pulse delay (62.5 μ s) | | $TX_{data\ F0IO}$ | Data transfer to next F0IO pulse | | TX_{data} $AF0$ | Data transfer to next AF0 pulse | | TX_{F0IO} $_{FSC1}$ | F0IO pulse to FSC1 | | TX_{AF0} $_{FSC1}$ | AF0 pulse to FSC1 | | $t_{guard\ FSC0}$ | Guard time to FSC0 | | $t_{guard\ FSC1}$ | Guard time to FSC1 | | RX_{FSC1} $_{F0IO}$ | FSC1 to F0IO pulse | | RX_{FSC1} $AF0$ | FSC1 to AF0 pulse | | $RX_{F0IO\ data}$ | F0IO to receive data transfer | | RX_{AF0_data} | AF0 to receive data transfer | • Center Tap on the Secondary Side (required for Cologne Chip receiver circuitry) Several companies provide transformers and modules that can be used with our ISDN basic rate interface controllers. Part numbers and manufacturers address are listed in Table 5.4. An updated list can be found on Cologne Chip's website http://www.colognechip.com. Table 5.4: S/T module part numbers and manufacturers | S/T module part number | Manufactu | ırer | | | |--|-------------|---------------|------------------------|--| | APC 56624-1
APC 40495S (SMD) | Advanced 1 | Power | Compon | ents | | S-Hybrid modules with receiver and transmitter circuitry included: APC 5568-3V APC 5568-5V APC 5568DS-3V APC 5568DS-5V | United Kinş | gdom | Phone:
Fax:
URL: | +44 1634-290588
+44 1634-290591
http://www.apcisdn.com | | | FEE Gmbl | H | | | | | Singapore | Phone
Fax: | | 741-5277
741-3013 | | FE 8131-55Z | Bangkok | Phone Fax: | | 2 718-0726-30
2 718-0712 | | | Germany | Phone
Fax: | | 6106-82980
6106-829898 | | | _ | | | (continued on next page) | Table 5.4: S/T module part numbers and manufacturers (continued from previous page) | S/T module p | art number | Manufacturer | |--|--|---| | transformers: | PE-64995
PE-64999
PE-65795 (SMD)
PE-65799 (SMD)
PE-68995
PE-68999
T5006 (SMD)
T5007 (SMD) | Pulse Engineering, Inc. United States Phone: +1-619-674-8100 Fax: +1-619-674-8262 URL: http://www.pulseeng.com | | S ₀ -modules: |
T5012
T5034
T5038 | | | transformers: | SM TC-9001
SM ST-9002
SM ST-16311F | Sun Myung <i>Korea</i> Phone: +82-348-943-8525 | | S ₀ -modules: | SM TC-16311
SM TC-16311A | Fax: +82-348-943-8527
URL: http://www.sunmyung.com | | | | UMEC GmbH | | transformers S_0 -modules: | UT21023
UT 20795 (SMD)
UT 21624
UT 28624 A | Germany Phone: +49 7131-7617-0 Fax: +49 7131-7617-20 Taiwan Phone: +886-4-359-009-6 Fax: +886-4-359-012-9 United States Phone: +1-310-326-707-2 Fax: +1-310-326-705-8 URL: http://www.umec.de | | all devices T ϵ transformers: S ₀ -modules: | | VAC GmbH Germany Phone: +49 6181/38-0 Fax: +49 6181/38-2645 URL: http://www.vacuumschmelze.de | March 2003 (rev. A) Data Sheet 153 of 273 Table 5.4: S/T module part numbers and manufacturers (continued from previous page) | S/T module p | art number | Manufacture | Manufacturer | | | |--------------------------|--------------------------------------|---------------|---------------|--|--| | | | Valor Electro | nics, Inc | | | | transformers: | ST5069 | Asia | Phone
Fax: | e: +852 2333-0127
+852 2363-6206 | | | S ₀ -modules: | PT5135
ST5201 | North America | a Phone Fax: | e: +1 800 31VALOR
+1 619 537-2525 | | | | ST5202 | Europe | Phone
Fax: | e: +44 1727-824-875
+44 1727-824-898 | | | | | | URL: | http://www.valorinc.com | | | | | Vogt electron | ic AG | _ | | | | 543 76 009 00
503 740 010 0 (SMD) | F | ax: + | -49 8591/ 17-0
-49 8591/ 17-240
http://www.vogt-electronic.com | | #### 5.5 External circuitries ## 5.5.1 External receive circuitry The standard external receive circuitry for TE and NT mode is shown in Figure 5.6. The HFC-4S/8S has four/eight S/T interfaces. If a S/T is not used, the level adjustment pin ADJ_LEV0...ADJ_LEV7 must be left open. The S/T receive input pins R_A0...R_A7, LEV_A0...LEV_A7, LEV_B0...LEV_B7 and R_B0...R_B7 should be tied to ground if their second function (GPI) is not used as well. #### 5.5.2 External transmit circuitry The standard external transmit circuitry for TE and NT mode is shown in Figure 5.7. If a S/T interface is not used, the two transmit pins T_A0 ... T_A7 and T_B0 ... T_B7 must be left open if their second function (GPIO) is not used as well. The signal level of the transmit circuitry has to be adjusted by VDD_ST (pins 181, 164, 147, 129). The exact voltage of VDD_ST depends on the used transformer and circuitry dimensioning. For the standard circuitry in Figure 5.7 it is about 2.8 V. Figure 5.9 shows a voltage regulation circuitry for VDD_ST voltage generation. The PWM0 pin is used for fine tuning the voltage by software. Alternatively the regulator circuitry can be fixed to a suitable voltage. Figure 5.6: External S/T receive circuitry for TE and NT mode March 2003 (rev. A) Data Sheet 155 of 273 Figure 5.7: External S/T transmit circuitry for TE and NT mode Figure 5.8: External S/T transmit circuitry for NT mode only Figure 5.9: VDD_ST voltage generation ## 5.5.3 Transformer and ISDN jack connection Figure 5.10 show the connection circuitry of the transformer and the ISDN jack in TE mode¹. The termination resistors R1 and R2 are optional. Figure 5.10: Transformer and connector circuitry in TE mode **Figure 5.11:** Transformer and connector circuitry in NT mode (shown with optional 100Ω termination, whole bus termination must be 50Ω) ¹The ISDN jack RJ-45 has 8 pins and carries two pairs of wires. Standard configuration is pin 3: TE \rightarrow NT (+), pin 4: NT \rightarrow TE (+), pin 5: NT \rightarrow TE (−), 158 of 273 Data Sheet March 2003 (rev. A) pin 6: TE \rightarrow NT (-). ## 5.6 Register description ## **5.6.1** Write only registers | R_SCI | R_SCI_MSK (write only) | | | | | | | |----------|--|---------------|--|--|--|--|--| | State cl | State change interrupt mask register of the S/T interfaces | | | | | | | | Bits | Reset | Name | Description | | | | | | | Value | | | | | | | | 0 | 0 | V_SCI_MSK_ST0 | State change interrupt mask of S/T interface 0 | | | | | | 1 | 0 | V_SCI_MSK_ST1 | State change interrupt mask of S/T interface 1 | | | | | | 2 | 0 | V_SCI_MSK_ST2 | State change interrupt mask of S/T interface 2 | | | | | | 3 | 0 | V_SCI_MSK_ST3 | State change interrupt mask of S/T interface 3 | | | | | | 4 | 0 | V_SCI_MSK_ST4 | State change interrupt mask of S/T interface 4 | | | | | | 5 | 0 | V_SCI_MSK_ST5 | State change interrupt mask of S/T interface 5 | | | | | | 6 | 0 | V_SCI_MSK_ST6 | State change interrupt mask of S/T interface 6 | | | | | | 7 | 0 | V_SCI_MSK_ST7 | State change interrupt mask of S/T interface 7 | | | | | | R_ST_ | SEL | (write | e only) 0x16 | |---------|------------|-----------------|--| | S/T int | erface sel | ection register | | | Bits | Reset | Name | Description | | | Value | | | | 20 | | V_ST_SEL | Single S/T interface selection '000' = S/T interface 0 '001' = S/T interface 1 '010' = S/T interface 2 '011' = S/T interface 3 '100' = S/T interface 4 '101' = S/T interface 5 '110' = S/T interface 6 '111' = S/T interface 7 | | 3 | | V_MULT_ST | Multi S/T interface selection All S/T interfaces can be selected together. This is only useful for write access. '0' = interface selection by V_ST_SEL '1' = select all S/T interfaces for write accesses | | 74 | | (reserved) | Must be '0000'. | | R_ST | _SYNC (write only) | | | | | | | |---------|----------------------------|-------------|--|--|--|--|--| | S/T syr | S/T synchronization source | | | | | | | | Bits | Reset
Value | Name | Description | | | | | | 20 | 0 | V_SYNC_SEL | Synchronization source selection One S/T interface can be selected as synchronization source (in TE mode only) '000' = source is S/T interface 0 '001' = source is S/T interface 1 '010' = source is S/T interface 2 '011' = source is S/T interface 3 '100' = source is S/T interface 4 '101' = source is S/T interface 5 '110' = source is S/T interface 6 '111' = source is S/T interface 7 | | | | | | 3 | 0 | V_AUTO_SYNC | Automatically synchronization source selection '0' = automatically selection of synchronization source. A TE which is synchronized to the incoming S/T signal (e.g. state F6 or F7) is chosen as sync source and V_SYNC_SEL is ignored. '1' = V_SYNC_SEL is used for synchronization source | | | | | | 74 | 0 | (reserved) | Must be '0000'. | | | | | | A ST WR STA[ST] | (write only) | 0x30 | |-----------------|--------------|------| | | | | ## S/T state machine register This register is used to set a new state. The current state can be read from the A_ST_RD_STA register. Before writing this array register the S/T interface must be selected by register R_ST_SEL . | Bits | Reset | Name | Description | |------|-------|--------------|---| | | Value | | | | 30 | 0 | V_ST_SET_STA | Binary value of the new state (NT: Gx, TE: Fx) V_ST_LD_STA must also be set to load the state. | | 4 | 0 | V_ST_LD_STA | Load the new state '1' = loads the prepared state (V_ST_SET_STA) and stops the state machine. This bit needs to be set for a minimum period of $5.21~\mu s$ and must be cleared by software. '0' = enables the automatic state machine (V_ST_SET_STA is ignored). After writing an invalid state, the state machine goes to deactivated state (G1, F2). | | 65 | 0 | V_ST_ACT | Start activation / deactivation '00' = no operation '01' = no operation '10' = start deactivation '11' = start activation These bits are automatically cleared after activation / deactivation. | | 7 | 0 | V_SET_G2_G3 | Allow G2 to G3 transition '0' = no operation '1' = allows transition from G2 to G3 in NT mode This bit is automatically cleared after the transition and has no function in TE mode. | A_ST_CTRL0 [ST] (write only) 0x31 ## Control register of the selected S/T interface, register 0 Before writing this array register the S/T interface must be selected by register R_ST_SEL. | Bits | Reset | Name | Description | |------|-------|-----------|---| | | Value | | | | 0 | 0 | V_B1_EN | B1-channel transmit '0' = B1 send data disabled (permanent '1's sent in activated states) '1' = B1 send data enabled | | 1 | 0 | V_B2_EN | B2-channel transmit '0' = B2 send data disabled (permanent '1's sent in activated states) '1' = B2 send data enabled | | 2 | 0 | V_ST_MD | S/T interface mode '0' = TE mode '1' = NT mode | | 3 | 0 | V_D_PRIO | D-channel priority '0' = high priority 8/9 '1' = low priority 10/11 | | 4 | 0 | V_SQ_EN | S/Q bits transmission '0' = S/Q bits disabled '1' = S/Q bits and multiframe enabled | | 5 | 0 | V_96KHZ | 96 kHz test signal '0' = normal operation '1' = send 96 kHz transmit test signal (alternating zeros) | | 6 | 0 | V_TX_LI | Transmitter line setup This bit must be configured depending on the used S/T module
and circuitry to match the 400Ω pulse mask test. '0' = capacitive line mode '1' = non capacitive line mode | | 7 | 0 | V_ST_STOP | Power down '0' = external receiver activated '1' = power down, external receiver disabled | A_ST_CTRL1 [ST] (write only) 0x32 ## Control register of the selected S/T interface, register ${\bf 1}$ Before writing this array register the S/T interface must be selected by register R_ST_SEL. | Bits | Reset | Name | Description | |------|-------|------------|---| | | Value | | | | 0 | 0 | V_G2_G3_EN | Force G2 to G3 transition Force automatic transition from G2 to G3 '0' = V_SET_G2_G3 of the register A_ST_WR_STA must be set to allow transitions from G2 to G3 '1' = transitions from G2 to G3 are allowed without V_SET_G2_G3 being set | | 1 | 0 | (reserved) | Must be '0'. | | 2 | 0 | V_D_HI | D-channel reset '0' = normal operation '1' = D-bits are forced to '1' | | 3 | 0 | V_E_IGNO | Ignore E-channel data '0' = normal operation '1' = D-channel always sends data regardless of the received E-channel bit | | 4 | 0 | V_E_LO | Force E-channel to low (only in NT mode) '0' = normal operation, E-channel bits echo received D-channel data '1' = E-channel bits are forced to '0' | | 65 | 0 | (reserved) | Must be '00'. | | 7 | 0 | V_B12_SWAP | Swap B-channels '0' = normal operation '1' = swap B1- and B2-channel of the S/T interface | | A_ST_ | A_ST_CTRL2 [ST] (write only) 0x3 | | | | |-------|---|------------|--|--| | | Control register of the selected S/T interface, register 2 Before writing this array register the S/T interface must be selected by register R_ST_SEL. | | | | | Bits | Reset
Value | Name | Description | | | 0 | 0 | V_B1_RX_EN | Enable B1-channel receive '0' = B1 receive bits are forced to '1' '1' = normal operation | | | 1 | 0 | V_B2_RX_EN | Enable B2-channel receive '0' = B2 receive bits are forced to '1' '1' = normal operation | | | 52 | | (reserved) | Must be '0000'. | | | 6 | | V_ST_TRIS | S/T ouput buffer tristated '0' = normal operation '1' = set S/T output buffer into tristate mode | | | 7 | | (reserved) | Must be '0'. | | | A_ST_ | A_ST_SQ_WR [ST] (w | | ite only) | | | |--------|---|------------|--|---|--| | S/Q mu | S/Q multiframe register | | | | | | Before | Before writing this array register the S/T interface must be selected by register R_ST_SEL. | | | | | | Bits | Reset | Name | Description | | | | | Value | | | | | | 30 | 0 | V_ST_SQ | S/Q bits | | | | | | | TE mode: bits [3 0] are Q bits [Q1,Q2,Q3 NT mode: bits [3 0] are S bits [S1,S2,S3, | , | | | 74 | 0 | (reserved) | Must be '0000'. | | | March 2003 (rev. A) Data Sheet 165 of 273 ## A_ST_CLK_DLY [ST] (write only) 0x37 ## Clock control register of the S/T module This register is not initialized after reset. It must be initialized before activating the ${\rm TE/NT}$ state machine. Before writing this array register the S/T interface must be selected by register R_ST_SEL . | Bits | Reset | Name | Description | |------|-------|--------------|---| | | Value | | | | 30 | | V_ST_CLK_DLY | TE mode: 4 bit delay value to adjust the 2 bit time between receive and transmit direction. The delay of the external S/T interface circuit can be compensated. The lower the value the smaller the delay between receive and transmit direction. The suitable value is 0xE for normal external circuitries. NT mode: Data sample point. The lower the value the earlier the input data is sampled. The normal operation value is 0xC. For both modes the steps are 163 ns. | | 64 | | V ST SMPL | Early edge input data shaping | | | | | (NT mode only) Low pass characteristic of extended bus configurations can be compensated. The lower the value the earlier input data pulse is sampled. The default value is 6 ('110') which means that no compensation is carried out. Step size is 163 ns. | | 7 | | (reserved) | Must be '0'. | ## A_ST_B1_TX [ST] (write only) 0x3C ## Transmit register for the B1-channel data This register is written automatically by the flow controller and need not be accessed by the user. FIFOs should be used to write data. Before writing this array register the S/T interface must be selected by register R ST SEL. | Bits | Reset | Name | Description | |------|-------|------------|----------------------| | | Value | | | | 70 | 0x00 | V_ST_B1_TX | B1-channel data byte | ## A_ST_B2_TX [ST] (write only) 0x3D ## Transmit register for the B2-channel data This register is written automatically by the flow controller and need not be accessed by the user. FIFOs should be used to write data. Before writing this array register the S/T interface must be selected by register R_ST_SEL . | Bits | Reset | Name | Description | |------|-------|------------|----------------------| | | Value | | | | 70 | 0x00 | V_ST_B2_TX | B2-channel data byte | March 2003 (rev. A) Data Sheet 167 of 273 ## A_ST_D_TX [ST] (write only) 0x3E ## Transmit register for the D-channel data This register is written automatically by the flow controller and need not be accessed by the user. FIFOs should be used to write data. Before writing this array register the S/T interface must be selected by register R_ST_SEL. | Bits | Reset | Name | Description | |------|-------|------------|---------------------| | | Value | | | | 50 | | (reserved) | Must be '000000'. | | 76 | 0 | V_ST_D_TX | D-channel data bits | ## 5.6.2 Read only registers | R_SCI | (read only) | 0x12 | |-------|-------------|------| |-------|-------------|------| #### State change interrupt register of the S/T interfaces Reports the S/T interfaces where the state has changed. Reading this register clears the bits. | | - | | | |------|-------|-----------|---| | Bits | Reset | Name | Description | | | Value | | | | 0 | 0 | V_SCI_ST0 | State change interrupt occured in S/T interface 0 | | 1 | 0 | V_SCI_ST1 | State change interrupt occured in S/T interface 1 | | 2 | 0 | V_SCI_ST2 | State change interrupt occured in S/T interface 2 | | 3 | 0 | V_SCI_ST3 | State change interrupt occured in S/T interface 3 | | 4 | 0 | V_SCI_ST4 | State change interrupt occured in S/T interface 4 | | 5 | 0 | V_SCI_ST5 | State change interrupt occured in S/T interface 5 | | 6 | 0 | V_SCI_ST6 | State change interrupt occured in S/T interface 6 | | 7 | 0 | V_SCI_ST7 | State change interrupt occured in S/T interface 7 | A_ST_RD_STA [ST] (read only) 0x30 ## S/T state machine register This register is used to read the current state. A new state can be set with the A_ST_WR_STA register. Before reading this array register the S/T interface must be selected by register R_ST_SEL. | Bits | Reset | Name | Description | |------|-------|-----------|--| | | Value | | | | 30 | 0 | V_ST_STA | S/T state Binary value of current state (NT: Gx, TE: Fx) | | 4 | 0 | V_FR_SYNC | Frame synchronization '0' = not synchronized '1' = synchronized | | 5 | 0 | V_TI2_EXP | Timer exired '1' = timer TI2 expired (NT mode only) | | 6 | 0 | V_INFO0 | INFO0 '1' = receiving INFO0 | | 7 | 0 | V_G2_G3 | G2 to G3 transition allowed '0' = no operation '1' = allows transition from G2 to G3 in NT mode This bit is automatically cleared after the transition and has no function in TE mode. | March 2003 (rev. A) Data Sheet 169 of 273 | A ST SQ RD[ST] | (read only) | 0x34 | |----------------|-------------|------| | | | | ## S/Q multiframe register Before reading this array register the S/T interface must be selected by register R_ST_SEL. | Bits | Reset | Name | Description | |------|-------|-------------|--| | | Value | | | | 30 | 0 | V_ST_SQ | S/Q bits TE mode: bits [3 0] are S bits [S1,S2,S3,S4] NT mode: bits [3 0] are Q bits [Q1,Q2,Q3,Q4] | | 4 | 0 | V_MF_RX_RDY | RX multiframe ready '1' = a complete S or Q multiframe has been received Reading this register clears this bit. | | 65 | 0 | (reserved) | | | 7 | 0 | V_MF_TX_RDY | TX multiframe ready '1' = ready to send a new S or Q multiframe. Writing to register A_ST_SQ_WR clears this bit. | ## A_ST_B1_RX [ST] (read only) 0x3C #### Receive register for the B1-channel data This register is read automatically by the flow controller and need not be accessed by the user. FIFOs should be used to read data. Before reading this array register the S/T interface must be selected by register R_ST_SEL. | Bits | Reset | Name | Description | |------|-------|------------|----------------------| | | Value | | | | 70 | 0xFF | V_ST_B1_RX | B1-channel data byte | | Α | ST B2 | RX[ST] | (read only) | 0x3D | |---|-------|--------|-------------|------| | | | | | | ## Receive register for the B2-channel data This register is read
automatically by the flow controller and need not be accessed by the user. FIFOs should be used to read data. Before reading this array register the S/T interface must be selected byregister R_ST_SEL. | Bits | Reset
Value | Name | Description | |------|----------------|------------|----------------------| | 70 | 0xFF | V_ST_B2_RX | B2-channel data byte | ## A_ST_D_RX [ST] (read only) 0x3E ## Receive register for the D-channel data This register is read automatically by the flow controller and need not be accessed by the user. FIFOs should be used to read data. Before reading this array register the S/T interface must be selected by register R_ST_SEL. | Bits | Reset
Value | Name | Description | |------|----------------|------------|---------------------| | 50 | | (reserved) | | | 76 | 3 | V_ST_D_RX | D-channel data bits | March 2003 (rev. A) Data Sheet 171 of 273 | A ST E RX[ST] | (read only) | 0x3F | |---------------|-------------|------| |---------------|-------------|------| ## Receive register for the E-channel data This register is read automatically by the flow controller and need not be accessed by the user. FIFOs should be used to read data. Before reading this array register the S/T interface must be selected byregister R_ST_SEL. | Bits | Reset | Name | Description | |------|-------|------------|---------------------| | | Value | | | | 50 | | (reserved) | | | 76 | 3 | V_ST_E_RX | E-channel data bits | # **Chapter 6** ## **PCM** interface **Table 6.1:** Overview of the HFC-4S/8S PCM interface registers | Write only registers: | | | Read only | registers: | | |-----------------------|-----------|------|-----------|------------|------| | Address | Name | Page | Address | Name | Page | | 0x10 | R_SLOT | 121 | 0x18 | R_F0_CNTL | 189 | | 0x14 | R_PCM_MD0 | 179 | 0x19 | R_F0_CNTH | 189 | | 0x15 | R_SL_SEL0 | 180 | | | | | 0x15 | R_SL_SEL1 | 181 | | | | | 0x15 | R_SL_SEL2 | 182 | | | | | 0x15 | R_SL_SEL3 | 182 | | | | | 0x15 | R_SL_SEL4 | 183 | | | | | 0x15 | R_SL_SEL5 | 183 | | | | | 0x15 | R_SL_SEL6 | 184 | | | | | 0x15 | R_SL_SEL7 | 184 | | | | | 0x15 | R_PCM_MD1 | 185 | | | | | 0x15 | R_PCM_MD2 | 186 | | | | | 0x15 | R_SH0L | 187 | | | | | 0x15 | R_SH0H | 187 | | | | | 0x15 | R_SH1L | 187 | | | | | 0x15 | R_SH1H | 188 | | | | March 2003 (rev. A) Data Sheet 173 of 273 Table 6.2: Overview of the HFC-4S/8S PCM pins | PCM pins | PCM pins: | | | | |----------|----------------|--------------------------------------|--|--| | Number | Name | Description | | | | 97 | SYNC_I | Synchronization Input | | | | 98 | SYNC_O | Synchronization Output | | | | 117 | C2O | PCM bit clock output | | | | 118 | C4IO | PCM double bit clock I/O | | | | 119 | F0IO | PCM frame clock I/O (8 kHz) | | | | 120 | STIO1 | PCM data bus 1, I or O per time slot | | | | 121 | STIO2 | PCM data bus 2, I or O per time slot | | | | CODEC s | select via ena | ble lines: | | | | Number | Name | Description | | | | 107 | F1_7 | PCM CODEC enable 7 | | | | 108 | F1_6 | PCM CODEC enable 6 | | | | 109 | F1_5 | PCM CODEC enable 5 | | | | 110 | F1_4 | PCM CODEC enable 4 | | | | 111 | F1_3 | PCM CODEC enable 3 | | | | 112 | F1_2 | PCM CODEC enable 2 | | | | 113 | F1_1 | PCM CODEC enable 1 | | | | 114 | F1_0 | PCM CODEC enable 0 | | | | CODEC | alast via tim | e slot number: | | | | | | | | | | Number | Name | Description | | | | 106 * | F_Q6 | PCM time slot count 6 | | | | 107 * | F_Q5 | PCM time slot count 5 | | | | 108 * | F_Q4 | PCM time slot count 4 | | | | 109 * | F_Q3 | PCM time slot count 3 | | | | 110 * | F_Q2 | PCM time slot count 2 | | | | 111 * | F_Q1 | PCM time slot count 1 | | | | 112 * | F_Q0 | PCM time slot count 0 | | | | 113 * | SHAPE1 | PCM CODEC enable shape signal 1 | | | | 114 * | SHAPE0 | PCM CODEC enable shape signal 0 | | | (*: Second pin function) ## 6.1 PCM interface function The PCM interface has up to 32, 64 or 128 time slots for receive and transmit data depending on the PCM clock frequency and the selected mode. The functional block diagram is shown in Figure 6.1. The HFC-4S/8S has two PCM data pins STIO1 and STIO2 which can both be input or output. PCM output data is transmitted to two output buffers. These can be enabled independently from each other. PCM input data can either come from one of the two PCM data pins or from the PCM output channel. This way PCM data can be looped internally. Figure 6.1: PCM interface function block diagram **Table 6.3:** PCM interface configuration with bitmaps of the register A_SL_CFG (The reference numbers relate to the numbers given in Figure 6.1) | Reference | Function | Bitmap | Value | |-----------|--|-----------|----------------------------| | [1] | Enable memory read for transmit slot | V_ROUT | ≠ '00' | | [2] | HFC-channel select for transmit slot | V_CH_NUM1 | 031 | | [3] | STIO1 output buffer enable for transmit slot | V_ROUT | '10' | | [4] | STIO2 output buffer enable for transmit slot | V_ROUT | '11' | | [5] | Input buffer select for receive slot (MUX A | V_ROUT | '01' (Loop PCM internally) | | | (MUX E |) V_ROUT | '10' (Data In from STIO1) | | | (MUX C | V_ROUT | '11' (Data In from STIO2) | | [6] | HFC-channel select for receive slot | V_CH_NUM1 | 031 | | [7] | Enable memory write for receive slot | V_ROUT | ≠ '00' | March 2003 (rev. A) Data Sheet 175 of 273 #### 6.2 PCM initialization After hard or soft reset the PCM interface starts an initialization sequence to set all A_SL_CFG registers of the PCM time slots to the reset value 0. This can be done only if valid C4IO and F0IO signals exist. The initialization process stops after 2 F0IO periods. To check if the initialization sequence is finished after a reset, the register R F0 CNTL value must be equal or greater than 2. #### **6.3 External CODECs** External CODECs can be connected to the HFC-4S/8S PCM interface. There are two ways of programming the PCM-CODEC-interconnection. First, a set of eight CODEC enable lines allow to connect up to eight external CODECs to the HFC-4S/8S. The second way uses the current time slot number that must be decoded to a CODEC's select signal. Then up to 128 external CODECs can be connected to the HFC-4S/8S. The choice of these connectivities is done with V_CODEC_CON of the register R PCM MD1. #### 6.3.1 CODEC select via enable lines The HFC-4S/8S has eight CODEC enable signals F1_7 ... F1_0. Every external CODEC has to be assigned to a PCM time slot via the bitmaps $V_SL_SEL7...V_SL_SEL0$ of the registers R_SL_SEL7... R_SL_SEL0. Two shape signals can be programmed. The last bit determines the inactive level by which non-inverted and inverted shape signals can be programmed. Every external CODEC can choose one of the two shape signals with the bits $V_SH_SEL7...V_SH_SEL0$ of the registers $R_SL_SEL7...R_SL_SEL0$. Figure 6.2: Example for two CODEC enable signal shapes with SHAPE0 and SHAPE1. Figure 6.2 shows an example with two external CODECs with F1 0 and F1 1 enable signals. Time slot 0 starts with the F0IO pulse. In this example – assuming that PCM30 is configured – F1_0 enables the first CODEC on time slot 0 and shape bytes on R SH0L and R SH0H with ``` R_PCM_MD0: V_PCM_ADDR = 0 (R_SL_SEL0 register accessible) R_SL_SEL0 : V_SL_SEL0 = 0x1F (time slot #0) : V_SH_SEL0 = 0 (shape bytes R_SH0L and R_SH0H) ``` and the second CODEC on time slot 1 and shape bytes on R SH1L and R SH1H with ``` \label{eq:register} \begin{split} R_PCM_MD0: \ V_PCM_ADDR &= 1 & (R_SL_SEL1 \ register \ accessible) \\ R_SL_SEL1: \ V_SL_SEL1 &= 0 & (time \ slot \ \#1) \\ &: \ V_SH_SEL1 &= 1 & (shape \ bytes \ R_SH1L \ and \ R_SH1H) \end{split} ``` The shown shape signals have to be programmed in reverse bit order by ``` R PCM MD0: V PCM ADDR = 0xC (R SH0L register accessible) (0xF8 = '11111000' \xrightarrow{reverse} R SH0L : V SH0L '00011111') = 0xF8 R_PCM_MD0: V_PCM_ADDR = 0xD (R_SH0H register accessible) R SH0L : V SH0L (0x03 = '00000011' \xrightarrow{reverse} '11000000') = 0x03 R PCM MD0 : V PCM ADDR = 0xE (R SH1L register accessible) (0x1F = '00011111' \xrightarrow{reverse} '11111000') R SH0L : V SH0L = 0x1F R PCM MD0: V PCM ADDR = 0xF (R SH1H register accessible) (0xF0 = '11110000' \xrightarrow{reverse} : V SH0L R SH0L = 0xF0 '00001111') ``` #### 6.3.2 CODEC select via time slot number Alternatively, external CODECs can be enabled by decoding the time slot number. In this case, two programmable shape signals SHAPE0 and SHAPE1 are put out with every time slot. The current time slot number is issued on the pins $F_Q6\dots F_Q0$. The shape signals can be programmed. The example in Figure 6.3 shows shape signals that are programmed in the same way as shown above (see Section 6.3.1). F_Q6...F_Q0 must be decoded externally to generate CODEC select signals in dependence on the PCM time slot. March 2003 (rev. A) Data Sheet 177 of 273 Figure 6.3: Example for two CODEC enable signal shapes ## 6.4 Register description ## 6.4.1 Write only register | R_PCI | R_PCM_MD0 (write only) | | | | | |-------|------------------------|------------|--|--|--| | PCM n | PCM mode, register 0 | | | | | | Bits | Reset
Value | Name | Description | | | | 0 | 0 | V_PCM_MD | PCM bus mode '0' = slave (pins C4IO and F0IO are inputs) '1' = master (pins C4IO and F0IO are outputs) If no external C4IO and F0IO signal is provided this bit must be set for operation. | | | | 1 | 0 | V_C4_POL | Polarity of
C4IO clock '0' = pin F0IO is sampled on negative clock transition of C4IO '1' = pin F0IO is sampled on positive clock transition of C4IO | | | | 2 | 0 | V_F0_NEG | Polarity of FOIO signal '0' = positive pulse '1' = negative pulse | | | | 3 | 0 | V_F0_LEN | Duration of F0IO signal in slave mode '0' = active for one C4IO clock (244 ns at 4 MHz) '1' = active for two C4IO clocks (488 ns at 4 MHz) | | | | 74 | 0 | V_PCM_ADDR | Index value to select the register at address 15 At address 15 a so-called multi-register is accessible. 0 = R_SL_SEL0 register accessible 1 = R_SL_SEL1 register accessible 2 = R_SL_SEL2 register accessible 3 = R_SL_SEL3 register accessible 4 = R_SL_SEL4 register accessible 5 = R_SL_SEL5 register accessible 6 = R_SL_SEL6 register accessible 7 = R_SL_SEL6 register accessible 9 = R_PCM_MD1 register accessible 0xA = R_PCM_MD2 register accessible 0xC = R_SH0L register accessible 0xD = R_SH0H register accessible 0xE = R_SH1L register accessible 0xF = R_SH1H register accessible 0xF = R_SH1H register accessible | | | March 2003 (rev. A) Data Sheet 179 of 273 R_SL_SEL0 (write only) 0x15 Slot selection register for pin F1_0 This multi-register is selected with bitmap $V_PCM_ADDR = 0$ of the register R_PCM_MD0 . **Note:** By setting all 8 bits to '1' pin F1_0 is disabled. | Bits | Reset
Value | Name | Description | |------|----------------|-----------|--| | 60 | 0x7F | V_SL_SEL0 | PCM time slot selection The selected slot number is V_SL_SEL1 +1 for F1_0. Slot number 0 is selected with the maximum slot number of the selected PCM speed. | | 7 | 1 | V_SH_SEL0 | Shape selection '0' = use shape 0 set by R_SH0L and R_SH0H registers '1' = use shape 1 set by R_SH1L and R_SH1H registers | #### **Important!** For selecting slot 0 the value that has to be written to the bitmap $V_SL_SEL0 \dots V_SL_SEL7$ of the register $R_SL_SEL0 \dots R_SL_SEL7$ depends on the PCM data rate: | PCM data rate | Value | |---------------|-------| | PCM30 | 0x1F | | PCM64 | 0x3F | | PCM128 | 0x7F | Please note that time slot 0 for PCM128 can only be used with $V_SH_SEL0 \dots V_SH_SEL7 = 0$ (SHAPE0) in the registers R_SL_SEL0 ... R SL SEL7. R_SL_SEL1 (write only) 0x15 #### Slot selection register for pin F1 1 This multi-register is selected with bitmap V PCM ADDR = 1 of the register R PCM MD0. **Note:** By setting all 8 bits to '1' pin F1 1 is disabled. | Bits | Reset | Name | Description | |------|-------|-----------|--| | | Value | | | | 60 | 0x7F | V_SL_SEL1 | PCM time slot selection The selected slot number is V_SL_SEL1 +1 for F1_1. Slot number 0 is selected with the maximum slot number of the selected PCM speed. | | 7 | 1 | V_SH_SEL1 | Shape selection '0' = use shape 0 set by R_SH0L and R_SH0H registers '1' = use shape 1 set by R_SH1L and R_SH1H registers | March 2003 (rev. A) Data Sheet 181 of 273 R_SL_SEL2 (write only) 0x15 #### Slot selection register for pin F1_2 This multi-register is selected with bitmap $V_PCM_ADDR = 2$ of the register R_PCM_MD0 . **Note:** By setting all 8 bits to '1' pin F1_2 is disabled. | Bits | Reset
Value | Name | Description | |------|----------------|-----------|--| | 60 | 0x7F | V_SL_SEL2 | PCM time slot selection The selected slot number is V_SL_SEL1 +1 for F1_2. Slot number 0 is selected with the maximum slot number of the selected PCM speed. | | 7 | 1 | V_SH_SEL2 | Shape selection '0' = use shape 0 set by R_SH0L and R_SH0H registers '1' = use shape 1 set by R_SH1L and R_SH1H registers | R_SL_SEL3 (write only) 0x15 #### Slot selection register for pin F1 3 This multi-register is selected with bitmap V PCM ADDR = 3 of the register R PCM MD0. **Note:** By setting all 8 bits to '1' pin F1_3 is disabled. | Bits | Reset | Name | Description | | |------|-------|-----------|--|--| | | Value | | | | | 60 | 0x7F | V_SL_SEL3 | PCM time slot selection The selected slot number is V_SL_SEL1 +1 for F1_3. Slot number 0 is selected with the maximum slot number of the selected PCM speed. | | | 7 | 1 | V_SH_SEL3 | Shape selection '0' = use shape 0 set by R_SH0L and R_SH0H registers '1' = use shape 1 set by R_SH1L and R_SH1H registers | | R_SL_SEL4 (write only) 0x15 #### Slot selection register for pin F1 4 This multi-register is selected with bitmap $V_PCM_ADDR = 4$ of the register R_PCM_MD0 . **Note:** By setting all 8 bits to '1' pin F1_4 is disabled. | Bits | Reset | Name | Description | |------|-------|-----------|--| | | Value | | | | 60 | 0x7F | V_SL_SEL4 | PCM time slot selection The selected slot number is V_SL_SEL1 +1 for F1_4. Slot number 0 is selected with the maximum slot number of the selected PCM speed. | | 7 | 1 | V_SH_SEL4 | Shape selection '0' = use shape 0 set by R_SH0L and R_SH0H registers '1' = use shape 1 set by R_SH1L and R_SH1H registers | R_SL_SEL5 (write only) 0x15 #### Slot selection register for pin F1_5 This multi-register is selected with bitmap $V_PCM_ADDR = 5$ of the register R_PCM_MD0 . **Note:** By setting all 8 bits to '1' pin F1_5 is disabled. | Bits | Reset | Name | Description | | |------|-------|-----------|--|--| | | Value | | | | | 60 | 0x7F | V_SL_SEL5 | PCM time slot selection The selected slot number is V_SL_SEL1 +1 for F1_5. Slot number 0 is selected with the maximum slot number of the selected PCM speed. | | | 7 | 1 | V_SH_SEL5 | Shape selection '0' = use shape 0 set by R_SH0L and R_SH0H registers '1' = use shape 1 set by R_SH1L and R_SH1H registers | | March 2003 (rev. A) Data Sheet 183 of 273 R_SL_SEL6 (write only) 0x15 #### Slot selection register for pin F1_6 This multi-register is selected with bitmap $V_PCM_ADDR = 6$ of the register R_PCM_MD0 . **Note:** By setting all 8 bits to '1' pin F1_6 is disabled. | Bits | Reset
Value | Name | Description | |------|----------------|-----------|--| | 60 | 0x7F | V_SL_SEL6 | PCM time slot selection The selected slot number is V_SL_SEL1 +1 for F1_6. Slot number 0 is selected with the maximum slot number of the selected PCM speed. | | 7 | 1 | V_SH_SEL6 | Shape selection '0' = use shape 1 set by R_SH0L and R_SH0H registers '1' = use shape 1 set by R_SH1L and R_SH1H registers | R_SL_SEL7 (write only) 0x15 #### Slot selection register for pin F1 7 This multi-register is selected with bitmap V PCM ADDR = 7 of the register R PCM MD0. **Note:** By setting all 8 bits to '1' pin F1_7 is disabled. | Bits | Reset | Name | Description | | |------|-------|-----------|--|--| | | Value | | | | | 60 | 0x7F | V_SL_SEL7 | PCM time slot selection The selected slot number is V_SL_SEL1 +1 for F1_7. Slot number 0 is selected with the maximum slot number of the selected PCM speed. | | | 7 | 1 | V_SH_SEL7 | Shape selection '0' = use shape 0 set by R_SH0L and R_SH0H registers '1' = use shape 1 set by R_SH1L and R_SH1H registers | | | R_PC | 2_PCM_MD1 (write only) 0x15 | | | | | | |--------|-----------------------------|--------------------------------|--|--|--|--| | PCM r | node, reg | ister 1 | | | | | | This m | ulti-regist | er is selected with bitmap V_F | PCM_ADDR = 9 of the register R_PCM_MD0. | | | | | Bits | Reset
Value | Name | Description | | | | | 0 | 0 | V_CODEC_CON | CODEC connection scheme '0' = CODEC enable signals on F1_0F1_7 '1' = SHAPE0 pulse on pin SHAPE0, SHAPE1 pulse on pin SHAPE1 and CODEC count on F_Q0F_Q6 for up to 128 external CODECs. | | | | | 1 | 0 | (reserved) | Must be '0'. | | | | | 32 | 0 | V_PLL_ADJ | DPLL adjust speed '00' = C4IO clock is adjusted in the last time slot of PCM frame 4 times by one half clock cycle of PCM clock '01' = C4IO clock is adjusted in the last time slot of PCM frame 3 times by one half clock cycle of PCM clock '10' = C4IO clock is adjusted in the last time slot of PCM frame twice by one half clock cycle of PCM clock '11' = C4IO clock is adjusted in the last time slot of PCM frame once by one half clock cycle of PCM frame once by one half clock cycle of PCM clock Note: Internal PCM clock is 16.384 MHz nominell | | | | | 54 | 0 | V_PCM_DR | PCM data rate '00' = 2 MBit/s (C4IO is 4.096 MHz, 32 time slots) '01' = 4 MBit/s (C4IO is 8.192 MHz, 64 time slots) '10' = 8 MBit/s (C4IO is 16.384 MHz, 128 time slots) '11' = unused | | | | | 6 | 0 | V_PCM_LOOP | PCM test loop When this bit is set, the PCM output data is looped
to the PCM input data internally for all PCM time slots. | | | | Must be '0'. 7 (reserved) R_PCM_MD2 (write only) 0x15 #### PCM mode, register 2 This multi-register is selected with bitmap $V_PCM_ADDR = 0xA$ of the register R_PCM_MD0 . | | | Γ., | | |------|-------|---------------|--| | Bits | Reset | Name | Description | | | Value | | | | 0 | | (reserved) | Must be '0'. | | 1 | 0 | V_SYNC_PLL | SYNC_O with internal PLL output '0' = V_SYNC_OUT is used for synchronization '1' = SYNC_O has a frequency of the internal PLL output signal C4O divided by 8 (512 kHz, 1024 kHz or 2048 kHz depending on the PCM data rate) | | 2 | 0 | V_SYNC_SRC | PCM PLL synchronization source selection '0' = S/T interface (see R_ST_SYNC for further sync configuration) '1' = SYNC_I input 8 kHz | | 3 | 0 | V_SYNC_OUT | SYNC_O output selection '0' = S/T receive from the selected S/T interface in TE mode (see R_ST_SYNC register for synchronization source selection) '1' = SYNC_I is connected to SYNC_O | | 54 | | (reserved) | Must be '00'. | | 6 | 0 | V_ICR_FR_TIME | Increase PCM frame time This bit is only valid if V_EN_PLL is set. '0' = PCM frame time is reduced as selected by the bitmap V_PLL_ADJ of the R_PCM_MD1 register '1' = PCM frame time is increased as selected by the bitmap V_PLL_ADJ of the R_PCM_MD1 register | | 7 | 0 | V_EN_PLL | PLL enable '0' = normal operation '1' = enable PCM PLL adjustment (can be used to make synchronization by software if no sync source is available) | | R_SH0 | L | (write only) 0x15 | | | | | | |-------|--|-------------------|--|-------------|--|----------|--| | CODE | CODEC enable signal SHAPE0, low byte | | | | | | | | | This multi-register is selected with bitmap $V_PCM_ADDR = 0xC$ of the register R_PCM_MD0 . | | | | | register | | | Bits | Reset | Name | | Description | | | | | | Volue | | | | | | | | Bits | Reset
Value | Name | Description | |------|----------------|--------|--| | 70 | 0 | V_SH0L | Shape bits 7 0 Every bit is used for 1/2 C4IO clock cycle. | | Н | (write | only) 0x15 | | | |---------------------------------------|-----------------------------|---|--|--| | CODEC enable signal SHAPE0, high byte | | | | | | ulti-regis
I_MD0. | ter is selected with bitmap | V_PCM_ADDR = 0xD of the register | | | | Reset | Name | Description | | | | Value | | | | | | 0 | V_SH0H | Shape bits 15 8 Every bit is used for 1/2 C4IO clock cycle. Bit 7 of V_SH0H defines the value for the rest of the period. | | | | u
 - | MD0. Reset Value | Ilti-register is selected with bitmap MD0. Reset Name Value | | | | R_SH1 | _SH1L (write only) 0x15 | | | | | | |-------|--|--------|--|--|--|--| | CODE | CODEC enable signal SHAPE1, low byte | | | | | | | | This multi-register is selected with bitmap $V_PCM_ADDR = 0xE$ of the register R_PCM_MD0 . | | | | | | | Bits | Reset | Name | Description | | | | | | Value | | | | | | | 70 | 0 | V_SH1L | Shape bits 7 0 Every bit is used for 1/2 C4IO clock cycle. | | | | March 2003 (rev. A) Data Sheet 187 of 273 | R_SH1 | Н | (write only) 0x15 | | | | |-------|--|-------------------|---|--|--| | CODE | CODEC enable signal SHAPE1, high byte | | | | | | 1 | This multi-register is selected with bitmap $V_PCM_ADDR = 0xF$ of the register R_PCM_MD0 . | | | | | | Bits | Reset | Name | Description | | | | | Value | | | | | | 70 | 0 | V_SH1H | Shape bits 15 8 Every bit is used for 1/2 C4IO clock cycle. Bit 7 of V_SH1H defines the value for the rest of the period. | | | #### 6.4.2 Read only register | R_F0_ | _F0_CNTL (read only) | | only) Ox18 | |--------|----------------------|---------------|---| | F0IO p | ulse coun | ter, low byte | | | Bits | Reset | Name | Description | | | Value | | | | 70 | 0x00 | V_F0_CNTL | Low byte (bits 7 0) of the 125 μ s time counter
This register should be read first to 'lock' the value
of the R_F0_CNTH register until R_F0_CNTH
has also been read. | | R_F0_ | CNTH | CNTH (read only) | | |--------|----------------|------------------|--| | F0IO p | ulse coun | ter, high byte | | | Bits | Reset
Value | Name | Description | | 70 | 0 | V_F0_CNTH | High byte (bits 15 8) of the 125 μs time counter The low byte must be read first (see register R_F0_CNTL) | March 2003 (rev. A) Data Sheet 189 of 273 ## **Chapter 7** # Pulse width modulation (PWM) outputs Table 7.1: Overview of the HFC-4S/8S PWM pins | Number | Name | Description | |--------|------|--------------------------------| | 95 | PWM1 | Pulse Width Modulator Output 1 | | 96 | PWM0 | Pulse Width Modulator Output 0 | Table 7.2: Overview of the HFC-4S/8S PWM registers | Address | Name | Page | |---------|----------|------| | 0x38 | R_PWM0 | 193 | | 0x39 | R_PWM1 | 193 | | 0x46 | R_PWM_MD | 194 | March 2003 (rev. A) Data Sheet 191 of 273 The HFC-4S/8S has two PWM output lines PWM0 and PWM1 with programmable output characteristic. The output lines can be configured as open drain, open source and push / pull by setting V_PWM0_MD respectively V_PWM1_MD in the register R_PWM_MD. #### 7.1 Standard PWM usage The duty cycle of the output signals can be set in the registers R_PWM0 and R_PWM1. The register value 0 generates an output signal which is permanently low. The register value defines the number of clock periods where the output signal is high during the cycle time $$T = 256 \cdot \frac{1}{24.576 \,\text{MHz}} = 256 \cdot 40.69 \,\text{ns} = 10.42 \,\mu\text{s}$$ for the normal system clock 24.576 MHz. The ouput signal of the PWM unit can be used for analog settings by using an external RC filter which generates a voltage that can be adapted by changing the PWM register value. #### 7.2 Alternative PWM usage The PWM output lines can be programmed to generate a 16 kHz signal. This signal can be used as analog metering pulse for POTS interfaces. Each PWM output line can be switched to 16 kHz signal by setting V_PWM0_16KHZ or V_PWM1_16KHZ in the register R_RAM_MISC. In this case the output characteristic is also determined by the R_PWM_MD register settings. ### 7.3 Register description #### 7.3.1 Write only register | R_PW | M0 | (write only) | | |--------|----------------|------------------|--| | Modula | ntor regis | ter for pin PWM0 | | | Bits | Reset
Value | Name | Description | | 70 | 0 | V_PWM0 | PWM duty cycle The value specifies the number of clock periods where the output signal of PWM0 is high during a 256 clock periods cycle, e.g. 0x00 = no pulse, always low 0x80 = 1/1 duty cycle 0xFF = 1 clock period low after 255 clock periods high | | R_PWI | M1 | (write only) 0x | | | |--------|------------|------------------|---|------| | Modula | ntor regis | ter for pin PWM1 | | | | Bits | Reset | Name | Description | | | | Value | | | | | 70 | 0 | V_PWM1 | PWM duty cycle The value specifies the number of clock periods where the output signal of PWM1 is high durir 256 clock periods cycle, e.g. 0x00 = no pulse, always low 0x80 = 1/1 duty cycle 0xFF = 1 clock period low after 255 clock perihigh | ng a | March 2003 (rev. A) Data Sheet 193 of 273 | R_PW | M_MD | (1 | write only) 0x46 | |------|----------------|--------------|--| | PWM | output m | ode register | | | Bits | Reset
Value | Name | Description | | 20 | 0 | (reserved) | Must be '000'. | | 3 | 0 | V_EXT_IRQ_EN | External interrupt enable '0' = normal operation '1' = external interrupt from GPI24 GPI31 enable (These pins must be connected to a pull-up resistor to VDD. Any low input signal on one of the lines will generate an external interrupt.) | | 54 | 0 | V_PWM0_MD | Output buffer configuration for pin PWM0 '00' =PWM output tristate (disable) '01' = PWM push / pull output '10' = PWM push to 0 only '11' = PWM pull to 1 only | | 76 | 0 | V_PWM1_MD | Output buffer configuration for pin PWM1 '00' = PWM output tristate (disable) '01' = PWM push / pull output '10' = PWM push to 0 only '11' = PWM pull to 1 only | ## **Chapter 8** # Multiparty audio conferences Table 8.1: Overview of the HFC-4S/8S conference registers | Write only | registers: | | Read only registers: | | | |-------------------|---------------------|------------|----------------------|--------------
------| | Address Name Page | | Page | Address Name | | Page | | | R_CONF_EN
A_CONF | 200
200 | 0x14 | R_CONF_OFLOW | 201 | March 2003 (rev. A) Data Sheet 195 of 273 #### 8.1 Conference unit description The HFC-4S/8S has a built in conference unit which allows up to 8 conferences with an arbitrary number of members each. The conference unit is located in the data stream going out to the PCM interface. So the normal outgoing data is replaced by the conference data. The number of conference members that can be combined to one conference is only limited by the number of the PCM time slots (maximum 64 members with 128 PCM time slots). Each time slot can only be part of one conference. All PCM values combined to a conference are added in one 125 μ s time intervall. Then for every conference member the added value for this member is substracted so that every member of a conference hears all the others but not himself. This is done on a alternating buffer scheme for every 125 μ s time intervall. To enable the conference unit the bit V_CONF_EN in the register R_CONF_EN must be set. If this is done there are additional accesses to the SRAM of HFC-4S/8S which reduces performance of the on-chip processor on the other hand. Thus conference cannot be used with 8 Mbit/s PCM data rate where 128 slots are used, except the chip operates with doubled input frequency. To add a PCM time slot to a conference the slot number must be written into the register R_SLOT. If the time slot has not yet been linked to a HFC-channel this can be done by writing the HFC-channel number and the channels source/destination (input/output pins) to the A_SL_CFG register. Afterwards the conference number must be written into the A_CONF register. Noise suppression threshold and input attenuation level can be configured independently for each time slot. To remove a time slot from a conference the time slot must be selected by writing its number to the R_SLOT register. Then 0x00 must be written into the A_CONF register. #### 8.2 Overflow handling The data summation of the conference HFC-channels can cause signal overflows. The conference unit internally works with signed 16 bit words. In case of an overflow the amplitude value is limited to the maximum amplitude value. Overflow conditions can be checked with the R_CONF_OFLOW register. Every bit of this register indicates that an overflow has occured in one of the eight corresponding conferences. The more conference members are involved in a conference, the higher is the probability of signal overflows. In this case the signal attenuation can be reduced by the bitmap V_ATT_LEV in the register A CONF. This can be done on-the-fly to improve the signal quality of a conference. #### 8.3 Conference including the S/T interface As the conference unit is located in the PCM transmit data path, some additional explanations for conference members on the S/T interface have to be made. Conference members can also be B-channels of the S/T interface. In this case, a pair of transmit/receive PCM time slots have to be configured to loop back the data. In detail, the conference signal on S/T-channel[n,RX] gets assigned to PCM time slot[i,TX] and the signal is looped-back from slot[j,RX] to HFC-channel[m,TX]. The data transmission on HFC-channel[n,RX] and HFC-channel[m,TX] require one transmit and one receive FIFO to be enabled, although the FIFOs are not used to store data (see Section 3.4). #### 8.4 Conference setup example for CSM The following example shows the register settings for a conference with three members. Two members are located on the PCM interface side while the other one is located on the S/T interface side. The example uses conference number 2. It is specified in Table 8.2. Table 8.2: Conference example specification | Conference member | er C | onnecti | on | |---------------------|-------------------------|---------------|-------------------| | S/T member | : S/T interf. #1, RX B | 1 → | PCM slot[6,TX] | | | : S/T interf. #1, TX B1 | → ا | PCM slot[6,RX] | | 1^{st} PCM member | : PCM slot[5,RX] | \rightarrow | HFC-channel[6,TX] | | | : PCM slot[5,TX] | \leftarrow | HFC-channel[6,TX] | | 2^{nd} PCM member | : PCM slot[20,RX] | \rightarrow | HFC-channel[6,RX] | | | : PCM slot[20,TX] | \leftarrow | HFC-channel[6,RX] | Figure 8.1: Conference example Only two FIFOs are used in this example. Channel select mode should be selected to avoid unnecessary FIFO usage ¹. A PCM member allocates a single HFC-channel to establish the data loop via the switching buffer (see Fig. 3.3 and 3.3). • A PCM conference member can be looped over an arbitrary HFC-channel. In this example HFC-channel[6,TX] is used for the first PCM conference member. The conference is enabled only on the transmit time slot of the PCM interface. March 2003 (rev. A) Data Sheet 197 of 273 ¹Remember that in *Simple Mode* FIFO numbers are equal to HFC-channel numbers. In the example four HFC-channels are enabled, so that in *Simple Mode* all FIFOs with the same number are blocked. ``` R_SLOT = 0 : V_SL_DIR (transmit slot) : V_SL_NUM (slot #5) = 5 A SL CFG[5,TX]: V CH DIR1 (transmit HFC-channel) : V_CH_NUM1 (HFC-channel #6) = 6 A CONF[5,TX] : V_CONF_NUM = 2 (conference #2) : V_CONF_SL (enable conference) = 1 R SLOT : V SL DIR = 1 (receive slot) : V_SL_NUM (slot #5) A_SL_CFG[5,RX]: V_CH_DIR1 = 0 (transmit HFC-channel) : V_CH_NUM1 = 6 (HFC-channel #6) : V CONF SL = 0 A CONF[5,RX] (disable conference) ``` **2** The settings for the second PCM conference member is quite similar. | R_SLOT | $: V_SL_DIR = 0$ | (transmit slot) | |-----------------|--------------------|-----------------------| | | : V_SL_NUM = 20 | 0 (slot #20) | | A_SL_CFG[20,TX] | $: V_CH_DIR1 = 1$ | (receive HFC-channel) | | | : V_CH_NUM1 = 6 | (HFC-channel #6) | | A_CONF[20,TX] | : V_CONF_NUM = 2 | (conference #2) | | | : V_CONF_SL = 1 | (enable conference) | | R_SLOT | : V_SL_DIR = 1 | (receive slot) | | | : V_SL_NUM = 20 | (slot #20) | | A_SL_CFG[20,RX] | $J: V_CH_DIR1 = 1$ | (receive HFC-channel) | | | $: V_CH_NUM1 = 6$ | (HFC-channel #6) | | A_CONF[20,RX] | : $V_CONF_SL = 0$ | (disable conference) | | | | | • Finally the S/T conference member must loop back its data via the PCM interface. This is normally done internally, i.e. the PCM output buffers are both disabled (see Chapter 6 for details). A pair of FIFOs is used to configure the PCM-to-S/T connection but no data is stored in these FIFOs. ``` R FIFO : V FIFO DIR = 0 (transmit FIFO) : V FIFO NUM = 11 (FIFO #11) A_CON_HDLC[11,TX] : V_DATA_FLOW = '110' (S/T \rightarrow PCM) A CHANNEL[11,TX] : V CH DIR0 = 0 (transmit HFC-channel) : V CH NUM0 (HFC-channel #4) = 4 R SLOT : V_SL_DIR = 1 (receive slot) (slot #6) : V_SL_NUM = 6 : V_CH_DIR1 A_SL_CFG[6,RX] = 0 (transmit HFC-channel) : V_CH_NUM1 = 4 (HFC-channel #4) : V CONF SL A CONF[6,RX] = 0 (disable conference) ``` | R_FIFO | : V_FIFO_DIR | = 1 | (receive FIFO) | |------------------|----------------|-----------|------------------------| | | : V_FIFO_NUM | = 11 | (FIFO #11) | | A_CON_HDLC[11,RX |]: V_DATA_FLOW | ′ = '110' | $(S/T \leftarrow PCM)$ | | A_CHANNEL[11,RX] | : V_CH_DIR0 | = 1 | (receive HFC-channel) | | | : V_CH_NUM0 | = 4 | (HFC-channel #4) | | R_SLOT | : V_SL_DIR | = 0 | (transmit slot) | | | : V_SL_NUM | = 6 | (slot #6) | | A_SL_CFG[6,TX] | : V_CH_DIR1 | = 1 | (receive HFC-channel) | | | : V_CH_NUM1 | = 4 | (HFC-channel #4) | | A_CONF[6,TX] | : V_CONF_NUM | = 2 | (conference #2) | | | : V_CONF_SL | = 1 | (enable conference) | ### 8.5 Register description #### 8.5.1 Write only registers | R_COI | NF_EN | (write only) | | | |--------|----------|--------------|--|--| | Confer | ence mod | le register | | | | Bits | Reset | Name | Description | | | | Value | | | | | 0 | 0 | V_CONF_EN | Global conference enable '0' = disable '1' = enable | | | 61 | | (reserved) | Must be '000000'. | | | 7 | 0 | V_ULAW | Data coding of the conference unit $'0' = A-Law$ $'1' = \mu-Law$ | | | A_CONF [SLOT] (write | | T] (write | e only) 0xD1 | | | | |----------------------|---|---------------|---|--|--|--| | | Conference parameter register for the selected PCM time slot Before writing this array register the PCM time slot must be selected by register R_SLOT. | | | | | | | Bits | Reset | Name | Description | | | | | | Value | | | | | | | 20 | 0 | V_CONF_NUM | Conference number (0 7) | | | | | 43 | 0 | V_NOISE_SUPPR | Noise suppression threshold '00' = no noise suppression '01' = data values less or equal to 5 are set to 0 '10' = data values less or equal to 9 are set to 0 '11' = data values less or equal to 16 are set to 0 | | | | | 65 | 0 | V_ATT_LEV | Input attenuation level
'00' = 0 dB
'01' = -3 dB
'10' = -6 dB
'11' = -9 dB | | | | | 7 | | V_CONF_SL | Conference enable for the selected PCM time slot '0' = slot is not added to the conference '1' = slot is added to the conference | | | | #### 8.5.2 Read only registers | R_CONF_OFLOW | (read only) | 0x14 | |--------------|-------------|------| |--------------|-------------|------| #### Conference overflow indication register Specifies the conference numbers where an overflow has occured. Reading this register clears the bits. | - | | T | | |------|-------|---------------|----------------------------------| | Bits | Reset | Name | Description | | | Value | | | | 0 | 0 | V_CONF_OFLOW0 | Overflow occured in conference 0 | | 1 | 0 | V_CONF_OFLOW1 | Overflow occured in conference 1 | | 2 | 0 | V_CONF_OFLOW2 | Overflow occured in conference 2 | | 3 | 0 | V_CONF_OFLOW3 | Overflow occured in conference 3
 | 4 | 0 | V_CONF_OFLOW4 | Overflow occured in conference 4 | | 5 | 0 | V_CONF_OFLOW5 | Overflow occured in conference 5 | | 6 | 0 | V_CONF_OFLOW6 | Overflow occured in conference 6 | | 7 | 0 | V_CONF_OFLOW7 | Overflow occured in conference 7 | ## **Chapter 9** ## **DTMF** controller Table 9.1: Overview of the HFC-4S/8S DTMF registers | Write only registers: | | | | |-----------------------|--------------|--|--| | Name | Page | | | | R_DTMF0 | 207 | | | | R_DTMF1 | 208 | | | | | Name R_DTMF0 | | | March 2003 (rev. A) Data Sheet 203 of 273 #### 9.1 DTMF detection engine The transmission of dialed numbers on analog lines is normaly done by DTMF (Dual Tone Multi-Frequency). This means that pairs of two frequencies are used to determine one key of a keypad like shown in Table 9.2. Table 9.2: DTMF tones on a 16 keys keypad | | Ke | ypad | Frequencies | | |------|------|------|-------------|---------------------| | 1 | 2 | 3 | A | 697 | | 4 | 5 | 6 | В | 770 low tones | | 7 | 8 | 9 | C | 852 (f/Hz) | | * | 0 | # | D | 941 | | 1209 | 1336 | 1477 | 1633 | high tones (f/Hz) | Thus there are 4 low tones and 4 high tones and therefore 16 combinations of 2 tones. Because the ISDN network has several interfaces to the old-fashioned POTS analog network, in-band number dialing with DTMF can take place. To decode this DTMF information the HFC-4S/8S has a built in DTMF detection engine. The detection is done by the digital processing of the PCM input data by the so-called Goerzel Algorithm $$W_{n+1} = K \cdot W_n - W_{n-1} + x \,, \tag{9.1}$$ where W_{n+1} is a coefficient calculated from the 2 previous coefficients W_n and W_{n-1} . The factor $$K = 2\cos\left(2\pi \cdot \frac{f}{8000\,\mathrm{Hz}}\right)$$ is a constant for each frequency and x is a new PCM value every 125 μ s. Equation Q.1) is calculated every 125 μ s for 16 or 32 W_{n+1} values. The start condition is $W_0 = W_{-1} = 0$. After processing equation (9.1) for N times the real power amplitude is $$A^{2} = W_{N}^{2} + W_{N-1}^{2} - K \cdot W_{N} \cdot W_{N-1}.$$ (9.2) The calculation of equation (9.1) is done for every new PCM sample value (for all 8 frequencies) every 125 μ s. Optionally also the second harmonic (double frequency) is also investigated. The K factors are values concerning to the DTMF frequencies. If the DTMF calculation is implemented in integer arithmetic, it is useful to multiply K with 2^{14} to exploit the whole 16 bit value range. These K values are listed in Table 9.3. The DTMF engine must be enabled by setting bit V_DTMF_EN in register R_DTMF0. How many iterations are calculated with the Goerzel algorithm is determined by the register value V_DTMF1 in the register R_DTMF1. A good compromise between bandwith of the Goerzel filter and the length of the investigation is a value of 102. A DTMF detection can be done on a continuous base. However **Table 9.3:** 16-bit K factors for the DTMF calculation | 1st harmonic | | 2 nd harmonic | | |--------------|----------------------------------|--------------------------|----------------------------------| | f/Hz | $\mathbf{K}\cdot\mathbf{2^{14}}$ | f/Hz | $\mathbf{K}\cdot\mathbf{2^{14}}$ | | 697 | 27 980 | 1406 * | 14739 | | 770 | 26 956 | 1555 * | 11 221 | | 852 | 25 701 | 1704 | 7 549 | | 941 | 24 219 | 1882 | 3 032 | | 1209 | 19 073 | 2418 | -10565 | | 1336 | 16325 | 2672 | -16503 | | 1477 | 13 085 | 2954 | -22318 | | 1633 | 9315 | 3266 | -27 472 | (*: These frequencies are modified to achieve a better detection compared with the high fundamental tones.) then the reading of the calculated coefficients has to be done in a very short time intervall before the coefficients are cleared to zero for a new calculation. Is more convenient to set the V_DTMF_STOP bit of the register R_DTMF0. The DTMF engine is stopped then after each calculation of a set of coefficients and the V_DTMF_IRQ bit is set in the register R_IRQ_MISC. Then a software routine has time to read the coefficients out of HFC-4S/8S. After this, a new calculation can be started. However some PCM samples (x values) can be lost. The host processor should read the two W_N and W_{N-1} 16-bit coefficients for 8 or 16 frequencies for the desired channels. The coefficients are located in the SRAM memory of HFC-4S/8S. The memory address is calculated by $$address = base address + frequency offset + channel offset + W-byte offset$$. (9.3) The individual address components are shown in Table 9.4. If 32 channels are used, only the 8 fundamental frequencies can be detected. If only 16 channels are used, all 16 frequencies (1^{st} and 2^{nd} harmonic) can be detected. For every frequency and every channel the power amplitude can be calculated with equation θ .2). This calculation is not implemented in the chip and has to take place in the host processor. After a discrimination process and a balance check between 2 frequency candidates with the maximum power, the software can determine if there was a DTMF signal on the line or not. If there was a DTMF signal the tone pair is detected and so the dialed digit is decoded. In case the existence of DTMF tones in an arbitrary voice signal has to be detected, it is helpfull to investigate not only the 8 DTMF tones but also their second harmonics. For DTMF tones the second harmonics should have no significant amplitude. March 2003 (rev. A) Data Sheet 205 of 273 Table 9.4: Memory address calculation for DTMF coefficients related to equation (9.3) | base address | RAM size | address | RAM size | address | |----------------------------|--------------------|---------|------------------|---------| | | 32k | 0x1000 | 128k | 0x2000 | | | | | 512k | 0x2000 | | frequency offset | low tones | offset | high tones | offset | | (1st harmonic) | 697 Hz | 0x00 | 1406 Hz | 0x40 | | | 770 Hz | 0x80 | 1555 Hz | 0xC0 | | | 852 Hz | 0x100 | 1704 Hz | 0x140 | | | 941 Hz | 0x180 | 1882 Hz | 0x1C0 | | (2 nd harmonic) | 1209 Hz | 0x200 | 2418 Hz | 0x240 | | | 1336 Hz | 0x280 | 2672 Hz | 0x2C | | | 1477 Hz | 0x300 | 2954 Hz | 0x340 | | | 1633 Hz | 0x380 | 3266 Hz | 0x3C(| | channel offset | number | offset | number | offse | | | 0 | 0x00 | 16 | 0x40 | | | 1 | 0x04 | 17 | 0x4 | | | 2 | 0x08 | 18 | 0x4 | | | 3 | 0x0C | 19 | 0x40 | | | 4 | 0x10 | 20 | 0x5 | | | 5 | 0x14 | 21 | 0x5 | | | 6 | 0x18 | 22 | 0x5 | | | 7 | 0x1C | 23 | 0x50 | | | 8 | 0x20 | 24 | 0x6 | | | 9 | 0x24 | 25 | 0x6 | | | 10 | 0x28 | 26 | 0x6 | | | 11 | 0x2C | 27 | 0x60 | | | 12 | 0x30 | 28 | 0x7 | | | 13 | 0x34 | 29 | 0x7 | | | 14 | 0x38 | 30 | 0x7 | | | 15 | 0x3C | 31 | 0x70 | | W-byte offset | $\mathbf{W_{N-1}}$ | offset | $\mathbf{W_{N}}$ | offse | | | low byte | 0 | low byte | 2 | | | high byte | 1 | high byte | ; | ### 9.2 Register description | R_DTN | R_DTMF0 (write only) 0x | | | | | | |-------|-----------------------------|----------------|--|--|--|--| | DTMF | DTMF configuration register | | | | | | | Bits | Reset
Value | Name | Description | | | | | 0 | 0 | V_DTMF_EN | Global DTMF enable '0' = disable DTMF unit '1' = enable DTMF unit | | | | | 1 | 0 | V_HARM_SEL | Harmonics selection 2nd harmonics of the DTMF frequencies can be enabled to improve the detection algorithm. '0' = 8 frequencies in 32 channels (only 1st harmonics are processed) '1' = 16 frequencies in 16 channels (1st and 2nd harmonics are processed) | | | | | 2 | 0 | V_DTMF_RX_CH | DTMF data source '0' = transmit buffer of the flow controller (HFC-channels to PCM time slot) are used for DTMF detection '1' = receive buffer of the flow controller (HFC-channels from PCM time slot) are used for DTMF detection | | | | | 3 | 0 | V_DTMF_STOP | Stop DTMF unit '0' = continuous DTMF processing '1' = DTMF processing stops after <i>n</i> processed samples | | | | | 4 | 0 | V_CHBL_SEL | HFC-Channel block selection HFC-Channel block selection (only if 32 channels are used) '0' = lower 16 channels (0 15) '1' = upper 16 channels (16 31) | | | | | 5 | | (reserved) | Must be '0'. | | | | | 6 | 0 | V_RESTART_DTMF | Restart DTMF prosessing '0' = no action '1' = enables new DTMF calculation phase after stop, automatically cleared | | | | | 7 | 0 | V_ULAW_SEL | Data coding for DTMF detection '0' = A-Law code '1' = μ -Law code | | | | | R_DTN | /IF1 | (write only) 0x1[| | | | | |-------|-----------------------------|-------------------|---|---------|--|--| | Numbe | Number of samples | | | | | | | | gister def
ertzel filter | 1 | which are calculated in the recursive p | oart of | | | | Bits | Reset | Name | Description | | | | | | Value | | | | | | | 70 | 0 | V_DTMF1 | Number of samples V_DTMF1 +1 PCM values generate 1 pair DTMF coefficients (1 PCM value every 125 | | | | ## **Chapter 10** ## **BERT** Table 10.1: Overview of the HFC-4S/8S BERT registers | Write only registers: | | | Read only registers: | | | |-----------------------|--------------|------|----------------------|------------|------| | Address | Name | Page | Address | Name | Page | | 0x1B | R_BERT_WD_MD | 211 | 0x17 | R_BERT_STA | 212 | | 0xFF | A_IRQ_MSK | 234 | 0x1A | R_BERT_ECL | 212 | | | | | 0x1B | R_BERT_ECH | 213 | March 2003 (rev. A) Data Sheet 209 of 273 #### 10.1 BERT functionality Bit Error Rate Test (BERT) is a very important test for communication lines. The bit error rate should be as low as possible. Increasing bit error rate is an early indication of a malfunction of components or the communication wire link itself. HFC-4S/8S includes a high performance pseudo random bit generator (PRBG) and a pseudo random bit receiver with automatic synchronization capability. Error rate can be checked by the also implemented Bit Error counter (BERT
counter). The PRBG can be set to a variety of different pseudo random bit patterns. With the bit pattern V_PAT_SEQ in register R_BERT_WD_MD the transmit and receive detector can be set to the trivial always '0' or always '1' pattern as well to well known patterns described in ITU-T O.150 and O.151 specifications. In every transmit HFC-channel the HDLC or transparent data is overwritten by bits from the PRBG if V_BERT_EN in the register A_IRQ_MSK[FIFO] is set to '1'. The random data is only generated when the FIFO is processing data. So if subchannel processing is enabled the PRBG is only enabled for less than 8 bits. Next PRGB bits are generated in the next FIFO where a HFC-channel is processed and V_BERT_EN is set. The receive detector can function properly only when the same receive FIFOs connected to the same S/T-channels are enabled for BERT in receive direction as on the transmit FIFOs of the remote S/T interface side. The receive detector has an auto synchonization capability and also is enabled to automatic detect an inverted BERT pattern. The auto synchronization only works with bit error rates of less than $4 \cdot 10^{-2}$. If the error rate is higher synchronization will not be achieved. A found synchronization is reported by V_BERT_SYNC = 1 in register R_BERT_STA. If the received pattern is inverted also V_BERT_INV_DATA is set. A 16 bit BERT error count is available by reading the registers R_BERT_ECL and R_BERT_ECH. The counter is reset when the R_BERT_ECL register is read. To test a connection and the error detection of the BERT error counter on the receiver side of an S/T link a BERT error can be generated. Setting the V_BERT_ERR generates one wrong BERT bit in the outgoing data stream. ### 10.2 Register description ### 10.3 Write only register | R_BEF | R_BERT_WD_MD (write only) 0x1 | | | |--|-------------------------------|---------------|---| | Bit error rate test (BERT) and watchdog mode | | | | | Bits | Reset
Value | Name | Description | | 20 | 0 | V_PAT_SEQ | Pattern for BERT '000' = continuous '0' pattern '001' = continuous '1' pattern '010' = pseudo random pattern seq. 2 9 - 1 '011' = pseudo random pattern seq. 2 10 - 1 '100' = pseudo random pattern seq. 2 15 - 1 '101' = pseudo random pattern seq. 2 20 - 1 '110' = pseudo random pattern seq. 2 20 - 1 '110' = pseudo random pattern seq. 2 20 - 1, but maximal 14 bits are zero '111' = pseudo random pattern seq. 2 23 - 1 Note: This sequences are defined in ITU-T 0.150 and 0.151 specifications. | | 3 | 0 | V_BERT_ERR | BERT error Generates 1 error bit in the BERT data stream '0' = no error generation '1' = generates one error bit This bit is cleared automatically. | | 4 | | (reserved) | Must be '0'. | | 5 | 0 | V_AUTO_WD_RES | Automatically watchdog timer reset '0' = watchdog is only reset by V_WD_RES '1' = watchdog is reset after every access to the chip | | 6 | | (reserved) | Must be '0'. | | 7 | 0 | V_WD_RES | Watchdog timer reset '0' = no action '1' = manual watchdog timer reset This bit is automatically cleared. | March 2003 (rev. A) Data Sheet 211 of 273 ### 10.4 Read only register | R_BE | R_BERT_STA (read only) 0x17 | | | | | |---------|-----------------------------|-----------------|---|--|--| | Bit err | Bit error rate test status | | | | | | Bits | Reset
Value | Name | Description | | | | 20 | 0 | V_BERT_SYNC_SRC | S/T interface selection Reports which S/T interface is used as sync source. '000' = S/T interface 0 '001' = S/T interface 1 '010' = S/T interface 2 '011' = S/T interface 3 '100' = S/T interface 4 '101' = S/T interface 5 '110' = S/T interface 6 '111' = S/T interface 7 | | | | 4 | 0 | V_BERT_SYNC | BERT synchronization status '0' = BERT not synchronized to input data '1' = BERT sync to input data | | | | 5 | 0 | V_BERT_INV_DATA | BERT data inversion '0' = BERT receives normal data '1' = BERT receives inverted data | | | | 76 | 0 | (reserved) | | | | | R_BEF | RT_ECL | (read only) | | 0x1A | |------------------------------|----------------|-------------|--|------| | BERT error counter, low byte | | | | | | Bits | Reset
Value | Name | Description | | | 70 | 0 | V_BERT_ECL | Bits 7 0 of the BERT error counter This register should be read first to 'lock' the of the R_BERT_ECH register until R_BERT_ECH has also been read. Note: The BERT counter is cleared after rea this register. | | | R_BERT_ECH (read only) | | | only) | 0x1B | |------------------------|-------------------------------|------------|--|------| | BERT | BERT error counter, high byte | | | | | Bits | Reset | Name | Description | | | | Value | | | | | 70 | 0 | V_BERT_ECH | Bits 15 8 of the BERT error counter | | | | | | Note: Low byte must be read first (see regis R_BERT_ECL). | ter | March 2003 (rev. A) Data Sheet 213 of 273 ## **Chapter 11** # **Auxiliary interface** (For an overview of the auxiliary interface pins see the comparison of first and second pin function in Table 11.2 on page 216.) Table 11.1: Overview of the HFC-4S/8S auxiliary bridge registers | Write only registers: | | | | |-----------------------|-----------------|------|--| | Address | Name | Page | | | 0x02 | R_BRG_PCM_CFG | 221 | | | 0x45 | R_BRG_CTRL | 222 | | | 0x47 | R_BRG_MD | 223 | | | 0x48 | R_BRG_TIM0 | 224 | | | 0x49 | R_BRG_TIM1 | 224 | | | 0x4A | R_BRG_TIM2 | 224 | | | 0x4B | R_BRG_TIM3 | 225 | | | 0x4C | R_BRG_TIM_SEL01 | 225 | | | 0x4D | R_BRG_TIM_SEL23 | 226 | | | 0x4E | R_BRG_TIM_SEL45 | 226 | | | 0x4F | R_BRG_TIM_SEL67 | 227 | | March 2003 (rev. A) Data Sheet 215 of 273 The HFC-4S/8S has an auxiliary interface which is designed for connecting up to 8 external devices with the universal bus interface. This bridge functionality supports 8 bit data bus and up to 12 address lines. The auxiliary-to-host bridge is typically used to realize a PCI bridge or a PCMCIA bridge for external devices. The auxiliary interface is implemented parallel to the optional external SRAM interface, so it can only be used if no external SRAM is connected to the HFC-4S/8S. #### 11.1 Interface pins The auxiliary bridge must be switched on with $V_BRG_EN = 1$ in the register V_BRG_EN . Table 11.2 shows that the bridge functionality uses some HFC-4S/8S pins in their second function. As the first pin functions are associated to the SRAM interface, the external SRAM must be disabled when the bridge functionality is switched on. Table 11.2: HFC-4S/8S pins of the auxiliary bridge | Pin | 1st function | 2nd function | |-------|--------------|------------------| | 54 61 | SRA0SRA7 | BRG_A0BRG_A7 | | 63 66 | SRA8 SRA11 | BRG_A8 BRG_A11 | | 67 73 | SRA12SRA18 | /BRG_CS0/BRG_CS6 | | 74 | NC | /BRG_CS7 | | 77 84 | SRD0SRD7 | BRG_D0BRG_D7 | | 85 | /SR_WR | /BRG_WR | | 87 | /SR_OE | /BRG_RD | External devices can be accessed by an address bus with up to 12 lines, an 8 bit data bus, up to 8 chip select signals and two control lines supporting Motorola- or Siemens/Intel-Style interfaces. #### **Important!** As the auxiliary interface and the external SRAM use the same chip pins, it is strongly recommended not to enable the external SRAM and the bridge functionality at the same time! Extract from the register descriptions: | Register | Bit | Description | |------------------------|------------------|---| | R_CTRL | V_EXT_RAM | The internal SRAM is switched off when external SRAM is used. '0' = internal SRAM is used in lower 32 kByte address space '1' = external SRAM is used | | R_BRG_PCM_CFG | V_BRG_EN | '0' = disable (external SRAM can be used) '1' = enable (external SRAM is disabled) | | Both register bits are | zero by default. | | #### 11.2 Various mode selections The host-to-auxiliary bridge can be configured into various modes which define the behavior of the bridge. The overview of these modes is illustrated in Figure 11.1 and will be described in the following sections. Figure 11.1: Points of contact of the various bridge modes #### 11.2.1 Driver mode The behavior of the data bus of the auxiliary bridge can be modified by V_BRG_MD of the register R_BRG_PCM_CFG. A '0' defines that the bus BRG_D0 ... BRG_D7 is tristated when no bridge access is performed and a '1' defines that the bus is only tristated when a read access is performed. #### 11.2.2 Control mode The register R BRG MD defines for each chip select the style of the access. The bit value '0' executes an access to the external device in Siemens/Intel style. Alternatively an access in Motorola style can be selected with '1'. | /IOR
/DS | /IOW
R/W | /CS | ALE | Operation | Access style | |-------------|-------------|-----|-----|------------|---------------| | 0 | 1 | 0 | 1 | read data | Motorola | | 0 | | 0 | 1 | write data | Motorola | | 0 | 1 | 0 | 0 | read data | Siemens/Intel | | 1 | 0 | 0 | 0 | write data | Siemens/Intel | Table 11.3:
Control mode #### 11.2.3 Access mode The access mode is controlled by the two bit M0 and M1. A normal chip access is done with M[1..0] = '00'. The CIP must be written with one 16 bit access to use the auxiliary interface. March 2003 (rev. A) Data Sheet 217 of 273 Figure 11.2: Host bridge structure in I/O mapped mode #### Data write Data write requires M[1..0] = '01' and is always a posted write. An internal write register is written by the host write access. Then the data is transferred to the auxiliary interface. #### Data read For read operations the auxiliary bridge uses an internal data buffer. The read access can be performed in three different modes. **Normal read:** (M[1..0] = '01') In *normal read* mode a host read access is immediately transferred to the auxiliary interface. The host read access must be long enough to pass the data from the auxiliary interface to the host data bus. Big delays may be involved. **Posted read:** (M[1..0] = '10') Depending on the selected timing for the desired bridge read operation, the *normal read* may not meet the timing requirements of the selected host interface. To ensure timing constraints when using slow devices the *posted read* mode can be selected. In this mode the data of the internal buffer is immediately read by the host interface. Afterwards a read on the auxiliary interface is initiated to fill the buffer again. So the data of the first host read access should be ignored. **Last read:** (M[1..0] = '11') The last buffered data byte can be read in *last read* mode. The buffered data is transferred to the host interface and no read access is performed by the auxiliary bridge afterwards. It is possible to perfom byte, word or double word accesses. Word or double word are splitted into two or four consecutive byte accesses. The accesses are all executed on the same address. Thus word and double word accesses are useful for FIFO style buffered data transfers from or to an external device. #### **11.2.4** Host mode Auxiliary-to-host accesses can be performed in two ways. In I/O mapped mode two CIP bytes must be programmed to execute read and write accesses. The second way uses the memory mapped mode and the register R BRG CTRL. #### Bridge access in I/O mapped mode This mode is supported for PCI I/O mode, PCMCIA, ISA PnP and SPI modes. The host-to-auxiliary bridge uses two CIP bytes for read and write access control in I/O mapped mode. Figure 11.2 shows the bit mapping of these bytes. Please see Figure 11.2 on page 218 concerning the CIP bytes. If V_BRG_EN is set in the register R_BRG_PCM_CFG all CIP writes must be 16 bit writes. As A[11] and CS[0] are located on the same CIP bit, it is either possible to use more than 4 external devices with 11 bit address bus width or to use up to 4 external devices with full 12 bit address bus width. With 12 bit address space a small external circuitry is required to connect the external devices to the HFC-4S/8S chip select lines. In detail, /BRG_CS0 and /BRG_CS1 must be OR-ed to select the first device, /BRG_CS2 and /BRG_CS3 must be OR-ed to select the second device, and so on. #### Bridge access in memory mapped mode This mode is supported for PCI memory mapped mode and processor mode. In memory mapped mode the control register R_BRG_CTRL can be used to perfom read and write accesses with a large address space. External devices with up to 10 address lines do not require this register. If R_BRG_CTRL is not used, the exact number of available address lines depends on the number of external devices. An overview of this functionality is given in Figure 11.3. V_BRG_CS_SRC of the register R_BRG_CTRL selects the source of the chip select signals. By default the address lines 7 ... 9 are taken. - 1. If the external devices have not more than 7 address lines, the register R_BRG_CTRL is not necessary for bridge accesses. The bridge operation can be performed with 12 address bits as shown in Figure 11.3. Up to 8 external devices can be connected to the HFC-4S/8S. - 2. External devices with 8 ... 10 address lines take one, two or even all chip select lines CS[0..2] from the address specification bits. The number of chip select output signals on the pins /BRG_CS0 ... /BRG_CS7 is reduced appropriately. If A[7] ... A[9] are used in parallel to chip select signals, the bit V BRG CS SRC must be set in the register R BRG CTRL. - 3. The full 12 bit address space can be used with the bitmap V_BRG_ADDR of the register R BRG CTRL. The address bits A[10] and A[11] have to be specified there. #### 11.3 Timing definitions The timing requirements of the connected external devices can be fulfilled by programming different timing configurations. Four different read and write timings can be programmed in the registers R BRG TIM0...R BRG TIM3. March 2003 (rev. A) Data Sheet 219 of 273 Figure 11.3: Host bridge structure in memory mapped mode The timings are defined by writing the number of idle clock cycles for an access to the bitmaps $V_BRG_TIMO_IDLE$... $V_BRG_TIM3_IDLE$ of the registers R_BRG_TIMO ... R_BRG_TIMO . The number of active clock cycles are defined in the bitmaps V_BRG_TIMO CLK ... V_BRG_TIMO CLK of the same registers. The timing can be configured for each chip select and read/write operation independently by programming the registers R BRG TIM SEL01... R BRG TIM SEL67. ## 11.4 Register description | R_BR | R_BRG_PCM_CFG (write only) 0x02 | | | | | |---------|---|--------------|---|--------|--| | Auxilia | Auxiliary bridge and PCM configuration register | | | | | | Bits | Reset
Value | Name | Description | | | | 0 | 0 | V_BRG_EN | Auxiliary bridge enable '0' = disable (external SRAM can be used) '1' = enable (external SRAM is disabled) | | | | 1 | 0 | V_BRG_MD | Auxiliary bridge data lines mode Mode of the data bus pins SRD0 SRD7. '0' = tristate when no bridge access '1' = only tristate when data is read | | | | 42 | | (reserved) | Must be '000'. | | | | 5 | 0 | V_PCM_CLK | Clock of the PCM module '0' = system clock / 1.5 '1' = system clock / 3 PCM clock must be 16.384 MHz, system clonormaly 24.576 MHz. | ock is | | | 76 | 0 | V_ADDR_WRDLY | Address write delay Delay from rising edge of pin /SR_WR to a change for external RAM '00' = delay is approximately 3 ns '01' = delay is approximately 5 ns '10' = delay is approximately 7 ns '11' = delay is approximately 9 ns | ddress | | | R BRG CTRL (write only) 0x- | 0x45 | |-----------------------------|------| |-----------------------------|------| $\label{lem:control} \textbf{Access control register for the auxiliary brigde in memory mapped mode}$ **Note:** This register is not used in I/O mapped mode. | Bits | Reset | Name | Description | |------|-------|--------------|---| | | Value | | | | 20 | 0 | V_BRG_CS | Chip select This bitmap controls the chip select pins. '000' = /BRG_CS0 '001' = /BRG_CS1 '111' = /BRG_CS7 | | 43 | 0 | V_BRG_ADDR | High bits of address Address bits A[10] and A[11] of the auxiliary bridge (pins BRG_A10 and BRG_A11). | | 65 | | (reserved) | Must be '00'. | | 7 | 0 | V_BRG_CS_SRC | Chip select source '0' = address bits A[97] are used for chip select CS[20] '1' = V_BRG_CS is used for chip select, address bits A[97] are used for address selection | R_BRG_MD (write only) 0x47 #### **Control mode** Select Siemens/Intel or Motorola style for external access ('0' = Siemens/Intel, '1' = Motorola). | | 1 | | | |------|-------|-----------|---| | Bits | Reset | Name | Description | | | Value | | | | 0 | 0 | V_BRG_MD0 | Bridge access mode for the chip connected to pin /BRG_CS0 | | 1 | 0 | V_BRG_MD1 | Bridge access mode for the chip connected to pin /BRG_CS1 | | 2 | 0 | V_BRG_MD2 | Bridge access mode for the chip connected to pin /BRG_CS2 | | 3 | 0 | V_BRG_MD3 | Bridge access mode for the chip connected to pin /BRG_CS3 | | 4 | 0 | V_BRG_MD4 | Bridge access mode for the chip connected to pin /BRG_CS4 | | 5 | 0 | V_BRG_MD5 | Bridge access mode for the chip connected to pin /BRG_CS5 | | 6 | 0 | V_BRG_MD6 | Bridge access mode for the chip connected to pin /BRG_CS6 | | 7 | 0 | V_BRG_MD7 | Bridge access mode for the chip connected to pin /BRG_CS7 | | R_BR | G_TIM0 | (write only) 0x48 | | | | |---------|---|-------------------|--|--|--| | Auxilia | Auxiliary bridge timing configuration register for timing 0 | | | | | | Bits | Reset
Value | Name | Description | | | | 30 | 0 | V_BRG_TIM0_IDLE | Idle cycles Number of idle system clock cycles for read/write signal | | | | 74 | 0 | V_BRG_TIM0_CLK | Active cycles Number of active system clock cycles for read/write signal | | | | R_BR0 | G_TIM1 | (write only) 0x49 | | | | |---------|---|-------------------|---|--|--| | Auxilia | Auxiliary bridge timing configuration register for timing 1 | | | | | | Bits | Reset | Name Description | | | | | | Value | | | | | | 30 | 0 | V_BRG_TIM1_IDLE | Idle cycles Number of idle clock cycles for read/write signal | | | | 74 | 0 | V_BRG_TIM1_CLK | Active cycles Number of active clock cycles for read/write signal | | | | R_BR0 | 3_TIM2 | (write only) 0x4A | | | | |---------|---|-------------------|---|--|--| | Auxilia | Auxiliary bridge timing
configuration register for timing 2 | | | | | | Bits | Reset
Value | Name | Description | | | | 30 | 0 | V_BRG_TIM2_IDLE | Idle cycles Number of idle clock cycles for read/write signal | | | | 74 | 0 | V_BRG_TIM2_CLK | Active cycles Number of active clock cycles for read/write signal | | | | R_BR0 | S_TIM3 | (write only) 0x4B | | | | |---------|---|-------------------|---|--|--| | Auxilia | Auxiliary bridge timing configuration register for timing 3 | | | | | | Bits | Reset
Value | Name | Description | | | | 30 | 0 | V_BRG_TIM3_IDLE | Idle cycles Number of idle clock cycles for read/write signal | | | | 74 | 0 | V_BRG_TIM3_CLK | Active cycles Number of active clock cycles for read/write signal | | | | R_BRC | S_TIM_S | SEL01 (write | only) 0x4C | | | | |----------|---|---------------|--|--|--|--| | Timing | Timing selection for bridge device connected to /BRG_CS0 and /BRG_CS1 | | | | | | | Every so | Every selection uses a timing defined in R_BRG_TIM0 R_BRG_TIM3. | | | | | | | Bits | Reset | Name | Description | | | | | | Value | | | | | | | 10 | 0 | V_BRG_WR_SEL0 | WR-timing selection for the chip connected to pin /BRG_CS0 | | | | | 32 | 0 | V_BRG_RD_SEL0 | RD-timing selection for the chip connected to pin /BRG_CS0 | | | | | 54 | 0 | V_BRG_WR_SEL1 | WR-timing selection for the chip connected to pin /BRG_CS1 | | | | | 76 | 0 | V_BRG_RD_SEL1 | RD-timing selection for the chip connected to pin /BRG_CS1 | | | | 0 7..6 V_BRG_RD_SEL3 | R_BR | G_TIM_S | SEL23 (write | only) 0x4D | | | | | |---------|---|---------------|--|--|--|--|--| | Timing | Timing selection for bridge device connected to /BRG_CS2 and /BRG_CS3 | | | | | | | | Every s | Every selection uses a timing defined in R_BRG_TIM0 R_BRG_TIM3. | | | | | | | | Bits | Reset | Name | Description | | | | | | | Value | | | | | | | | 10 | 0 | V_BRG_WR_SEL2 | WR-timing selection for the chip connected to pin /BRG_CS2 | | | | | | 32 | 0 | V_BRG_RD_SEL2 | RD-timing selection for the chip connected to pin /BRG_CS2 | | | | | | 54 | 0 | V_BRG_WR_SEL3 | WR-timing selection for the chip connected to pin /BRG_CS3 | | | | | RD-timing selection for the chip connected to pin /BRG_CS3 | R_BR0 | R_BRG_TIM_SEL45 (write only) 0x4E | | | | | | |-------|--|---------------|--|--|--|--| | | Timing selection for bridge device connected to /BRG_CS4 and /BRG_CS5 Every selection uses a timing defined in R_BRG_TIM0 R_BRG_TIM3. | | | | | | | Bits | Reset
Value | Name | Description | | | | | 10 | 0 | V_BRG_WR_SEL4 | WR-timing selection for the chip connected to pin /BRG_CS4 | | | | | 32 | 0 | V_BRG_RD_SEL4 | RD-timing selection for the chip connected to pin /BRG_CS4 | | | | | 54 | 0 | V_BRG_WR_SEL5 | WR-timing selection for the chip connected to pin /BRG_CS5 | | | | | 76 | 0 | V_BRG_RD_SEL5 | RD-timing selection for the chip connected to pin /BRG_CS5 | | | | | R_BR0 | S_TIM_S | SEL67 (write | only) 0x4F | | | |----------|---|-------------------------------|--|--|--| | Timing | Timing selection for bridge device connected to /BRG_CS6 and /BRG_CS7 | | | | | | Every se | election u | ses a timing defined in R_BRG | G_TIM0 R_BRG_TIM3. | | | | Bits | Reset | Name | Description | | | | | Value | | | | | | 10 | 0 | V_BRG_WR_SEL6 | WR-timing selection for the chip connected to pin /BRG_CS6 | | | | 32 | 0 | V_BRG_RD_SEL6 | RD-timing selection for the chip connected to pin /BRG_CS6 | | | | 54 | 0 | V_BRG_WR_SEL7 | WR-timing selection for the chip connected to pin /BRG_CS7 | | | | 76 | 0 | V_BRG_RD_SEL7 | RD-timing selection for the chip connected to pin /BRG_CS7 | | | # **Chapter 12** # Clock, reset, interrupt, timer and watchdog Table 12.1: Overview of the HFC-4S/8S clock pins | Number | Name | Description | |--------|----------|--------------------------| | 90 | OSC_IN | Oscillator Input Signal | | 91 | OSC_OUT | Oscillator Output Signal | | 92 | CLK_MODE | Clock Mode | **Table 12.2:** Overview of the HFC-4S/8S reset, timer and watchdog registers | Write only registers: | | | Read only | registers: | | |-----------------------|---------------|------|-----------|----------------|------| | Address | Name | Page | Address | Name | Page | | 0x11 | R_IRQMSK_MISC | 232 | 0x10 | R_IRQ_OVIEW | 235 | | 0x13 | R_IRQ_CTRL | 232 | 0x11 | R_IRQ_MISC | 236 | | 0x1A | R_TI_WD | 233 | 0x1C | R_STATUS | 237 | | 0xFF | A_IRQ_MSK | 234 | 0xC8 | R_IRQ_FIFO_BL0 | 238 | | | | | 0xC9 | R_IRQ_FIFO_BL1 | 239 | | | | | 0xCA | R_IRQ_FIFO_BL2 | 240 | | | | | 0xCB | R_IRQ_FIFO_BL3 | 241 | | | | | 0xCC | R_IRQ_FIFO_BL4 | 242 | | | | | 0xCD | R_IRQ_FIFO_BL5 | 243 | | | | | 0xCE | R_IRQ_FIFO_BL6 | 244 | | | | | 0xCF | R_IRQ_FIFO_BL7 | 245 | March 2003 (rev. A) Data Sheet 229 of 273 #### **12.1** Clock The clock generation circuitry of the HFC-4S/8S is shown in Figure 12.1. Two different crystal frequencies can be used. Pin CLK_MODE must be set as shown in Table 12.3 to ensure a system clock of 24,576 MHz. ISDN applications need exactly 24,576 MHz. It is recommended to ensure an accuracy of \pm 50 ppm. Figure 12.1: Standard HFC-4S/8S quartz circuitry | Table 12 | 2.3: Q | uartz se | lection | |----------|--------|----------|---------| | | | | | | Crystal frequency | CLK_MODE | System clock f_{CLKI} | |-------------------|----------|-------------------------| | 24,576 MHz | '1' | 24,576 MHz | | 49,152 MHz | '0' | 24,576 MHz | #### **12.2** Reset HFC-4S/8S has a level sensitive RESET input. This is low active in PCI mode (pin name RST#) and high active in all other modes (pin name RESET). The MODE0/MODE1 pins must be valid during RESET and /SPISEL must be '1' (inactive). After RESET HFC-4S/8S enters an initialization sequence. The HFC-4S/8S has 4 different software resets. The FIFO registers, PCM registers and S/T registers can be reset independently with the bits of the register R_CIRM which are listed in Table 12.4. The reset bits must be cleared by software. Information about the registers reset by the different resets can be found in the register list on pages16 and 14. Table 12.4: HFC-4S/8S reset groups | Reset name | Reset group | Register bit | Description | |----------------|-------------|--------------|---| | Soft Reset | 0 | V_SRES | Reset for FIFO, PCM and S/T registers of the HFC-4S/8S. Soft reset is the same as reset of all partial reset registers. | | HFC Reset | 1 | V_HFCRES | Reset for all FIFO registers of the HFC-4S/8S. | | PCM Reset | 2 | V_PCMRES | Reset for all PCM registers of the HFC-4S/8S. | | S/T Reset | 3 | V_STRES | Reset for all S/T registers of the HFC-4S/8S. | | Hardware reset | Н | _ | Hardware reset initiated by RESET input pin | #### 12.3 Interrupt HFC-4S/8S is equipped with a maskable interrupt engine. A big variety of interrupt sources can be enabled and disabled. All interrupts except FIFO interrupts are reported independently of masking the interrupt or not. Only mask enabled interrupts are used to generate an interrupt on the interrupt pin of the HFC-4S/8S. Reading the interrupt status register resets the bits. Interrupt bits set during the reading are reported at the next reading of the interrupt status registers. FIFO interrupts can be enabled or disabled by setting the bit V_IRQ in register A_IRQ_MSK[FIFO]. Because there are 64 interrupts there are 8 interrupt status registers for FIFO interrupts. To determine which interrupt register must be read in an interrupt routine there is an interrupt overview register which shows in which status register at least one interrupt bit is set (R_IRQ_OVIEW). Reading this register does not clear any interrupt. The following reading of an interrupt register (R_IRQ_FIFO_BL0...R_IRQ_FIFO_BL7) clears the reported interrupts. There are some other conditions which also can generate an interrupt. These are reported in the register R IRQ MISC and can be masked in the register R IRQMSK MISC. The R_IRQ_CTRL register sets the behavior of the interrupt output pin. V_GLOB_IRQ_EN enables the interrupt pin. V_FIFO_IRQ enables the mask enabled FIFO interrupts. #### 12.4 Watchdog and Timer The HFC-4S/8S includes a watchdog and a timer with interrupt capability. The timer counts F0IO pulses. So the timer is incremented every 125 μ s. The watchdog counter is incremented every 2 ms. The timer values for timer and watchdog can be selected by the R_TI_WD register. 16 different timer and watchdog values can be selected. The watchdog can be manually reset by setting bit V_WD_RES of the R_BERT_WD_MD register. Furthermore the watchdog is reset at every access to the HFC-4S/8S if bit V_AUTO_WD_RES of the R_BERT_WD_MD register is set. March 2003 (rev. A) Data Sheet 231 of 273 7..4 ### 12.5 Register description (reserved) #### 12.5.1 Write only register | R_IRQ | MSK_M | ISC (write | e only) 0x11 | |-----------------|------------|-------------------------------|---| | Miscell | aneous in | nterrupt status mask register | | | '0' mea
197. | nns that t | he interrupt is not used for | generating an interrupt on the interrupt pin | | Bits | Reset | Name | Description | | | Value | | | | 0 | | (reserved) | Must be '0'. | | 1 | 0 | V_TI_IRQMSK | Timer elapsed interrupt mask bit | | 2 | 0 |
V_PROC_IRQMSK | Processing / nonprocessing transition interrupt mask bit (every $125 \mu s$) | | 3 | 0 | V_DTMF_IRQMSK | DTMF detection interrupt mask bit | Must be '0000'. | R_IRC | _CTRL | RL (write only) 0x13 | | | |----------------------------|----------------|----------------------|---|--| | Interrupt control register | | | | | | Bits | Reset
Value | Name | Description | | | 0 | 0 | V_FIFO_IRQ | FIFO interrupt '0' = FIFO interrupts disabled '1' = FIFO interrupts enabled | | | 21 | | (reserved) | Must be '00'. | | | 3 | 0 | V_GLOB_IRQ_EN | Global interrupt signal enable (pin 197) '0' = disable '1' = enable | | | 4 | 0 | V_IRQ_POL | Polarity of interrupt signal '0' = low active signal '1' = high active signal | | | 75 | | (reserved) | Must be '000'. | | | R_TI_ | WD | | (write only) 0x1A | | | |-------|-------------------------------------|---------|---|--|--| | Timer | Timer and watchdog control register | | | | | | Bits | Reset
Value | Name | Description | | | | 30 | 0 | V_EV_TS | Timer event after $2^n \cdot 250 \mu s$
$0 = 250 \mu s$
$1 = 500 \mu s$
2 = 1 ms
3 = 2 ms
4 = 4 ms
5 = 8 ms
6 = 16 ms
7 = 32 ms
8 = 64 ms
9 = 128 ms
0xA = 256 ms
0xB = 512 ms
0xC = 1.024 s
0xD = 2.048 s
0xE = 4.096 s
0xF = 8.192 s | | | | 74 | 0 | V_WD_TS | Watchdog event after 2 ⁿ · 2 ms 0 = 2 ms 1 = 4 ms 2 = 8 ms 3 = 16 ms 4 = 32 ms 5 = 64 ms 6 = 128 ms 7 = 256 ms 8 = 512 ms 9 = 1.024 s 0xA = 2.048 s 0xB = 4.096 s 0xC = 8.192 s 0xD = 16.384 s 0xE = 32.768 s 0xF = 65.536 s | | | | A_IRC | _IRQ_MSK [FIFO] (write only) | | | | |--|------------------------------|------------|--|--| | Interrupt register for the selected FIFO Before writing this array register the FIFO must be selected by register R_FIFO. | | | | | | Bits | Reset
Value | Name | Description | | | 0 | 0 | V_IRQ | Interrupt mask for the selected FIFO '0' = disabled '1' = enabled | | | 1 | 0 | V_BERT_EN | BERT output enable '0' = BERT disabled, normal data is transmitted '1' = BERT enabled, output of BERT generator is transmitted | | | 2 | 0 | V_MIX_IRQ | Mixed interrupt generation '0' = disabled (normal operation) '1' = frame interrupts and transparent interrupts are both generated in HDLC mode | | | 73 | | (reserved) | Must be '00000'. | | #### 12.5.2 Read only register | R IRQ OVIEW | (read only) | 0x10 | |-------------|-------------|------| |-------------|-------------|------| #### FIFO interrupt overview register Every bit with value '1' indicates that an interrupt has occured in the FIFO block. A FIFO block consists of 4 transmit and 4 receive FIFOs. The exact FIFO can be determined by reading the R_IRQ_FIFO_BL0 ... R_IRQ_FIFO_BL7 registers that belong to the specified FIFO block. Reading any R_IRQ_FIFO_BL0 ...R_IRQ_FIFO_BL7 registers clear the corresponding bit in this register. Reading this overview register does not clear any interrupt bit. | Bits | Reset | Name | Description | |------|-------|----------------|--| | | Value | | | | 0 | | V_IRQ_FIFO_BL0 | Interrupt overview of FIFO block 0 (FIFOs 0 3) | | 1 | | V_IRQ_FIFO_BL1 | Interrupt overview of FIFO block 1 (FIFOs 4 7) | | 2 | | V_IRQ_FIFO_BL2 | Interrupt overview of FIFO block 2 (FIFOs 8 11) | | 3 | | V_IRQ_FIFO_BL3 | Interrupt overview of FIFO block 3 (FIFOs 12 15) | | 4 | | V_IRQ_FIFO_BL4 | Interrupt overview of FIFO block 4 (FIFOs 16 19) | | 5 | | V_IRQ_FIFO_BL5 | Interrupt overview of FIFO block 5 (FIFOs 20 23) | | 6 | | V_IRQ_FIFO_BL6 | Interrupt overview of FIFO block 6 (FIFOs 24 27) | | 7 | | V_IRQ_FIFO_BL7 | Interrupt overview of FIFO block 7 (FIFOs 28 31) | | R_IRG | RQ_MISC (read only) 0x11 | | | | | | | |-------|---|--|---|--|--|--|--| | | Miscellaneous interrupt status register All bits of this register are cleared after a read access. | | | | | | | | Bits | Reset
Value | Name | Description | | | | | | 0 | | (reserved) | Must be '0'. | | | | | | 1 | 0 | V_TI_IRQ | Timer interrupt '1' = timer elapsed | | | | | | 2 | 0 | V_IRQ_PROC | Processing/non processing transition interrupt status '1' = The HFC-4S/8S has changed from processing to non processing phase (every $125 \mu s$). | | | | | | 3 | 0 | V_DTMF_IRQ DTMF detection interrupt '1' = DTMF detection has been finished. The results can be read from the RAM. | | | | | | | 74 | | (reserved) | Must be '0000'. | | | | | | R_STA | TUS | (read | only) 0x1C | | | | |-------|---------------------------|---------------|--|--|--|--| | HFC-4 | HFC-4S/8S status register | | | | | | | Bits | Reset
Value | Name | Description | | | | | 0 | 0 | V_BUSY | BUSY/NOBUSY status '1' = the HFC-4S/8S is BUSY after initialising Reset FIFO, increment <i>F</i> -counter or change FIFO '0' = the HFC-4S/8S is not busy, all accesses are allowed | | | | | 1 | 1 | V_PROC | Processing / non processing status '1' = the HFC-4S/8S is in processing phase (every $125 \mu s$) '0' = the HFC-4S/8S is not in processing phase | | | | | 2 | 0 | V_DTMF_IRQSTA | DTMF interrupt DTMF interrupt has occured | | | | | 3 | 0 | V_LOST_STA | LOST error (frames have been lost) This means the HFC-4S/8S did not process all data in 125 \(\mu\)s. So data may be corrupted. Bit V_RES_LOST of the R_INC_RES_FIFO register must be set to reset this bit. | | | | | 4 | 0 | V_SYNC_IN | Synchronization input Value of the SYNC_I input pin | | | | | 5 | 0 | V_EXT_IRQSTA | External interrupt External interrupt has occured | | | | | 6 | 0 | V_MISC_IRQSTA | Any miscellaneous interrupt All enabled miscellaneous interrupts of the register R_IRQ_MISC are 'ored'. | | | | | 7 | 0 | V_FR_IRQSTA | Any FIFO interrupt All enabled FIFO interrupts in the registers R_IRQ_FIFO_BL0 R_IRQ_FIFO_BL7 are 'ored'. | | | | R_IRQ_FIFO_BL0 (read only) 0xC8 #### FIFO interrupt register for FIFO block 0 In HDLC mode the *end of frame* is signaled, while in transparent mode the frequency of interrupts is set in the bitmap V_TRP_IRQ of the register A_CON_HDLC. The bit value '1' indicates that the corresponding FIFO generated an interrupt. If a bit is '0', no interrupt occured in the corresponding FIFO. Reading this register clears all set bits and the corresponding bit of the register R_IRQ_OVIEW. | Bits | Reset | Name | Description | | | | |------|-------|----------------|--------------------------------------|--|--|--| | | Value | | | | | | | 0 | 0 | V_IRQ_FIFO0_TX | Interrupt occured in transmit FIFO 0 | | | | | 1 | 0 | V_IRQ_FIFO0_RX | Interrupt occured in receive FIFO 0 | | | | | 2 | 0 | V_IRQ_FIFO1_TX | Interrupt occured in transmit FIFO 1 | | | | | 3 | 0 | V_IRQ_FIFO1_RX | Interrupt occured in receive FIFO 1 | | | | | 4 | 0 | V_IRQ_FIFO2_TX | Interrupt occured in transmit FIFO 2 | | | | | 5 | 0 | V_IRQ_FIFO2_RX | Interrupt occured in receive FIFO 2 | | | | | 6 | 0 | V_IRQ_FIFO3_TX | Interrupt occured in transmit FIFO 3 | | | | | 7 | 0 | V_IRQ_FIFO3_RX | Interrupt occured in receive FIFO 3 | | | | R_IRQ_FIFO_BL1 (read only) 0xC9 #### FIFO interrupt register for FIFO block 1 In HDLC mode the *end of frame* is signaled, while in transparent mode the frequency of interrupts is set in the bitmap V_TRP_IRQ of the register A_CON_HDLC. The bit value '1' indicates that the corresponding FIFO generated an interrupt. If a bit is '0', no interrupt occured in the corresponding FIFO. Reading this register clears all set bits and the corresponding bit of the register R_IRQ_OVIEW. | Bits | Reset | Name | Description | | | | |------|-------|----------------|--------------------------------------|--|--|--| | | Value | | | | | | | 0 | 0 | V_IRQ_FIFO4_TX | Interrupt occured in transmit FIFO 4 | | | | | 1 | 0 | V_IRQ_FIFO4_RX | Interrupt occured in receive FIFO 4 | | | | | 2 | 0 | V_IRQ_FIFO5_TX | Interrupt occured in transmit FIFO 5 | | | | | 3 | 0 | V_IRQ_FIFO5_RX | Interrupt occured in receive FIFO 5 | | | | | 4 | 0 | V_IRQ_FIFO6_TX | Interrupt occured in transmit FIFO 6 | | | | | 5 | 0 | V_IRQ_FIFO6_RX | Interrupt occured in receive FIFO 6 | | | | | 6 | 0 | V_IRQ_FIFO7_TX | Interrupt occured in transmit FIFO 7 | | | | | 7 | 0 | V_IRQ_FIFO7_RX | Interrupt occured in receive FIFO 7 | | | | R_IRQ_FIFO_BL2 (read only) 0xCA #### FIFO interrupt register for FIFO block 2 In HDLC mode the *end of frame* is signaled, while in transparent mode the frequency of interrupts is set in the bitmap V_TRP_IRQ of the register A_CON_HDLC. The bit value '1' indicates that the corresponding FIFO generated an interrupt. If a bit is '0', no interrupt occured in the corresponding FIFO. Reading this register clears all set bits and the corresponding bit of the register R_IRQ_OVIEW. | Bits | Reset | Name | Description | | | | |------|-------|-----------------|---------------------------------------|--|--|--| | | Value | | | | | | | 0 | 0 | V_IRQ_FIFO8_TX | Interrupt occured in transmit FIFO 8 |
 | | | 1 | 0 | V_IRQ_FIFO8_RX | Interrupt occured in receive FIFO 8 | | | | | 2 | 0 | V_IRQ_FIFO9_TX | Interrupt occured in transmit FIFO 9 | | | | | 3 | 0 | V_IRQ_FIFO9_RX | Interrupt occured in receive FIFO 9 | | | | | 4 | 0 | V_IRQ_FIFO10_TX | Interrupt occured in transmit FIFO 10 | | | | | 5 | 0 | V_IRQ_FIFO10_RX | Interrupt occured in receive FIFO 10 | | | | | 6 | 0 | V_IRQ_FIFO11_TX | Interrupt occured in transmit FIFO 11 | | | | | 7 | 0 | V_IRQ_FIFO11_RX | Interrupt occured in receive FIFO 11 | | | | R_IRQ_FIFO_BL3 (read only) 0xCB #### FIFO interrupt register for FIFO block 3 In HDLC mode the *end of frame* is signaled, while in transparent mode the frequency of interrupts is set in the bitmap V_TRP_IRQ of the register A_CON_HDLC. The bit value '1' indicates that the corresponding FIFO generated an interrupt. If a bit is '0', no interrupt occured in the corresponding FIFO. Reading this register clears all set bits and the corresponding bit of the register R_IRQ_OVIEW. | Bits | Reset | Name | Description | | | | |------|-------|-----------------|---------------------------------------|--|--|--| | | Value | | | | | | | 0 | 0 | V_IRQ_FIFO12_TX | Interrupt occured in transmit FIFO 12 | | | | | 1 | 0 | V_IRQ_FIFO12_RX | Interrupt occured in receive FIFO 12 | | | | | 2 | 0 | V_IRQ_FIFO13_TX | Interrupt occured in transmit FIFO 13 | | | | | 3 | 0 | V_IRQ_FIFO13_RX | Interrupt occured in receive FIFO 13 | | | | | 4 | 0 | V_IRQ_FIFO14_TX | Interrupt occured in transmit FIFO 14 | | | | | 5 | 0 | V_IRQ_FIFO14_RX | Interrupt occured in receive FIFO 14 | | | | | 6 | 0 | V_IRQ_FIFO15_TX | Interrupt occured in transmit FIFO 15 | | | | | 7 | 0 | V_IRQ_FIFO15_RX | Interrupt occured in receive FIFO 15 | | | | R_IRQ_FIFO_BL4 (read only) 0xCC #### FIFO interrupt register for FIFO block 4 In HDLC mode the *end of frame* is signaled, while in transparent mode the frequency of interrupts is set in the bitmap V_TRP_IRQ of the register A_CON_HDLC. The bit value '1' indicates that the corresponding FIFO generated an interrupt. If a bit is '0', no interrupt occured in the corresponding FIFO. Reading this register clears all set bits and the corresponding bit of the register R_IRQ_OVIEW. | Bits | Reset | Name | Description | | | | |------|-------|-----------------|---------------------------------------|--|--|--| | | Value | | | | | | | 0 | 0 | V_IRQ_FIFO16_TX | Interrupt occured in transmit FIFO 16 | | | | | 1 | 0 | V_IRQ_FIFO16_RX | Interrupt occured in receive FIFO 16 | | | | | 2 | 0 | V_IRQ_FIFO17_TX | Interrupt occured in transmit FIFO 17 | | | | | 3 | 0 | V_IRQ_FIFO17_RX | Interrupt occured in receive FIFO 17 | | | | | 4 | 0 | V_IRQ_FIFO18_TX | Interrupt occured in transmit FIFO 18 | | | | | 5 | 0 | V_IRQ_FIFO18_RX | Interrupt occured in receive FIFO 18 | | | | | 6 | 0 | V_IRQ_FIFO19_TX | Interrupt occured in transmit FIFO 19 | | | | | 7 | 0 | V_IRQ_FIFO19_RX | Interrupt occured in receive FIFO 19 | | | | R_IRQ_FIFO_BL5 (read only) 0xCD #### FIFO interrupt register for FIFO block 5 In HDLC mode the *end of frame* is signaled, while in transparent mode the frequency of interrupts is set in the bitmap V_TRP_IRQ of the register A_CON_HDLC. The bit value '1' indicates that the corresponding FIFO generated an interrupt. If a bit is '0', no interrupt occured in the corresponding FIFO. Reading this register clears all set bits and the corresponding bit of the register R_IRQ_OVIEW. | Bits | Reset | Name | Description | | | | |------|-------|-----------------|---------------------------------------|--|--|--| | | Value | | | | | | | 0 | 0 | V_IRQ_FIFO20_TX | Interrupt occured in transmit FIFO 20 | | | | | 1 | 0 | V_IRQ_FIFO20_RX | Interrupt occured in receive FIFO 20 | | | | | 2 | 0 | V_IRQ_FIFO21_TX | Interrupt occured in transmit FIFO 21 | | | | | 3 | 0 | V_IRQ_FIFO21_RX | Interrupt occured in receive FIFO 21 | | | | | 4 | 0 | V_IRQ_FIFO22_TX | Interrupt occured in transmit FIFO 22 | | | | | 5 | 0 | V_IRQ_FIFO22_RX | Interrupt occured in receive FIFO 22 | | | | | 6 | 0 | V_IRQ_FIFO23_TX | Interrupt occured in transmit FIFO 23 | | | | | 7 | 0 | V_IRQ_FIFO23_RX | Interrupt occured in receive FIFO 23 | | | | R_IRQ_FIFO_BL6 (read only) 0xCE #### FIFO interrupt register for FIFO block 6 In HDLC mode the *end of frame* is signaled, while in transparent mode the frequency of interrupts is set in the bitmap V_TRP_IRQ of the register A_CON_HDLC. The bit value '1' indicates that the corresponding FIFO generated an interrupt. If a bit is '0', no interrupt occured in the corresponding FIFO. Reading this register clears all set bits and the corresponding bit of the register R_IRQ_OVIEW. | Bits | Reset | Name | Description | | | | |------|-------|-----------------|---------------------------------------|--|--|--| | | Value | | | | | | | 0 | 0 | V_IRQ_FIFO24_TX | Interrupt occured in transmit FIFO 24 | | | | | 1 | 0 | V_IRQ_FIFO24_RX | Interrupt occured in receive FIFO 24 | | | | | 2 | 0 | V_IRQ_FIFO25_TX | Interrupt occured in transmit FIFO 25 | | | | | 3 | 0 | V_IRQ_FIFO25_RX | Interrupt occured in receive FIFO 25 | | | | | 4 | 0 | V_IRQ_FIFO26_TX | Interrupt occured in transmit FIFO 26 | | | | | 5 | 0 | V_IRQ_FIFO26_RX | Interrupt occured in receive FIFO 26 | | | | | 6 | 0 | V_IRQ_FIFO27_TX | Interrupt occured in transmit FIFO 27 | | | | | 7 | 0 | V_IRQ_FIFO27_RX | Interrupt occured in receive FIFO 27 | | | | R_IRQ_FIFO_BL7 (read only) 0xCF #### FIFO interrupt register for FIFO block 7 In HDLC mode the *end of frame* is signaled, while in transparent mode the frequency of interrupts is set in the bitmap V_TRP_IRQ of the register A_CON_HDLC. The bit value '1' indicates that the corresponding FIFO generated an interrupt. If a bit is '0', no interrupt occured in the corresponding FIFO. Reading this register clears all set bits and the corresponding bit of the register R_IRQ_OVIEW. | Bits | Reset | Name | Description | | | | |------|-------|-----------------|---------------------------------------|--|--|--| | | Value | | | | | | | 0 | 0 | V_IRQ_FIFO28_TX | Interrupt occured in transmit FIFO 28 | | | | | 1 | 0 | V_IRQ_FIFO28_RX | Interrupt occured in receive FIFO 28 | | | | | 2 | 0 | V_IRQ_FIFO29_TX | Interrupt occured in transmit FIFO 29 | | | | | 3 | 0 | V_IRQ_FIFO29_RX | Interrupt occured in receive FIFO 29 | | | | | 4 | 0 | V_IRQ_FIFO30_TX | Interrupt occured in transmit FIFO 30 | | | | | 5 | 0 | V_IRQ_FIFO30_RX | Interrupt occured in receive FIFO 30 | | | | | 6 | 0 | V_IRQ_FIFO31_TX | Interrupt occured in transmit FIFO 31 | | | | | 7 | 0 | V_IRQ_FIFO31_RX | Interrupt occured in receive FIFO 31 | | | | ## **Chapter 13** # General purpose I/O pins (GPIO) and input pins (GPI) (For an overview of the GPIO and GPI pins see Table 13.2 on page 249.) Table 13.1: Overview of the HFC-4S/8S general purpose I/O registers | Write only | y registers: | Read only registers: | | | | |------------|--------------|----------------------|---------|------------|------| | Address | Name | Page | Address | Name | Page | | 0x40 | R_GPIO_OUT0 | 250 | 0x40 | R_GPIO_IN0 | 255 | | 0x41 | R_GPIO_OUT1 | 251 | 0x41 | R_GPIO_IN1 | 256 | | 0x42 | R_GPIO_EN0 | 252 | 0x44 | R_GPI_IN0 | 257 | | 0x43 | R_GPIO_EN1 | 253 | 0x45 | R_GPI_IN1 | 258 | | 0x44 | R_GPIO_SEL | 254 | 0x46 | R_GPI_IN2 | 259 | | | | | 0x47 | R_GPI_IN3 | 260 | March 2003 (rev. A) Data Sheet 247 of 273 #### 13.1 GPIO and GPI functionality Most of the interface signals can be used as general purpose I/O pins (GPIOs) or those who are only inputs as general purpose input pins (GPIs). This functionality can be used if the pins are not used as dedicated S/T interfaces. GPIOs must be switched to GPIO mode in the register R_GPIO_SEL if they should be used as outputs. The input functionality of all GPIOs and GPIs is allways enabled. The output values for the GPIOs are set in the registers R_GPIO_OUT0 and R_GPIO_OUT1. The tristate function can be enabled in the registers R_GPIO_EN0 and R_GPIO_EN1. The input values for the GPIO[0..15] can be read in the registers R_GPIO_IN0 and R_GPIO_IN1. The input values for GPI[0..31] can be read in the registers R_GPI_IN0, R_GPI_IN1, R_GPI_IN2 and R_GPI_IN3. #### 13.2 GPIO output voltage adjustment The GPIO output high voltage can be influenced for each set of 4 GPIOs by connecting the appropriate VDD_ST pin to a voltage different from VDD. The voltage must not exceed 3.6 V. See Table 13.2 for details. Table 13.2: Adjustable pin groups of the HFC-4S/8S | Powe | er supply pin | Adju | stable amplitude pins | Powe | er supply pin | Adju | stable amplitude pins | |------|---------------|------|-----------------------|------|---------------|------|-----------------------| | 129 | VDD_ST | 124 | GPI31 | 164 | VDD_ST | 159 | GPI15 | | | | 125 | GPI30 | | | 160 | GPI14 | | | | 126 | GPI29 | | | 161 | GPI13 | | | | 127 | GPI28 | | | 162 | GPI12 | | | | 130 | GPIO15 | | | 165 | GPIO7 | | | | 131 | GPIO14 | | | 166 | GPIO6 | | | | 132 | GPIO13 | | | 167 | GPIO5 | | | | 133 | GPIO12 | | | 168 | GPIO4 | | | | 136 | GPI27 | | | 171 | GPI11 | | | | 137 | GPI26 | | | 172 | GPI10 | | | | 138 | GPI25 | | | 173 | GPI9 | | | | 139 | GPI24 | | | 174 | GPI8 | | 147 | VDD_ST | 142 | GPI23 | 181 | VDD_ST | 176 | GPI7 | | | | 143 | GPI22 | | | 177 | GPI6 | | | | 144 | GPI21 | | | 178 | GPI5 | | | | 145 | GPI20 | | | 179 | GPI4 | | | | 148 | GPIO11 | | | 182 | GPIO3 | | | | 149 | GPIO10 | | | 183 | GPIO2 | | | | 150 | GPIO9 | | | 184 | GPIO1 | | | | 151 | GPIO8 | | | 185 | GPIO0 | | | | 154 | GPI19 | | | 188 | GPI3 | | | | 155 | GPI18 | | | 189 | GPI2 | | | | 156 | GPI17 | | | 190 | GPI1 | | | | 157 | GPI16 | | | 191 | GPI0 | March 2003 (rev. A) Data Sheet 249 of 273 ### 13.3 Register description ead #### Please note! For using a port as GPIO the R_GPIO_SEL register must be programmed. #### 13.3.1 Write only register | R_GP | IO_OUT |) (write | e only) 0x40 | | | | | |---------------------------|----------------|-------------|---------------------------|--|--|--|--| | GPIO data output bits 7 0 | | | | | |
| | | Bits | Reset
Value | Name | Description | | | | | | 0 | 0 | V_GPIO_OUT0 | Output data for pin GPIO0 | | | | | | 1 | 0 | V_GPIO_OUT1 | Output data for pin GPIO1 | | | | | | 2 | 0 | V_GPIO_OUT2 | Output data for pin GPIO2 | | | | | | 3 | 0 | V_GPIO_OUT3 | Output data for pin GPIO3 | | | | | | 4 | 0 | V_GPIO_OUT4 | Output data for pin GPIO4 | | | | | | 5 | 0 | V_GPIO_OUT5 | Output data for pin GPIO5 | | | | | | 6 | 0 | V_GPIO_OUT6 | Output data for pin GPIO6 | | | | | | 7 | 0 | V_GPIO_OUT7 | Output data for pin GPIO7 | | | | | | R_GPI | 0_0UT1 | (write | only) | 0x41 | | | | | |----------------------------|--------|--------------|----------------------------|------|--|--|--|--| | GPIO data output bits 15 8 | 1 | | | | | | | | | Bits | Reset | Name | Description | | | | | | | | Value | | | | | | | | | 0 | 0 | V_GPIO_OUT8 | Output data for pin GPIO8 | | | | | | | 1 | 0 | V_GPIO_OUT9 | Output data for pin GPIO9 | | | | | | | 2 | 0 | V_GPIO_OUT10 | Output data for pin GPIO10 | | | | | | | 3 | 0 | V_GPIO_OUT11 | Output data for pin GPIO11 | | | | | | | 4 | 0 | V_GPIO_OUT12 | Output data for pin GPIO12 | | | | | | | 5 | 0 | V_GPIO_OUT13 | Output data for pin GPIO13 | | | | | | | 6 | 0 | V_GPIO_OUT14 | Output data for pin GPIO14 | | | | | | | 7 | 0 | V_GPIO_OUT15 | Output data for pin GPIO15 | | | | | | | R_GPI | O_EN0 | (write | only) | 0x42 | | | | |----------------------------------|-------|------------|-----------------------------|------|--|--|--| | GPIO data output enable bits 7 0 | | | | | | | | | Bits | Reset | Name | Description | | | | | | | Value | | | | | | | | 0 | 0 | V_GPIO_EN0 | Output enable for pin GPIO0 | | | | | | 1 | 0 | V_GPIO_EN1 | Output enable for pin GPIO1 | | | | | | 2 | 0 | V_GPIO_EN2 | Output enable for pin GPIO2 | | | | | | 3 | 0 | V_GPIO_EN3 | Output enable for pin GPIO3 | | | | | | 4 | 0 | V_GPIO_EN4 | Output enable for pin GPIO4 | | | | | | 5 | 0 | V_GPIO_EN5 | Output enable for pin GPIO5 | | | | | | 6 | 0 | V_GPIO_EN6 | Output enable for pin GPIO6 | | | | | | 7 | 0 | V_GPIO_EN7 | Output enable for pin GPIO7 | | | | | | R_GPI | R_GPIO_EN1 (write only) 0x | | | | | | | |--------|-----------------------------------|-------------|------------------------------|--|--|--|--| | GPIO d | GPIO data output enable bits 15 8 | | | | | | | | Bits | Reset | Name | Description | | | | | | | Value | | | | | | | | 0 | 0 | V_GPIO_EN8 | Output enable for pin GPIO8 | | | | | | 1 | 0 | V_GPIO_EN9 | Output enable for pin GPIO9 | | | | | | 2 | 0 | V_GPIO_EN10 | Output enable for pin GPIO10 | | | | | | 3 | 0 | V_GPIO_EN11 | Output enable for pin GPIO11 | | | | | | 4 | 0 | V_GPIO_EN12 | Output enable for pin GPIO12 | | | | | | 5 | 0 | V_GPIO_EN13 | Output enable for pin GPIO13 | | | | | | 6 | 0 | V_GPIO_EN14 | Output enable for pin GPIO14 | | | | | | 7 | 0 | V_GPIO_EN15 | Output enable for pin GPIO15 | | | | | | R | GPIO SEL | (write only) | 0x44 | |----|-----------|--------------|------| | 1. | OI IO OLL | (WITE OHY) | UATT | #### **GPIO** selection register This register allows to select first or second function of some pins. | Bits | Reset | Name | Description | | | |------|-------|-------------|---|--|--| | | Value | | | | | | 0 | 0 | V_GPIO_SEL0 | GPIO0 and GPIO1 '0' = pins T_A0 and T_B0 enabled '1' = pins GPIO0 and GPIO1 enabled | | | | 1 | 0 | V_GPIO_SEL1 | GPIO2 and GPIO3 '0' = pins T_B1 and T_A1 enabled '1' = pins GPIO2 and GPIO3 enabled | | | | 2 | 0 | V_GPIO_SEL2 | GPIO4 and GPIO5 '0' = pins T_A2 and T_B2 enabled '1' = pins GPIO4 and GPIO5 enabled | | | | 3 | 0 | V_GPIO_SEL3 | GPIO6 and GPIO7 '0' = pins T_B3 and T_A3 enabled '1' = pins GPIO6 and GPIO7 enabled | | | | 4 | 0 | V_GPIO_SEL4 | GPIO8 and GPIO9 '0' = pins T_A4 and T_B4 enabled '1' = pins GPIO8 and GPIO9 enabled | | | | 5 | 0 | V_GPIO_SEL5 | GPIO10 and GPIO11 '0' = pins T_B5 and T_A5 enabled '1' = pins GPIO10 and GPIO11 enabled | | | | 6 | 0 | V_GPIO_SEL6 | GPIO12 and GPIO13 '0' = pins T_A6 and T_B6 enabled '1' = pins GPIO12 and GPIO13 enabled | | | | 7 | 0 | V_GPIO_SEL7 | GPIO14 and GPIO15 '0' = pins T_B7 and T_A7 enabled '1' = pins GPIO14 and GPIO15 enabled | | | #### 13.3.2 Read only register | R_GPI | O_IN0 | (read only) | | |-------|-----------|-------------|---------------------------| | GPIO | data inpu | t bits 7 0 | | | Bits | Reset | Name | Description | | | Value | | | | 0 | 0 | V_GPIO_IN0 | Input data from pin GPIO0 | | 1 | 0 | V_GPIO_IN1 | Input data from pin GPIO1 | | 2 | 0 | V_GPIO_IN2 | Input data from pin GPIO2 | | 3 | 0 | V_GPIO_IN3 | Input data from pin GPIO3 | | 4 | 0 | V_GPIO_IN4 | Input data from pin GPIO4 | | 5 | 0 | V_GPIO_IN5 | Input data from pin GPIO5 | | 6 | 0 | V_GPIO_IN6 | Input data from pin GPIO6 | | 7 | 0 | V_GPIO_IN7 | Input data from pin GPIO7 | | R_GPI | IO_IN1 | (read | only) | 0x41 | |--------|----------------|-------------|----------------------------|------| | GPIO (| data inpu | t bits 15 8 | | | | Bits | Reset
Value | Name | Description | | | 0 | 0 | V_GPIO_IN8 | Input data from pin GPIO8 | | | 1 | 0 | V_GPIO_IN9 | Input data from pin GPIO9 | | | 2 | 0 | V_GPIO_IN10 | Input data from pin GPIO10 | | | 3 | 0 | V_GPIO_IN11 | Input data from pin GPIO11 | | | 4 | 0 | V_GPIO_IN12 | Input data from pin GPIO12 | | | 5 | 0 | V_GPIO_IN13 | Input data from pin GPIO13 | | | 6 | 0 | V_GPIO_IN14 | Input data from pin GPIO14 | | | 7 | 0 | V_GPIO_IN15 | Input data from pin GPIO15 | | | R_GPI | R_GPI_IN0 (read only) | | | | | | | |-------|---|-----------|--------------------------|--|--|--|--| | | GPI data input bits 7 0 Note: Unused GPI pins must be connected to ground. | | | | | | | | Bits | Reset | Name | Description | | | | | | | Value | | | | | | | | 0 | 0 | V_GPI_IN0 | Input data from pin GPI0 | | | | | | 1 | 0 | V_GPI_IN1 | Input data from pin GPI1 | | | | | | 2 | 0 | V_GPI_IN2 | Input data from pin GPI2 | | | | | | 3 | 0 | V_GPI_IN3 | Input data from pin GPI3 | | | | | | 4 | 0 | V_GPI_IN4 | Input data from pin GPI4 | | | | | | 5 | 0 | V_GPI_IN5 | Input data from pin GPI5 | | | | | | 6 | 0 | V_GPI_IN6 | Input data from pin GPI6 | | | | | | 7 | 0 | V_GPI_IN7 | Input data from pin GPI7 | | | | | | R_GPI | _GPI_IN1 (read only) 0x | | | | | | |---------|-------------------------|---------------------------------|---------------------------|--|--|--| | GPI da | ta input l | bits 15 8 | | | | | | Note: U | Jnused Gl | PI pins must be connected to gr | ound. | | | | | Bits | Reset | Name | Description | | | | | | Value | | | | | | | 0 | 0 | V_GPI_IN8 | Input data from pin GPI8 | | | | | 1 | 0 | V_GPI_IN9 | Input data from pin GPI9 | | | | | 2 | 0 | V_GPI_IN10 | Input data from pin GPI10 | | | | | 3 | 0 | V_GPI_IN11 | Input data from pin GPI11 | | | | | 4 | 0 | V_GPI_IN12 | Input data from pin GPI12 | | | | | 5 | 0 | V_GPI_IN13 | Input data from pin GPI13 | | | | | 6 | 0 | V_GPI_IN14 | Input data from pin GPI14 | | | | | 7 | 0 | V_GPI_IN15 | Input data from pin GPI15 | | | | | R_GPI | GPI_IN2 (read only) | | | | | | | |---------|---|---------------------------------|---------------------------|--|--|--|--| | | GPI data input bits 23 16 Note: Unused GPI pins must be connected to ground. | | | | | | | | Note: C | Jiluseu Gi | FI pins must be connected to gi | ound. | | | | | | Bits | Reset
Value | Name | Description | | | | | | 0 | 0 | V_GPI_IN16 | Input data from pin GPI16 | | | | | | 1 | 0 | V_GPI_IN17 | Input data from pin GPI17 | | | | | | 2 | 0 | V_GPI_IN18 | Input data from pin GPI18 | | | | | | 3 | 0 | V_GPI_IN19 | Input data from pin GPI19 | | | | | | 4 | 0 | V_GPI_IN20 | Input data from pin GPI20 | | | | | | 5 | 0 | V_GPI_IN21 | Input data from pin GPI21 | | | | | | 6 | 0 | V_GPI_IN22 | Input data from pin GPI22 | | | | | | 7 | 0 | V_GPI_IN23 | Input data from pin GPI23 | | | | | | R_GPI | _GPI_IN3 (read only) | | | | | | |---------|---------------------------|---------------------------------|---------------------------|--|--|--| | GPI da | GPI data input bits 31 24 | | | | | | | Note: U | Jnused Gl | PI pins must be connected to gr | ound. | | | | | Bits | Reset | Name | Description | | | | | | Value | | | | | | | 0 | 0 | V_GPI_IN24 | Input data from pin GPI24 | | | | | 1 | 0 | V_GPI_IN25 | Input data from pin GPI25 | | | | | 2 | 0 | V_GPI_IN26 | Input data from pin GPI26 | | | | | 3 | 0 | V_GPI_IN27 | Input data from pin GPI27 | | | | | 4 | 0 | V_GPI_IN28 | Input data from pin GPI28 | | | | | 5 | 0 | V_GPI_IN29 | Input data from pin GPI29 | | | | | 6 | 0 | V_GPI_IN30 | Input data from pin GPI30 | | | | | 7 | 0 | V_GPI_IN31 | Input data from pin GPI31 | | | | ## **Chapter 14** ### **Electrical characteristics** #### Absolute maximum ratings | Parameter | Symbol | Min. | Max. | |-----------------------|-----------|-------------------------|--------------------------| | Power supply | V_{DD} | $-0.3\mathrm{V}$ | $+4.6\mathrm{V}$ | | Input voltage | V_I | $-0.3\mathrm{V}$ | $5.5~\mathrm{V}$ | | Operating temperature | T_{opr} | $0{}^{\circ}\mathrm{C}$ | $+70^{\circ}\mathrm{C}$ | | Junction temperature | T_{jnc} | $0{}^{\circ}\mathrm{C}$ | $+100^{\circ}\mathrm{C}$ | | Storage temperature | T_{stg} | $-55^{\circ}\mathrm{C}$ | $+125^{\circ}\mathrm{C}$ | #### **Recommended operating conditions** | Parameter | Symbol | Min. | Тур. | Max | Conditions | |-----------------------|-----------|-------------------------|-----------------|-------------------------|------------| | Power supply | V_{DD} | $3.0\mathrm{V}$ | $3.3\mathrm{V}$ | $3.6\mathrm{V}$ | | | Operating temperature | T_{opr} | $0{}^{\circ}\mathrm{C}$ | | $+70^{\circ}\mathrm{C}$ | | #### Electrical characteristics for 3.3 V power supply | Parameter | Symbol | Min. | Тур. | Max | Conditions | |---------------------|----------|------------------|------
-----------------|------------| | Low input voltage | V_{IL} | $-0.3\mathrm{V}$ | | $0.2V_{DD}$ | | | High input voltage | V_{IH} | $0.7V_{DD}$ | | V_{DD} | | | Low output voltage | V_{OL} | $0~\mathrm{V}$ | | $0.4\mathrm{V}$ | | | High output voltage | V_{OH} | $2.4\mathrm{V}$ | | V_{DD} | | March 2003 (rev. A) Data Sheet 261 of 273 ## **Appendix A** ## State matrices for NT and TE March 2003 (rev. A) Data Sheet 263 of 273 # A.1 S/T interface activation / deactivation layer 1 of finite state matrix for NT | | | | Pending | | Pending | | |-----------------------|----------|------------|----------------|----------------|--------------|--| | State name: | Reset | Deactivate | activation | Active | deactivation | | | State number: | G0 | G1 | G 2 | G3 | G 4 | | | INFO sent: | INFO 0 | INFO 0 | INFO 2 | INFO 4 | INFO 0 | | | Event: | | | | | | | | State machine release | G1 | | | | | | | (Note 3) | | | | | | | | Activate request | G2 | G2 | | | G 2 | | | | (Note 1) | (Note 1) | | | (Note 1) | | | Deactivate request | _ | | Start timer T2 | Start timer T2 | | | | | | | G4 | G4 | | | | Expiry T2 (Note 2) | | _ | _ | _ | G1 | | | Receiving INFO 0 | _ | _ | _ | G2 | G 1 | | | Receiving INFO 1 | | G2 | _ | / | _ | | | | | (Note 1) | | | | | | Receiving INFO 3 | _ | / | G3 | _ | _ | | | | | | (Note 1, 4) | | | | | Lost framing | _ | / | / | G2 | _ | | Table A.1: Activation / deactivation layer 1 for finite state matrix for NT #### Legend: - No state change - / Impossible by the definition of peer-to-peer physical layer procedures or system internal reasons - Impossible by the definition of the physical layer service #### **Notes:** - Note 1: Timer 1 (T1) is not implemented in the HFC-4S/8S and must be implemented in software. - **Note 2:** Timer 2 (T2) prevents unintentional reactivation. Its value is $32 \,\text{ms} \, (256 \cdot 125 \,\mu s)$. This implies that a TE has to recognize INFO 0 and to react on it within this time. - Note 3: After reset the state machine is fixed to G0. - **Note 4:** Bit $V_SET_G2_G3$ of the $A_ST_WR_STA$ register must be set to allow this transition or $V_G2_G3_EN$ is set to allow automatic transition $G2 \longrightarrow G3$ (register A_ST_CTRL1). 264 of 273 Data Sheet March 2003 (rev. A) #### A.2 Activation / deactivation layer 1 of finite state matrix for TE | State name: | Reset | Sensing | Deactivated | Awaiting
signal | Identifying input | Synchronized | Activated | Lost
framing | |---|--------|---------|-------------|--------------------|-------------------|--------------|-----------|-----------------| | State number: | F0 | F 2 | F 3 | F4 | F 5 | F 6 | F7 | F 8 | | INFO sent: | INFO 0 | INFO 0 | INFO 0 | INFO 1 | INFO 0 | INFO 3 | INFO 3 | INFO 0 | | Event: | | | | | | | | | | State machine release (Note 1) | F2 | / | / | / | / | / | / | / | | Activate request, receiving any signal receiving INFO 0 | | | F5
F4 | | | _
_ | | _
_ | | Expiry T3 (Note 5) | _ | / | _ | F3 | F3 | F3 | _ | _ | | Receiving INFO 0 | _ | F3 | _ | _ | _ | F3 | F3 | F3 | | Receiving any signal (Note 2) | _ | _ | _ | F5 | _ | / | / | _ | | Receiving INFO 2 (Note 3) | _ | F6 | F6 | F6 | F6 | _ | F6 | F6 | | Receiving INFO 4 (Note 3) | _ | F7 | F7 | F7 | F7 | F7 | _ | F7 | | Lost framing (Note 4) | _ | / | / | / | / | F8 | F8 | _ | Table A.2: Activation / deactivation layer 1 for finite state matrix for TE #### Legend: - No state change - / Impossible situation - Impossible by the definition of the layer 1 service #### **Notes:** - **Note 1:** After reset the state machine is fixed to F 0. - **Note 2:** This event reflects the case where a signal is received and the TE has not (yet) determined wether it is INFO 2 or INFO 4. - Note 3: Bit- and frame-synchronization achieved. - Note 4: Loss of Bit- or frame-synchronization. - Note 5: Timer 3 (T3) is not implemented in the HFC-4S/8S and must be implemented in software. March 2003 (rev. A) Data Sheet 265 of 273 ## Appendix B # Binary organisation of the S/T frame structure March 2003 (rev. A) Data Sheet 267 of 273 The frame structures on the S/T interface are different for each direction of transmission. Both structures are illustrated in Figure B.1. Figure B.1: Frame structure at reference point S and T #### Legend: | Code | Explanation | Code | Explanation | |-------|-----------------------|------|---| | F | Framing bit | N | Bit set to a binary value $N = \overline{F}_A$ (NT to TE) | | L | DC balancing bit | B1 | Bit within B-channel 1 | | D | D-channel bit | B2 | Bit within B-channel 2 | | E | D-echo-channel bit | A | Bit used for activation | | F_A | Auxiliary framing bit | S | S-channel bit | | M | Multiframing bit | | | Lines demarcate those parts of the frame that are independently DC balanced. The F_A bit in the direction TE to NT is used as Q bit in every fifth frame if S/Q bit transmission is enabled (see A ST CTRL0 register). The nominal 2 bit offset is as seen from the TE. The offset can be adjusted with the A_ST_CLK_DLY register in TE mode. The corresponding offset at the NT may be greater due to delay in the interface cable and varies by configuration. HDLC B-channel data start with the LSB, PCM B-channel data start with the MSB. ## **Appendix C** # **HFC-4S/8S** package dimensions March 2003 (rev. A) Data Sheet 269 of 273 Figure C.1: HFC-4S/8S package dimensions ## List of register and bitmap abbreviations This list shows all abbreviations which are used to define the register and bitmap names. Appended digits are not shown here except they have a particular meaning. | 96KHZ | 96 kHz | CTRL | control | FR | frame | |---------|--------------------------------|-------|--------------------------|--------|------------------------------| | ACT | activate | D | D-channel | FSM | FIFO sequence mode | | ADDR | address | DATA | data | | mode | | ADDR0 | address (byte 0) | DEC | decoder | G2 | G2 state | | ADDR1 | address (byte 1) | DIR | direction | G3 | G3 state | | ADDR2 | address (byte 1) | DLY | delay | GLOB | global | | ADJ | adjust | DR | data rate | GPI | general purpose | | ATT | attenuation | DTMF | dual tone multiple | 0010 | input | | AUTO | automatic | | frequency | GPIO | general purpose input/output | | | | | | | input/output | | B1 | B1-channel | E | E-channel | HARM | harmonic | | B12 | B1- and B2-channel | ECH | error counter, high | HDLC | high-level data link | | B2 | B2-channel | ECL | byte error counter, low | | control | | BERT | bit error rate test | LOL | byte | HFCRES | HFC reset | | BIT | bit | EN | enable | HI | high | | BL | block | END | end | ICR | increase | | BRG | bridge | EOMF | end of multiframe | ID | identifier | | BUSY | busy | EPR | EEPROM | IDLE | idle | | | | ERR | error | IDX | index | | C4 | C4IO clock | EV | event | IFF | inter frame fill | | CFG | configuration | EXP | expire | IGNO | ignore | | CH | HFC-channel | EXT | external | IN | input | | CHANNEL | HFC-channel | | | INC | increment | | CHIP | chip | F | F-counter | INFO0 | INFO 0 line | | CLK | clock | F0 | frame | | condition (no | | CNT | counter | | syncronization
signal | | signal) | | CNTH | counter, high byte | F1 | F1-counter | INT | internal | | CNTL | counter, low byte | F12 | F1- and F2-counter | INV | invert | | CONF | connection settings conference | F2 | F2-counter | IRQ | interrupt | | CONF | | FIFO | FIFO | IRQ1S | one-second
interrupt | | CSM | chip select | FIRST | first | IRQMSK | interrupt mask | | COIVI | mode | FLOW | flow | IRQSTA | interrupt status | | | | | | | r | March 2003 (rev. A) Data Sheet 271 of 273 | LD | load | RAM | RAM | STATUS | status | |--------------|--------------------|---------|-------------------------|------------|----------------------| | LEN | length | RD | read | STOP | stop | | LEV | level | RDY | ready | STRES | ST reset | | LI | line | RES | reset | SUBCH | subchannel | | LO | low | RESTART | restart | SUPPR | suppression | | LOOP | loop | REV | reverse | | (threshold) | | LOST | frame data lost | RLD | reload | SWAP | swap | | LPRIO | low priority | ROUT | routing (of PCM buffer) | SYNC
SZ | synchronize
size | | MD | mode | RV | revision | | | | MF | multiframe | RX | receive | TI | timer | | MISC | miscellaneous | | | TIM | timing | | MIX | mixed | SA6 | spare bit S_{a6} | TIME | time | | MSK | mask | SCI | state change | TRANS | transition | | MULT | multiple | | interrupt | TRIS | tristate | | | | SEL | select | TRP | transparent | | NEG | negative | SEQ | sequence | TS | timestep | | NEXT | next | SET | set | TX | transmit | | NOINC | no increment | SH | shape | | | | NOISE | noise | SH0H | shape 0, high byte | ULAW | μ -law | | NUM | number | SH0L | shape 0, low byte | use | usage | | 055 | off | SH1H | shape 1, high byte | | | | OFF | 011 | SH1L | shape 1, low byte | WD | watchdog timer | | OFLOW
OUT | overflow | SL | time slot | WR | write | | OVIEW | output
overview | SLOT | PCM time slot | WRDLY | write delay | | OVIEW | overview | SLOW | slow | | | | PAT | pattern | SMPL | sample | Z1 | Z1-counter | | PCM | PCM | SPEED | speed | Z12 | Z1- and Z2-counter | | PCMRES | PCM reset | SQ | S/Q bits | Z1H | Z1-counter, high | | PLL | phase locked loop | SRAM | SRAM | | byte | | PNP | plug and play | SRC | source | Z1L | Z1-counter, low byte | | POL | polarity | SRES | soft reset | Z2 | Z2-counter | | PRIO | priority | ST | S/T interface | Z2H | Z2-counter, high | | PROC | processing | STA | state, status | <u></u> | byte | | PWM | pulse width | STACHG | state change | Z2L | Z2-counter, low | | | modulation | START | start | | byte | Cologne Chip AG Data Sheet of HFC-4S/8S