SPEECH CIRCUIT WITH POWER MANAGEMENT

PRELIMINARY DATA

- 2/4 WIRES INTERFACE WITH
- double antisidetone network
- AC impedance externally programmable
- Rx output dynamic programmable
- AGC attack-disconnect points programmable
- ANTI-CLIPPING/ANTI DISTORTION CIRCUIT PROGRAMMABLE
- DTMF INTERFACE
- 3.3 VOLTS SUPPLY FOR MICROPROCESSOR OR DIALER
- EXTRA CURRENT SUPPLY PROGRAMMABLE FOR LOUD SPEAKER
- DC CHARACTERISTIC PROGRAMMABLE FOR ALL SPECIFICATION
- LOW CURRENT OPERATION

DESCRIPTION

The TEA7063 is designed to meet the different

worldwide specifications for telephone set in medium and high range equipments.

BLOCK DIAGRAM

TEA7063
PIN CONNECTION (Top view)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
	Max. Current DC (steady)	150	mA
	Max. Voltage AC (steady)	7.5	V
	Max. Voltage AC + DC (steady)	9	V
	Max. Current (20ms) ONE SHOT	1	A
	Max. Voltage (20ms) ONE SHOT current <1A	12	V
$\mathrm{P}_{\text {tot }}$	Total Power Dissipation	1	W
$\mathrm{~T}_{\mathrm{J}}$	Junction Temperature	130	${ }^{\circ} \mathrm{C}$

MAXIMUM OPERATING CONDITION

Symbol	Parameter	Value	Unit
$V_{D C}$	$D C$ Voltage	7	V
$V_{A C}$	AC Voltage	2.2	V_{p}
$I_{D C}$	DC Current	110	mA
$T_{O P}$	Temperature Range	-20 to 70	${ }^{\circ} \mathrm{C}$

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS ($\mathrm{Tamb}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{KHz} ; \mathrm{R9}=100 \mathrm{~K} \Omega$; unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
V_{C}	Stabilized Voltage (pin 17)	$\mathrm{IL}=25 \mathrm{~mA} ; \mathrm{R} 9=100 \mathrm{~K} \Omega$	2.25	2.5	2.75	V
lint	Internal Bias Current (pin 17)	$\begin{aligned} & \mathrm{IL}=25 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{L}}=25 \mathrm{~mA} ; \mathrm{R} 9=180 \mathrm{~K} \\ & \left(\mathrm{~V} 16-\mathrm{R} 6^{*} \mathrm{lint}+\mathrm{VC}\right) \\ & \hline \end{aligned}$	120	$\begin{aligned} & 140 \\ & 105 \end{aligned}$	160	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\text {ref }}$	Reference Voltage	$\mathrm{I}_{\mathrm{L}}=25 \mathrm{~mA}$	1.05	1.2	1.35	V
$\mathrm{I}_{\text {ref }}$	Current at $\mathrm{V}_{\text {ref }}$		-100		+10	$\mu \mathrm{A}$
V_{mp}	Stabilized Supply at pin 19		3.1	3.3	3.5	V
$\mathrm{I}_{\text {cmp }}$	Charging Current at Pin 19	Pin 17 = GND	$\begin{gathered} 0.6 \mathrm{X} \\ \mathrm{I}_{\text {line }} \\ \hline \end{gathered}$			mA
$\mathrm{I}_{\text {spm }}$	Static Current at Pin 19	$\mathrm{IL}=25 \mathrm{~mA} ; \mathrm{R} 9=100 \mathrm{~K} \Omega$	1.1	1.5		mA
		l L $=25 \mathrm{~mA} ; \mathrm{R} 9=180 \mathrm{~K} \Omega$		0.85		mA
$\mathrm{l}_{\text {imp }}$	Internal Consumption		80	110	150	$\mu \mathrm{A}$
$\mathrm{l}_{\text {ea }}$	Supply Current for Parallel Circuits (pin 12)	$\begin{aligned} & \mathrm{IL}=25 \mathrm{~mA} \\ & \mathrm{~L}=75 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 10 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 57 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{mh}} \\ & \mathrm{~V}_{\mathrm{mb}} \end{aligned}$	Mute Microphone (pin 14)	$\begin{array}{\|l\|} \hline \mathrm{ON} \\ \mathrm{OFF} \\ \hline \end{array}$	$\begin{gathered} 1.6 \\ 0.25 \\ \hline \end{gathered}$		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{mh}} \\ & \mathrm{~V}_{\mathrm{mb}} \end{aligned}$	Mute Earphone (pin 14)	ON OFF	$\begin{gathered} 2.7 \\ 0.25 \\ \hline \end{gathered}$		2.1	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Imleak	Mute Leakage Current (pin 14)	$\mathrm{V}_{14}=5 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\begin{gathered} \mathrm{G}_{\mathrm{s}} \\ \mathrm{AGCS} \end{gathered}$	Tx Gain Long Line	$\mathrm{I}_{\mathrm{L}}=25 \mathrm{~mA}$	$\begin{gathered} 41.5 \\ -7 \\ \hline \end{gathered}$	$\begin{gathered} 42.5 \\ -6 \\ \hline \end{gathered}$	$\begin{gathered} 43.5 \\ -5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\mathrm{Gm}_{\mathrm{m}} \mathrm{f}$	DTMF Gain	Pin $14>1.6 \mathrm{~V}$	41.5	42.5	43.5	dB
THD	Tx Distortion	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=25 \mathrm{~mA} \\ & \mathrm{~V}_{\text {mic }}=-3 \mathrm{dBm}-\mathrm{GS} \\ & \mathrm{~V}_{\text {mic }}=-3 \mathrm{dBm}-\mathrm{GS}+15 \mathrm{~dB} \end{aligned}$			$\begin{gathered} 3 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
$\mathrm{Z}_{\text {e }}$	Microphone Impedance		20			$\mathrm{K} \Omega$
$\mathrm{N}_{\text {TX }}$	Tx Noise (psometric)	$\begin{aligned} & \mathrm{IL}=25 \mathrm{~mA} \\ & 2 \mathrm{~K} \Omega \text { at Pins } 5-7 \end{aligned}$		-74		$\begin{gathered} \mathrm{dBm} \\ \text { psoph } \end{gathered}$
RS	Tx Attenuation in Mute Mode	$\begin{aligned} & \hline \mathrm{I}=25 \mathrm{~mA} \\ & \text { Pin } 14>1.6 \mathrm{~V} \end{aligned}$	60			dB
$\begin{gathered} \mathrm{G}_{\mathrm{r}} \\ \mathrm{AGC}_{r} \end{gathered}$	Rx Gain Long Line Line Lenght	L L $=25 \mathrm{~mA}$	$\begin{array}{r} 29 \\ -7 \\ \hline \end{array}$	$\begin{array}{r} 30 \\ -6 \\ \hline \end{array}$	$\begin{array}{r} 31 \\ -5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
THD ${ }_{r}$	Rx Distortion	$\begin{array}{\|l} \hline \mathrm{L}=25 \mathrm{~mA} \\ \mathrm{Vro}=500 \mathrm{mV} \\ \mathrm{Vro}=630 \mathrm{mV} \\ \hline \end{array}$			$\begin{gathered} 3 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
$\mathrm{N}_{\text {RX }}$	Rx Noise	$\mathrm{L}=25 \mathrm{~mA}$		-74		dBmp
R_{r}	Rx Attenuation in Mute Mode	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=25 \mathrm{~mA} \\ & \text { Pin }=14>2.7 \mathrm{~V} \end{aligned}$	50			dB
$\mathrm{G}_{\text {as }}$	Antisidetone	$\mathrm{I}_{\mathrm{L}}=25 \mathrm{~mA}$	22			dB
$\mathrm{Zac}_{\text {a }}$	AC Impedance	$\mathrm{l}=25 \mathrm{~mA}$	500	650	800	Ω
Grs	$\begin{aligned} & \begin{array}{l} \text { Confidence Level }=V_{\text {LINE }} / V_{\text {REC }} \\ \text { (in DTMF) } \end{array} \\ & \hline \end{aligned}$	Pin $14>2.7 \mathrm{~V}$	35.5	38.5	41.5	dB
IST	Soft Clipping Current Level Control (pin 10)	$\begin{aligned} & \mathrm{IL}_{\mathrm{L}}=25 \mathrm{~mA} ; \mathrm{R} 9=100 \mathrm{~K} \Omega \\ & \mathrm{I}_{\mathrm{L}}=25 \mathrm{~mA} ; \mathrm{R} 9=180 \mathrm{~K} \Omega \end{aligned}$	2.30	$\begin{gathered} 2.55 \\ 1.4 \\ \hline \end{gathered}$	2.80	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {ST }}$	Control Voltage Range (Pin 10)	$\mathrm{V}_{\text {ST }}=\mathrm{R}_{\text {ST }} \times \mathrm{I}_{\text {ST }}$	0		1	V

CIRCUIT DESCRIPTION

1. DC CHARACTERISTICS

$1.1 \mathrm{~V}_{\mathrm{c}}$ (pin 17)

The stabilized voltage VC is connected to Vline (pin 16) through an internal shunt regulator T1, T2, which presents to the line a high AC impedance at frequecncies higher than 200 Hz . At this purpose the value of Cl^{1} (at pin 17) must be not lower than $47 \mu \mathrm{~F}$ (suggested value is $100 \mu \mathrm{~F}$).
The shunt regulator, T1 and T2, also controls the extra current source, or power management, at pin 12 (see also paragraph 6).

1.2 Vilie (pin 16)

The line voltage (pin 16) is determined by the value of the external resistor R6 and by the internal current, lint, flowing between V_{C} (pin 17) and

Ground (see also paragr.: 1.1):
$\mathrm{V}_{\text {LINE }}=\mathrm{V}_{\mathrm{C}}+\mathrm{R} 6 \times \mathrm{l}_{\text {int }}$
V_{C} is fixed by design at about 2.5 V .
lint is reversely related to R9:
$\mathrm{l}_{\text {int }}=8 \mathrm{Volt} / \mathrm{R} 9+60 \mu \mathrm{~A}$ at $\mathrm{IL}>25 \mathrm{~mA}$
$\mathrm{l}_{\text {int }}=4 \mathrm{Volt} / \mathrm{R} 9+60 \mu \mathrm{~A}$ at $\mathrm{L}=6 \mathrm{~mA}$
where IL depends on ILB (see supply management)
V Line must be externally adjusted (with R6) to guarantee both DC and AC characteristic in accordance to the specific standard of the different adminastrations.
Another adjustment of the DC characteristic is possible with R9. Increasing the value of R9 causes a decrease of lint and consequently a reduction of the product lint \times R9. (see also Paragraph 7)

Figure 1

Figure 2

2. TRANSMISSION CHAIN

2.1 A.G.C. In Transmission

The transmission gain between Microphone Input (pin 7) and Vline (pin 16) is internally decreased of 6 dB when the line current varies from ILL to ILS with a constant AC load of 600Ω.
The values of ILL (long line current) and ILS (short line current) are programmable through I-start (pin 9) and I-slope (pin 15) (see also paragr. 4).

2.2 Sending Impedance

The impedance of the Output Stage Amplifier, Zout, is determined by the impedance Z4 (at pin 3).

$$
Z_{\text {out }}=10.65 \times Z 4
$$

The total AC impedance shown to the line is the parallel
$Z_{\text {par }}=Z_{\text {out }} / / Z_{\text {int }} / / Z_{\text {ext }}$ where:

$$
\begin{gathered}
-\mathrm{Z}_{\mathrm{int}}=10 \mathrm{~K} \Omega / / 8.5 \mathrm{nF} \text { (internal) } \\
-\mathrm{Z}_{\mathrm{ext}}=\mathrm{R} 6 / / \mathrm{C} 4(\text { at pin 16) }
\end{gathered}
$$

2.3 Sending Mute

In normal speech operation ($V_{\text {mute }}$ at pin $14<$ 0.8 V), the signal at Microphone Input (pin 7) is amplified to $\mathrm{V}_{\text {line }}$ (pin 16) with the gain Gs (long line) or 6dB lower (shorter lines) depending on AGC control (see paragr. 4).
In sending mute condition (V $14>1.6 \mathrm{~V}$) these gains are reduced of at least 60 dB . In the same condition, DTMF input (pin 6) is activated, with gain Gmf to the line independent from line lenght.

2.4 Antisidetone Buffer

The signal coming from the sending preamplifier is internally presented at pin 4 and than buffered to pins 1 and 2 for sidetone cancellation (see paragraph 3.2).

Figure 3

2.5 Soft Clipping

To avoid distortion on line, the TEA7063 has a "soft clipping" on transmit channel.
The resistor (Rsoft) on pin 10 fixes the maximum AC peak dynamic on the line: $V_{S T L}$
$\mathrm{V}_{\text {stL }}(\mathrm{Vp})=\mathrm{V}_{\text {pin16 }}(\mathrm{DC})-1.44 \bullet \frac{\mathrm{R}_{\text {soft }}(\text { pin } 10)}{\mathrm{R} 9(\operatorname{pin} 8)}$
where Rsoft $\leq \frac{1 \mathrm{~V}}{\mathrm{I}_{\mathrm{ST}}} \quad \mathrm{I}_{\mathrm{ST}}=\frac{470 \mathrm{mV}}{2 \cdot \mathrm{R} 9(\mathrm{pin} 8)}$
The capacitor (C10) and the resistor (R10) connected on pin 11 fixe the constant time of the soft clipping.
Recommended values: $\mathrm{C} 10=150 \mathrm{nF}$; $R 10=560 \mathrm{~K} \Omega$

Figure 4

Figure 5: Transmit Curves

3. RECEIVE CHAIN

3.1 A.G.C. In Receive

As described for the transmission chain, also the receiving gains Gr, from pins 1 and 2 to pin 20, have a reduction of 6 dB when lline moves from ILL to ILS (see also paragr. 4).

3.2 Sidetone Compensation

The circuit is provided with a double anti-sidetone network to optimize both at long and short lines.
In case double antisidetone network is not requested by the application needs, pins 1 and 2 can be connected to each other and 5 external passive components can be saved (ZALL and ZRL).
Before entering pins 1 and 2, the received signal is areduced by the two attenating networks:

- ZALL/ZRL to pin 1 for long lines sidetone compensation,
- ZALS/ZRS to pin 2 for short lines sidetone compensation.
ZRL and ZRS define the total receive gains:
a) $\frac{\text { V20 }}{\text { V16 }}=G_{r} \cdot \frac{\text { ZRL }}{\text { ZRL }+ \text { ZALL }}$ for long lines
b)

$$
\frac{\mathrm{V} 20}{\mathrm{~V} 16}=\left(\mathrm{G}_{\mathrm{r}}-6 \mathrm{~dB}\right) \cdot \frac{\mathrm{ZRS}}{\mathrm{ZRS}+\mathrm{ZALS}} \text { for short lines }
$$

ZALL and ZALS define the sidetone compensation of the circuit.

The equivalent balancing impedance is given by the formula:
$Z A L=K \bullet Z A L S+(1-K) \bullet Z A L L$
where:
$-K=0$ at lLINE $=$ ILL or lower (long line)
$-K$ varies linearly from 0 to 1 with lline between ILL and ILS
$-K=1$ at LIINE $=$ ILS or higher (short line)..
Calculations to define ZALL and ZALS are:
a)

ZALL $=70 \bullet$ R5 • $\frac{Z_{\text {line }}(\text { long }) / / Z_{\text {ext }} / / Z_{\text {int }} / / Z_{\text {out }}}{Z_{\text {out }}}$
Z) $Z A L L=70 \bullet R 5 \cdot \frac{Z_{\text {line }}(\text { short }) / / Z_{\text {ext }} / / Z_{\text {int }} / / Z_{\text {out }}}{Z_{\text {out }}}$ where:

- Zext = R6//C4//(Zelectret) (at pin 13)
$-Z_{\text {int }}=10 \mathrm{~K} \Omega / 8.5 \mathrm{nF}$ (internal impedance)
$-Z_{\text {out }}=10.65 \bullet Z 4$ (at pin 3; see paragr. 2.2)
- Zline (short) and (long) are the impedances of the line at minimum and naximum line lenght
- R5 $=5.1 \mathrm{~K} \Omega \pm 1 \%$ (typically)

3.3 AC Impedance

The total AC impedance of the circuit to the line is:
ZAC = Zout/Zint//Zext (ZALS, ZALL >>ZAC)
3.4 Receive Mute (and confidence level)

When the receive channel is muted (Vpin $14>$ 2.7 V) the receive gain is reduced of 60 dB minimum.

Figure 6

In this condition an internal connection is activated from line DTMF output (pin 16) to Receive Output (pin 20) with an attenuation GRS $=38.5 \mathrm{~dB}$ to provide acoustic feedback of the DTMF emission.

4. A.G.C AND SIDETONE PROGRAMMING

4.1 Programmable Controls

AGC and sidetone attack and disonnect points (or currents) are programmable externally through two independents pins, I-start (pin 9) and I-slope (pin 15).

4.2 I-Start (pin 9)

An external resistor RLL connected between Istart (pin 9) and Microprocessor Supply (pin 19) controls the attack point of AGC and ZAL (antisidetone Z).
ILL is the line current at which the control starts. Formulas for ILL and RLL with R9 $=100 \mathrm{~K}$ are:

$$
\begin{aligned}
\mathrm{ILL} & =\frac{2880}{\mathrm{RLL}}+11 \mathrm{~mA} \\
\mathrm{RLL} & =\frac{2880}{(\mathrm{ILL}-11 \mathrm{~mA})}
\end{aligned}
$$

4.3 I-Slope (pin 15)

An external resistor RLS connected between I-slope (pin 15) and Microprocessor Supply (pin 19) controls the disconnected point of AGC and

ZAS (antisidetone Z). ILS is the line current at which the control stops. Formulas for ILS and RLS with R9 = 100 K are:

$$
\begin{aligned}
\mathrm{ILS} & =\frac{4680}{\mathrm{RLS}}+\mathrm{ILL} ; \\
\mathrm{RLS} & =\frac{4680}{(\mathrm{ILS}-\mathrm{ILL})}
\end{aligned}
$$

4.4 A.G.C. OFF (pin 9 and 15)

Programming ILL and ILS respectively higher than 70 mA and 450 mA is forcing the IC in AGC OFF Condition.
Suggested external components are:
$R L L=51 \mathrm{~K} \Omega$ and $\mathrm{RLS}=10 \mathrm{~K} \Omega$
In this case sending, receiving gain and sidetone compensation are independent of the line lenght. Pins 1 and 2 can be connected to each other saving 5 passive external components at pin 2.

4.5 Secret Function for Private (pin 14)

The two separate thresholds for sending and Receiving Mute (pin 14) allow "Secret Function" (only microphone muted).
Pin 14 can be set:
a) between 0.25 V and 0.8 V for speech mode,
b) between 1.6 V and 2.1 V for "secret" mode (microphone muted),
c) between 2.7 V and 3.3 V for "all muted" mode

Figure 7

5. MICROPROCESSOR INTERFACE

5.1 Microprocessor Supply (pin 19)

At "off-hook" the first priority of the circuit is to make some current available at the Microprocessor Supply (pin 19) to charge quickly the external capacitor C2.
This charging current is $\mathrm{I}_{\mathrm{cpm}}=0.6 \bullet$ LIINE
T-charge of about 10 ms is necessary, with $\mathrm{C} 2=$ $47 / \mu \mathrm{F}$. to charge pin 19 at the specified value of 3.3 V typical at l $\operatorname{LINE}=25 \mathrm{~mA}$:

T-charge $=\frac{3.3 \mathrm{~V} \cdot \mathrm{C} 2}{0.6 \bullet \text { LINE }}$ typically
$\mathrm{V}_{\mathrm{mp}}=3.3 \mathrm{~V}$ in normal operation and current increases linearly from 0.5 mA min, at $\mathrm{LIINE}=6 \mathrm{~mA}$, to 1.5 mA , at LIINE $=25 \mathrm{~mA}$, remaining stable for highervalues of ILINE. (with R9 $=100 \mathrm{~K}$) In general:
$\mathrm{I}_{\mathrm{mp}}=\frac{130 \mathrm{Volt}}{\mathrm{R} 9}+0.3 \mathrm{~mA}$ at $\mathrm{I} \quad>25 \mathrm{~mA}$
$I_{\mathrm{mp}}=\frac{11 \text { Volt }}{\mathrm{R} 9}+0.3 \mathrm{~mA}$ at $\mathrm{I} \quad>6 \mathrm{~mA}$
A zener of 3.9 V typical is generally suggested to

Figure 8

6. CURRENT SOURCE FOR SPEAKERPHONE

6.1 Current Source (pin 12)

Most of the DC current available from the line is delivered by the speech circuit at the output Isource (pin 12) through an internal current generator.
Typical values of this current, Lss with R9 $=100 \mathrm{~K}$, are:
$I_{\text {LS }}=\left(0.3 \bullet l_{\text {LINE }}\right) \quad$ for $I_{\text {LINE }}<16.5 \mathrm{~mA}$
lıs $=(0.9 \bullet$ line $-10 \mathrm{~mA})$ for luine $>16.5 \mathrm{~mA}$
(ex: ILINE $=16 \mathrm{~mA}$ then $\mathrm{ILS}=5 \mathrm{~mA}$

LIINE $=30 \mathrm{~mA}$ then $\mathrm{LLs}=17 \mathrm{~mA}$
$\mathrm{I}_{\text {LINE }}=60 \mathrm{~mA}$ then $\mathrm{I}_{\text {LS }}=44 \mathrm{~mA}$).
The voltage level at pin 12 must be defined by an external regulator (i.e.: zener) and, if necessary, filtered with a capacitor (47 to $220 \mu \mathrm{~F}$).
In case $V_{\text {LINE (}}$ (at pin 16) approaches voltage at pin 12, then the internal current source switches off and its DC current is shunt to ground through and internal complementary generator, thus avoiding any negative effect on the AC and DC impedances of the telephone set application.

Figure 9

7. INTERNAL DESCRIPTION OF CURRENT

 MANAGEMENT
7.1 Internal Power Supply Management

R9 fixes the line power supply management. R9 fixes the values of: lear, lup, $l_{\text {ref }}$ and ILS.
A current line information is used to modifie the values of lear, lup, Iref and ILS between a minimum and a maximum values.
On Fig 10:
The transmit output stage is represented by a current source ($\mathrm{Itrr}^{\text {r }}$. The I_{tr} value depends of the DC voltage on Vline (pin 16) and Rzac value.
The other internal stages connected to $\mathrm{V}_{\text {LINE }}$ (pin 16) are represented by a constant 1.3 mA current source.

7.2 DC Characteristics (internal)

The DC characteristic is equals to:

$$
V_{\text {LINE }}(\text { pin } 16)=V_{C}(\text { pin } 17)+R 6 \bullet \text { lint }
$$

lint is the sum of all the current sources connected on VC (pin 17):
$\left[l_{p}+I_{\text {ref }}+V\right.$ pin17 / (r7 + r8) $]$

- I_{p} is the bias internal operational amplifiers power supply.

$$
\begin{aligned}
& -I_{\text {ref }}=1 / 3 \bullet\left(V_{\text {refi }} / R 9\right) \text {; with } V_{\text {refi }}=470 \mathrm{mV} \\
& -I_{\text {ref }}=156 / \text { R9 mA }
\end{aligned}
$$

The current line information changes lint value;
at low line current (6 mA): lint $=4 \mathrm{~V} / \mathrm{R9}+60 \mu \mathrm{~A}$
at low line current $(I L=I L b)$: lint $=8 \mathrm{~V} / R 9+60 \mu \mathrm{~A}$

7.3 Microcontroller Supply (internal)

lup $=\left[(\mathrm{p} 2 / \mathrm{r} 2) \bullet I_{\text {ref }}+0.3\right] \mathrm{mA}=[(\mathrm{p} 2 / \mathrm{r} 2) \cdot 156 /$ R9) +0.3$] \mathrm{mA}$
The current line information changes $\mathrm{p} 2 / \mathrm{r} 2$ value;
at low line current (6 mA): p2 / r2 $=70$
at a line current (IL = ILb): p2 / r2 = 820

7.4 Earphone Current Supply (internal)

lear $=\left.(\mathrm{p} 1 / \mathrm{r} 1) \bullet\right|_{\text {ref }} \mathrm{mA}=(\mathrm{p} 1 / \mathrm{r} 1) \bullet(156 / R 9) \mathrm{mA}$ The current line information changes $\mathrm{p} 1 / \mathrm{r} 1$ value;
at low line current (6 mA): $(\mathrm{p} 1 / \mathrm{r} 1)=200$
at a line current ($\mathrm{IL}=\mathrm{ILb}$): $\mathrm{p} 1 / \mathrm{r} 1=2700$
The maximum peak dynamic on the earphone is:
$\mathrm{V}_{\text {pear }}=\mathrm{Z}_{\text {ear }} \bullet{ }^{\text {lear }}$

7.5 Transmit Output Stage (internal)

The output stage bias current depends of the DC voltage on pin 16 and on Rzac impedance.
$\mathrm{Itr}_{\mathrm{r}}=\frac{0.1425 \cdot \mathrm{~V}_{\text {LINE }}-0.517}{\mathrm{R}_{z}}(\mathrm{Rz}$ is the resistor connected betwee pin3 and the ground)

7.6 Loudspeaker Current Source (internal)

The current source for external peripherals has two slopes:

- First slope; before lear, $l_{u p}, l_{t r}$ and $l_{\text {int }}$ are stabilized at their maximum values: $(\mathrm{IL}=\mathrm{ILb})$

$$
\mathrm{ILS}=0.285 \cdot \mathrm{IL}
$$

- Second slope; after lear, lup, Itr and lint are stabilized at their maximum values: (for IL > ILb)

$$
\Delta(\text { ILS })=0.91 \bullet \Delta(\text { LIINE }
$$

lear, lup, Itr and lint are stabilized at their maximum values between 16 and 26 mA , the absolute IL value depends of R9 value. The line current (ILb) where lear, lup, ltr, lint are stabilized at their maximum values and where the slope of ILS change is:

$$
\mathrm{ILb}=\frac{I_{\text {ear }}+I_{\mathrm{up}}+I_{\mathrm{tr}}+I_{\text {int }}+1.3}{0.715}
$$

7.7 Numerical Example

1) $R 9=100 \mathrm{~K} \Omega ; R 6=25 \mathrm{~K} \Omega$

- DC characteristic $=6 \mathrm{~V}$ for lint max:

$$
=5 \mathrm{~V} \text { for } \mathrm{lint} \text { min: }
$$

$l_{\text {int }} \min (I L=6 m A)=4 / 100 K+60=100 \mu \mathrm{~A}$
lint $\min (\mathrm{IL}=\mathrm{ILb})=8 / 100 \mathrm{~K}+60=140 \mu \mathrm{~A}$
Vpin17 $=2.5 \mathrm{~V} \Rightarrow \mathrm{R} 6=25 \mathrm{~K} \Omega \Rightarrow$
Vpin16 min $(\mathrm{IL}=6 \mathrm{~mA})=2.5+25 \cdot 100 \mathrm{E}-3=5 \mathrm{~V}$
Vpin16 max $(\mathrm{IL}=\mathrm{ILb})=2.5+25 \cdot 140 \mathrm{E}-3=6 \mathrm{~V}$

- CurrentSources
lup $\min (I L=6 \mathrm{~mA})=0.4 \mathrm{~mA}$
lup $\max (\mathrm{IL}=\mathrm{ILb})=1.6 \mathrm{~mA}$
$l_{\text {ear }} \min (I L=6 \mathrm{~mA})=0.3 \mathrm{~mA}$
$l_{\text {lear }} \max (\mathrm{IL}=\mathrm{ILb})=4.2 \mathrm{~mA}$
with $R z=75 \Omega$
$\operatorname{ltr} \min (\mathrm{IL}=6 \mathrm{~mA})=2.6 \mathrm{~mA}$
$I_{\text {tr }} \max (\mathrm{IL}=\mathrm{ILb})=4.5 \mathrm{~mA}$
$\mathrm{ILS} \min (\mathrm{IL}=6 \mathrm{~mA})=1.3 \mathrm{~mA}$
$\stackrel{H L b}{ } \mathrm{LLb}=\frac{1.6+4.2+4.5+0.14+1.3}{0.715} \mathrm{~mA}$
$\mathrm{ILb}=16.5 \mathrm{~mA}$
ILS (for IL $=\mathrm{ILb})=0.285 \cdot \mathrm{ILb}=4.7 \mathrm{~mA}$
- at IL $=100 \mathrm{~mA}$:
$\Delta($ ILS $)=0.91 \bullet \Delta($ IL $)=0.91 \bullet(100-16.5)=76 \mathrm{~mA}$
ILS $=4.7+76=80.7 \mathrm{~mA}$

2) $\mathrm{R} 9=56 \mathrm{~K} \Omega$; $\mathrm{R} 6=18 \mathrm{~K} \Omega$

- DC characteristic $=6.1 \mathrm{~V}$ for lint max:

$$
=4.8 \mathrm{~V} \text { for } \mathrm{lint} \min :
$$

lint $\min (I L=6 m A)=4 / 56 K+60=130 \mu A$
$l_{\text {int }} \min (\mathrm{IL}=\mathrm{ILb})=8 / 56 \mathrm{~K}+60=200 \mu \mathrm{~A}$
Vpin17 $=2.5 \mathrm{~V} \Rightarrow R 6=18 \mathrm{~K} \Omega \Rightarrow$
Vpin16 min $(\mathrm{IL}=6 \mathrm{~mA})=2.5+18 \cdot 130 \mathrm{E}-3=4.85 \mathrm{~V}$
Vpin16 max $(I L=I L b)=2.5+18 \cdot 200 E-3=6.1 V$

- Current Sources
lup $\min (I L=6 m A)=0.5 \mathrm{~mA}$
$l_{\text {up }} \max (I L=I L b)=2.5 \mathrm{~mA}$
lear $\min (I L=6 m A)=0.55 m A$
$l_{\text {ear }} \max (\mathrm{IL}=\mathrm{ILb})=7.5 \mathrm{~mA}$
with $R z=75 \Omega$

Itr $\min (I L=6 m A)=2.35 m A$
$I_{\text {tr }} \max (\mathrm{IL}=\mathrm{ILb})=4.5 \mathrm{~mA}$
ILS $\min (I L=6 m A)=1.17 \mathrm{~mA}$
$\mathrm{ILb}=\frac{\mathrm{ILb}}{2.5+7.5+4.5+0.2+1.3} \mathrm{~mA}$
$\mathrm{ILb}=22.4 \mathrm{~mA}$
$\mathrm{ILS}($ for $\mathrm{IL}=\mathrm{ILb})=0.285 \cdot \mathrm{ILb}=6.4 \mathrm{~mA}$

- at IL $=100 \mathrm{~mA}$:
$\Delta($ ILS $)=0.91 \bullet \Delta($ IL $)=0.91 \bullet(100-22.6)=64 m A$ $\mathrm{ILS}=6.4+64=70.4 \mathrm{~mA}$

Figure 10: Line Power Supply Management

SO20 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			2.65			0.104
a1	0.1		0.2	0.004		0.008
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.013
C		0.5			0.020	
c1	45° (typ.)					
D	12.6		13.0	0.496		0.510
E	10		10.65	0.394		0.419
e		1.27			0.050	
e3		11.43			0.450	
F	7.4		7.6	0.291		0.300
L	0.5		1.27	0.020		0.050
M			0.75			0.030
S	8° (max.)					

TEA7063

DIP20 PACKAGE MECHANICAL DATA

DIM	mm			inch		
	Min.	Typ.	Max.	Min.	Typ.	Max.
a1	0.254			0.010		
B	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D						0.335
E		2.54			0.900	1.000
e						
e3						
F						
i						
L						
Z						

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1994 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

