Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

General Description

The MAX3080-MAX3089 high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be a logic high if all transmitters on a terminated bus are disabled (high impedance). The MAX3080/MAX3081/MAX3082 feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 115 kbps . The MAX3083/MAX3084/MAX3085 offer higher driver output slew-rate limits, allowing transmit speeds up to 500kbps. The MAX3086/MAX3087/MAX3088's driver slew rates are not limited, making transmit speeds up to 10 Mbps possible. The MAX3089's slew rate is selectable between 115 kbps , 500 kbps , and 10 Mbps by driving a selector pin with a single three-state driver.

These transceivers typically draw $375 \mu \mathrm{~A}$ of supply current when unloaded, or when fully loaded with the drivers disabled.

All devices have a 1/8-unit-load receiver input impedance that allows up to 256 transceivers on the bus. The MAX3082/MAX3085/MAX3088 are intended for halfduplex communications, while the MAX3080/MAX3081/ MAX3083/MAX3084/MAX3086/MAX3087 are intended for full-duplex communications. The MAX3089 is selectable between half-duplex and full-duplex operation. It also features independently programmable receiver and transmitter output phase via separate pins.

- True Fail-Safe Receiver While Maintaining EIA/TIA-485 Compatibility
 - Enhanced Slew-Rate Limiting Facilitates Error-Free Data Transmission
 (MAX3080-MAX3085/MAX3089)
 - 1nA Low-Current Shutdown Mode (except MAX3081/MAX3084/MAX3087)
 - Pin-Selectable Full/Half-Duplex Operation (MAX3089)
 - Phase Controls to Correct for Twisted-Pair Reversal (MAX3089)
 - Allow Up to 256 Transceivers on the Bus
 Applications

RS-422/RS-485 Communications
Level Translators
Transceivers for EMI-Sensitive Applications Industrial-Control Local Area Networks

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX3080CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX3080CSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 SO
MAX3080EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX3080ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO

Ordering Information continued on last page.
Selection Table

Part	Half/Full Duplex	Data Rate (Mbps)	Slew Rate Limited	Low- Power Shutdown	Receiver/ Driver Enable	Quiescent Current $(\boldsymbol{\mu A})$	Transceivers On Bus	Pin Count	Industry- Standard Pinout
MAX3080	Full	0.115	Yes	Yes	Yes	375	256	14	75180
MAX3081	Full	0.115	Yes	No	No	375	256	8	75179
MAX3082	Half	0.115	Yes	Yes	Yes	375	256	8	75176
MAX3083	Full	0.5	Yes	Yes	Yes	375	256	14	75180
MAX3084	Full	0.5	Yes	No	No	375	256	8	75179
MAX3085	Half	0.5	Yes	Yes	Yes	375	256	8	75176
MAX3086	Full	10	No	Yes	Yes	375	256	14	75180
MAX3087	Full	10	No	No	No	375	256	8	75179
MAX3088	Half	10	No	Yes	Yes	375	256	8	75176
MAX3089	Selectable	Selectable	Selectable	Yes	Yes	375	256	14	75180^{*}

*Pin-compatible with 75180, with additional features implemented using pins 1, 6, 8, and 13.

For free samples \& the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation
8-Pin Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) ... 727 mW 8 -Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................ 471 mW 14-Pin Plastic DIP (derate $10.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).. .800 mW 14-Pin SO (derate $8.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).............. 667 mW
Operating Temperature Ranges
MAX308 C
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX308_E_-_... $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
DRIVER						
Differential Driver Output (no load)	VOD1	Figure 5			5	V
Differential Driver Output	VOD2	Figure 5, R = 50Ω (RS-422)		2.0		V
		Figure 5, R = 27Ω (RS-485)		1.5		
Change in Magnitude of Differential Output Voltage (Note 2)	$\Delta \mathrm{V}_{\text {OD }}$	Figure $5, \mathrm{R}=50 \Omega$ or $\mathrm{R}=27 \Omega$			0.2	V
Driver Common-Mode Output Voltage	Voc	Figure $5, \mathrm{R}=50 \Omega$ or $\mathrm{R}=27 \Omega$			3	V
Change In Magnitude of Common-Mode Voltage (Note 2)	$\Delta \mathrm{VOC}$	Figure $5, \mathrm{R}=50 \Omega$ or $\mathrm{R}=27 \Omega$			0.2	V
Input High Voltage	$\mathrm{V}_{\mathrm{IH} 1}$	DE, DI, $\overline{\mathrm{RE}}, \mathrm{H} / \overline{\mathrm{F}}, \mathrm{TXP}, \mathrm{RXP}$		2.0		V
Input Low Voltage	VIL1	DE, DI, $\overline{\mathrm{RE}}, \mathrm{H} / \overline{\mathrm{F}}, \mathrm{TXP}, \mathrm{RXP}$			0.8	V
DI Input Hysteresis	$\mathrm{V}_{\mathrm{HYS}}$	MAX3080-MAX3085, and MAX3089 with SRL $=\mathrm{V}_{\mathrm{CC}}$ or unconnected			100	mV
SRL Input Current	IIN1	DE, DI, $\overline{\mathrm{RE}}$			± 2	$\mu \mathrm{A}$
	IIN2	H/F, TXP, RXP, internal pull-down		10	40	
Input High Voltage	$\mathrm{V}_{\mathrm{IH} 2}$	SRL		$\mathrm{V}_{\text {CC }}-0.8$		V
Input Middle Voltage	VIM2	SRL (Note 3)		$0.4 \mathrm{~V}_{\mathrm{CC}}$	$0.6 \mathrm{~V}_{\mathrm{CC}}$	V
Input Low Voltage	VIL2	SRL			0.8	V
SRL Input Current	IIN3	SRL $=\mathrm{V}_{\text {CC }}$			75	$\mu \mathrm{A}$
		SRL = GND (Note 3)		-75		
Input Current (A and B) Full Duplex	IIN4	$\begin{aligned} & \mathrm{DE}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND} \text { or } 5.25 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$		125	$\mu \mathrm{A}$
			V IN $=-7 \mathrm{~V}$		-75	
Output Leakage (Y and Z) Full Duplex	lo	$\begin{aligned} & \mathrm{DE}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND} \text { or } 5.25 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$		125	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IN}}=-7 \mathrm{~V}$	-100		
Driver Short-Circuit Output Current (Note 4)	VOD1	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$		-250		mA
		$0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 12 \mathrm{~V}$			250	
		$\mathrm{OV} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$		± 25		

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
RECEIVER							
Receiver Differential Threshold Voltage	$\mathrm{V}_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$		-200	-125	-50	mV
Receiver Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$				25		mV
Receiver Output High Voltage	V_{OH}	$\mathrm{IO}=-4 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=-50 \mathrm{mV}$		$\mathrm{V}_{\text {CC }}-1.5$			V
Receiver Output Low Voltage	VOL	$\mathrm{IO}=4 \mathrm{~mA}, \mathrm{~V}$ ID $=-200 \mathrm{mV}$				0.4	V
Three-State Output Current at Receiver	lozr	$0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.4 \mathrm{~V}$				± 1	$\mu \mathrm{A}$
Receiver Input Resistance	RIN	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$		96			$\mathrm{k} \Omega$
Receiver Output Short-Circuit Current	IOSR	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{RO}} \leq \mathrm{V}_{\mathrm{CC}}$		± 7		± 95	mA
SUPPLY CURRENT							
Supply Current	Icc	No load, $\overline{\mathrm{RE}}=\mathrm{DI}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{SRL}=\mathrm{V}_{\mathrm{CC}}$	$\mathrm{DE}=\mathrm{VCC}$		430	900	$\mu \mathrm{A}$
			$D E=G N D$		375	600	
		No load, $\overline{\mathrm{RE}}=\mathrm{DI}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{SRL}=\mathrm{GND}$	$D E=V_{C C}$		475	1000	$\mu \mathrm{A}$
			$D E=G N D$		420	800	
Supply Current in Shutdown Mode	ISHDN	$D E=G N D, V_{\text {RE }}=V_{C C}$			0.001	10	$\mu \mathrm{A}$

Note 1: All currents into the device are positive; all currents out of the device are negative. All voltages are referred to device ground unless otherwise noted.
Note 2: $\Delta \mathrm{V}_{O D}$ and $\Delta \mathrm{V}_{\mathrm{OC}}$ are the changes in V_{OD} and V_{OC}, respectively, when the DI input changes state
Note 3: The SRL pin is internally biased to $\mathrm{V}_{\mathrm{CC}} / 2$ by a $100 \mathrm{k} \Omega / 100 \mathrm{k} \Omega$ resistor divider. It is guaranteed to be $\mathrm{V}_{\mathrm{CC}} / 2$ if left unconnected.
Note 4: Maximum current level applies to peak current just prior to foldback-current limiting; minimum current level applies during current limiting.

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

SWITCHING CHARACTERISTICS—MAX3080-MAX3082, and MAX3089 with SRL = Unconnected

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Driver Input to Output	tDPLH	Figures 7 and 9, RDIFF $=54 \Omega$, $C_{L 1}=C_{L 2}=100 \mathrm{pF}$	500	2030	2600	ns	
	tDPHL		500	2030	2600		
Driver Output Skew \|tDPLH-tDPHL		tDSKEW	Figures 7 and 9, RDIFF $=54 \Omega$, $C_{L 1}=C_{L 2}=100 \mathrm{pF}$		-3	± 200	ns
Driver Rise or Fall Time	tDR, tDF	Figures 7 and 9, RDIFF $=54 \Omega$, $\mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$	667	1320	2500	ns	
Maximum Data Rate	$\mathrm{f}_{\text {MAX }}$		115			kbps	
Driver Enable to Output High	tDZH	Figures 8 and 10, $\mathrm{C}_{L}=100 \mathrm{pF}$, S2 closed			3500	ns	
Driver Enable to Output Low	tDzL	Figures 8 and 10, $C_{L}=100 \mathrm{pF}$, S1 closed			3500	ns	
Driver Disable Time from Low	tDLZ	Figures 8 and 10, CL $=15 \mathrm{pF}$, S1 closed			100	ns	
Driver Disable Time from High	tDHz	Figures 8 and 10, CL = 15pF, S2 closed			100	ns	
Receiver Input to Output	trpLh, tRPHL	Figures 11 and 13 ; $\left\|\mathrm{V}_{\mathrm{ID}}\right\| \geq 2.0 \mathrm{~V}$; rise and fall time of $\mathrm{V}_{\mathrm{ID}} \leq 15 \mathrm{~ns}$		127	200	ns	
\| tRPLH-tRPHL	Differential Receiver Skew	$t_{\text {RSKD }}$	Figures 11 and 13 ; $\left\|\mathrm{V}_{\mathrm{ID}}\right\| \geq 2.0 \mathrm{~V}$; rise and fall time of $\mathrm{V}_{\mathrm{ID}} \leq 15 \mathrm{~ns}$		3	± 30	ns
Receiver Enable to Output Low	tRZL	Figures 6 and 12, $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, S1 closed		20	50	ns	
Receiver Enable to Output High	tRZH	Figures 6 and 12, $\mathrm{C}_{L}=100 \mathrm{pF}$, S2 closed		20	50	ns	
Receiver Disable Time from Low	trLZ	Figures 6 and 12, $\mathrm{C}_{L}=100 \mathrm{pF}$, S1 closed		20	50	ns	
Receiver Disable Time from High	trHz	Figures 6 and 12, $C_{L}=100 \mathrm{pF}, \mathrm{S} 2$ closed		20	50	ns	
Time to Shutdown	tshDN	(Note 5)	50	200	600	ns	
Driver Enable from Shutdown to Output High	$t_{\text {DZH(SHDN })}$	Figures 8 and 10, $C_{L}=15 p F$, S2 closed			6000	ns	
Driver Enable from Shutdown to Output Low	tDZL(SHDN)	Figures 8 and 10, CL $=15 \mathrm{pF}, \mathrm{S} 1$ closed			6000	ns	
Receiver Enable from Shutdown to Output High	tRZH(SHDN)	Figures 6 and 12, $C_{L}=100 \mathrm{pF}, \mathrm{S} 2$ closed			3500	ns	
Receiver Enable from Shutdown to Output Low	trZL(SHDN)	Figures 6 and 12, $C_{L}=100 \mathrm{pF}, \mathrm{S} 1$ closed			3500	ns	

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

SWITCHING CHARACTERISTICS—MAX3083-MAX3085, and MAX3089 with SRL = VcC

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $T_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Driver Input to Output	tDPLH	Figures 7 and 9, RDIFF $=54 \Omega$, $\mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$	250	720	1000	ns	
	tDPHL		250	720	1000		
Driver Output Skew \|tDPLH - tDPHL		tDSKEW	Figures 7 and 9, RDIFF $=54 \Omega$, $\mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$		-3	± 100	ns
Driver Rise or Fall Time	tDR, tDF	Figures 7 and 9, RDIFF $=54 \Omega$, $C_{L 1}=C_{L 2}=100 \mathrm{pF}$	200	530	750	ns	
Maximum Data Rate	$\mathrm{f}_{\text {MAX }}$		500			kbps	
Driver Enable to Output High	tDZH	Figures 8 and 10, $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, S2 closed			2500	ns	
Driver Enable to Output Low	tDZL	Figures 8 and 10, $\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$, S1 closed			2500	ns	
Driver Disable Time from Low	tDLZ	Figures 8 and 10, CL = 15pF, S1 closed			100	ns	
Driver Disable Time from High	tDHZ	Figures 8 and 10, $\mathrm{CLL}_{\text {L }}=15 \mathrm{pF}$, S2 closed			100	ns	
Receiver Input to Output	trPLH, tRPHL	Figures 11 and 13 ; $\left\|\mathrm{V}_{\mathrm{ID}}\right\| \geq 2.0 \mathrm{~V}$; rise and fall time of $\mathrm{V}_{\mathrm{ID}} \leq 15 \mathrm{~ns}$		127	200	ns	
$\begin{aligned} & \left\|\mathrm{t}_{\text {RPLL }}-\mathrm{t}_{\mathrm{RPHL}}\right\| \text { Differential } \\ & \text { Receiver Skew } \end{aligned}$	tRSKD	Figures 11 and 13 ; $\left\|\mathrm{V}_{\mathrm{ID}}\right\| \geq 2.0 \mathrm{~V}$; rise and fall time of $\mathrm{V}_{\mathrm{ID}} \leq 15 \mathrm{~ns}$		3	± 30	ns	
Receiver Enable to Output Low	trZL	Figures 6 and 12, $\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$, S1 closed		20	50	ns	
Receiver Enable to Output High	tRZH	Figures 6 and 12, $\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$, S 2 closed		20	50	ns	
Receiver Disable Time from Low	tRLZ	Figures 6 and 12, $\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{S} 1$ closed		20	50	ns	
Receiver Disable Time from High	$t_{\text {RHZ }}$	Figures 6 and 12, $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{S} 2$ closed		20	50	ns	
Time to Shutdown	tSHDN	(Note 5)	50	200	600	ns	
Driver Enable from Shutdown to Output High	tDZH(SHDN)	Figures 8 and 10, CL $=15 \mathrm{pF}$, S2 closed			4500	ns	
Driver Enable from Shutdown to Output Low	tDZL(SHDN)	Figures 8 and 10, CL = 15pF, S1 closed			4500	ns	
Receiver Enable from Shutdown to Output High	trZH(SHDN)	Figures 6 and 12, CL = 100pF, S2 closed			3500	ns	
Receiver Enable from Shutdown to Output Low	trZL(SHDN)	Figures 6 and 12, $\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{S} 1$ closed			3500	ns	

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

SWITCHING CHARACTERISTICS—MAX3086-MAX3088, and MAX3089 with SRL = GND
($\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Driver Input to Output	tDPLH	Figures 7 and 9, RDIFF $=54 \Omega$, $C_{L 1}=C_{L 2}=100 \mathrm{pF}$		34	60	ns	
	tDPHL			34	60		
Driver Output Skew \|tDPLH-tDPHL		tDSKEW	Figures 7 and 9, RDIFF $=54 \Omega$, $C_{L 1}=C_{L 2}=100 \mathrm{pF}$		-2.5	± 10	ns
Driver Rise or Fall Time	tDR, tDF	Figures 7 and 9, RIIFF $=54 \Omega$, $C_{L 1}=C_{L 2}=100 \mathrm{pF}$		14	25	ns	
Maximum Data Rate	fmax		10			Mbps	
Driver Enable to Output High	tDzH	Figures 8 and 10, $\mathrm{C}_{L}=100 \mathrm{pF}$, S2 closed			150	ns	
Driver Enable to Output Low	tDZL	Figures 8 and 10, $\mathrm{C}_{L}=100 \mathrm{pF}$, 51 closed			150	ns	
Driver Disable Time from Low	tDLz	Figures 8 and 10, CL = 15pF, S1 closed			100	ns	
Driver Disable Time from High	tDHZ	Figures 8 and 10, $C_{L}=15 \mathrm{pF}$, S2 closed			100	ns	
Receiver Input to Output	trPLH, tRPHL	Figures 11 and $13 ;\left\|\mathrm{V}_{\mathrm{ID}}\right\| \geq 2.0 \mathrm{~V}$; rise and fall time of $\mathrm{V}_{\mathrm{ID}} \leq 15 \mathrm{~ns}$		106	150	ns	
\| tRPLH $-t_{\text {RPHL }}$ \| Differential Receiver Skew	trski	Figures 11 and $13 ;\left\|\mathrm{V}_{\mathrm{ID}}\right\| \geq 2.0 \mathrm{~V}$; rise and fall time of $\mathrm{V}_{\mathrm{ID}} \leq 15 \mathrm{~ns}$		0	± 10	ns	
Receiver Enable to Output Low	tRZL	Figures 6 and 12, $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, S1 closed		20	50	ns	
Receiver Enable to Output High	tRZH	Figures 6 and 12, $\mathrm{C}_{L}=100 \mathrm{pF}$, S2 closed		20	50	ns	
Receiver Disable Time from Low	trLZ	Figures 6 and 12, $\mathrm{C}_{L}=100 \mathrm{pF}$, S1 closed		20	50	ns	
Receiver Disable Time from High	trHz	Figures 6 and 12, $C_{L}=100 \mathrm{pF}, \mathrm{S} 2$ closed		20	50	ns	
Time to Shutdown	tSHDN	(Note 5)	50	200	600	ns	
Driver Enable from Shutdown to Output High	tDZH(SHDN)	Figures 8 and 10, CL $=15 \mathrm{pF}$, S2 closed			250	ns	
Driver Enable from Shutdown to Output Low	tDZL(SHDN)	Figures 8 and 10, $C_{L}=15 \mathrm{pF}, \mathrm{S} 1$ closed			250	ns	
Receiver Enable from Shutdown to Output High	trZH(SHDN)	Figures 6 and 12, $C_{L}=100 \mathrm{pF}$, S 2 closed			3500	ns	
Receiver Enable from Shutdown to Output Low	tRZL(SHDN)	Figures 6 and 12, $C_{L}=100 \mathrm{pF}, \mathrm{S} 1$ closed			3500	ns	

Note 5: The device is put into shutdown by bringing $\overline{R E}$ high and DE low. If the enable inputs are in this state for less than 50ns, the device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 600 ns , the device is guaranteed to have entered shutdown.

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

Typical Operating Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Fail-Safe, High-Speed (10Mbps),
Slew-Rate-Limited RS-485/RS-422 Transceivers

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

Typical Operating Characteristics (continued) $\left(\mathrm{V} C \mathrm{C}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

DRIVER PROPAGATION DELAY M AX3080/MAX3081/M AX3082, AND MAX3089

DRIVER PROPAGATION DELAY

DRIVER PROPAGATION DELAY

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

PIN					NAME	FUNCTION
MAX3080 MAX3083 MAX3086	MAX3081 MAX3084 MAX3087	MAX3082 MAX3085 MAX3088	MAX3089			
FULL-DUPLEXDEVICES		HALFDUPLEX DEVICES	$\begin{aligned} & \text { FULL- } \\ & \text { DUPLEX } \\ & \text { MODE } \end{aligned}$	HALFDUPLEX MODE		
-	-	-	1	1	$\mathrm{H} / \overline{\mathrm{F}}$	Half/Full-Duplex Selector Pin. Connect $\mathrm{H} / \overline{\mathrm{F}}$ to V_{CC} for half-duplex mode; connect to GND or leave unconnected for full-duplex mode.
2	2	1	2	2	RO	Receiver Output. When $\overline{R E}$ is low and if $A-B \geq-50 \mathrm{mV}$, $R O$ will be high; if $A-B \leq-200 \mathrm{mV}$, RO will be low.
3	-	2	3	3	$\overline{\mathrm{RE}}$	Receiver Output Enable. Drive $\overline{\mathrm{RE}}$ low to enable RO; RO is high impedance when $\overline{\mathrm{RE}}$ is high. Drive $\overline{\mathrm{RE}}$ high and DE low to enter low-power shutdown mode.
4	-	3	4	4	DE	Driver Output Enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is low. Drive $\overline{R E}$ high and DE low to enter low-power shutdown mode.
5	3	4	5	5	DI	Driver Input. With DE high, a low on DI forces noninverting output low and inverting output high. Similarly, a high on DI forces noninverting output high and inverting output low.
-	-	-	6	6	SRL	Slew-Rate-Limit Selector Pin. Connect SRL to GND for 10Mbps communication rate; connect to V_{CC} for 500 kbps communication rate. Leave unconnected for 115 kbps communication rate.
6, 7	4	5	7	7	GND	Ground
-	-	-	8	8	TXP	Transmitter Phase. Connect TXP to GND, or leave floating for norma transmitter phase/polarity. Connect to V_{CC} to invert the transmitter phase/polarity.
9	5	-	9	-	Y	Noninverting Driver Output
-	-	-	-	9	Y	Noninverting Receiver Input and Noninverting Driver Output*
10	6	-	10	-	Z	Inverting Driver Output
-	-	-	-	10	Z	Inverting Receiver Input and Inverting Driver Output*
11	7	-	11	-	B	Inverting Receiver Input
-	-	-	-	11	B	Receiver Input Resistors*
-	-	7	-	-	B	Inverting Receiver Input and Inverting Driver Output

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

Pin Description (continued)

PIN					NAME	FUNCTION
MAX3080 MAX3083 MAX3086	MAX3081 MAX3084 MAX3087	MAX3082 MAX3085 MAX3088	MAX3089			
FULL-DUPLEX DEVICES		HALFDUPLEX DEVICES	FULLDUPLEX MODE	HALFDUPLEX MODE		
12	8	-	12	-	A	Noninverting Receiver Input
-	-	-	-	12	A	Receiver Input Resistors*
-	-	6	-	-	A	Noninverting Receiver Input and Noninverting Driver Output
-	-	-	13	13	RXP	Receiver Phase. Connect RXP to GND, or leave unconnected for normal transmitter phase/polarity. Connect to V_{CC} to invert the receiver phase/polarity.
14	1	8	14	14	V_{CC}	Positive Supply; $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$
1, 8, 13	-	-	-	-	N.C.	Not Connected. Not internally connected.

*(MAX3089 only.) In half-duplex mode, the driver outputs serve as receiver inputs. The full-duplex receiver inputs (A and B) will still have a $1 / 8$-unit load, but are not connected to the receiver.

Function Tables

MAX3080/MAX3083/MAX3086

TRANSMITTING				
INPUTS			OUTPUTS	
$\overline{\mathrm{RE}}$	DE	DI	Z	Y
X	1	1	0	1
X	1	0	1	0
0	0	X	High-Z	High-Z
1	0	X	Shutdown	

RECEIVING			
INPUTS			
$\overline{\mathrm{RE}}$	DE	$\mathrm{A}-\mathrm{B}$	RO
0	X	$\geq-0.05 \mathrm{~V}$	1
0	X	$\leq-0.2 \mathrm{~V}$	0
0	X	Open/shorted	1
1	1	X	High-Z
1	0	X	Shutdown

X = Don't care
Shutdown mode, driver and receiver outputs high impedance

MAX3081/MAX3084/MAX3087

TRANSMITTING		
INPUT	Z	Y
DI	0	1
1	1	0
0	OUTPUTS	

RECEIVING	
INPUTS	OUTPUT
$\mathrm{A}-\mathrm{B}$	RO
$\geq-0.05 \mathrm{~V}$	1
$\leq-0.2 \mathrm{~V}$	0
Open/shorted	1

Fail-Safe, High-Speed (10Mbps),
Slew-Rate-Limited RS-485/RS-422 Transceivers
Function Tables (continued)

MAX3082/MAX3085/MAX3088

TRANSMITTING				
INPUTS			OUTPUTS	
$\overline{\mathrm{RE}}$	DE	DI	B / Z	A / Y
X	1	1	0	1
X	1	0	1	0
0	0	X	High-Z	High-Z
1	0	X	Shutdown	

RECEIVING			
INPUTS			
$\overline{\mathrm{RE}}$	DE	$\mathrm{A}-\mathrm{B}$	RO
0	X	$\geq-0.05 \mathrm{~V}$	1
0	X	$\leq-0.2 \mathrm{~V}$	0
0	X	Open/shorted	1
1	1	X	High-Z
1	0	X	Shutdown

MAX3089

TRANSMITTING								
INPUTS							OUTPUTS	
TXP	$\overline{\mathrm{RE}}$	DE	DI	Z	Y			
0	X	1	1	0	1			
0	X	1	0	1	0			
1	X	1	1	1	0			
1	X	1	0	0	1			
X	0	0	X	High-Z	High-Z			
X	1	0	X	Shutdown				

RECEIVING								
INPUTS								OUTPUT
$\mathrm{H} / \overline{\mathrm{F}}$	RXP	$\overline{\mathrm{RE}}$	DE	$\mathrm{A}-\mathrm{B}$	$\mathrm{Y}-\mathrm{Z}$	RO		
0	0	0	X	$\geq-0.05 \mathrm{~V}$	X	1		
0	0	0	X	$\leq-0.2 \mathrm{~V}$	X	0		
0	1	0	X	$\geq-0.05 \mathrm{~V}$	X	0		
0	1	0	X	$\leq-0.2 \mathrm{~V}$	X	1		
1	0	0	0	X	$\geq-0.05 \mathrm{~V}$	1		
1	0	0	0	X	$\leq-0.2 \mathrm{~V}$	0		
1	1	0	0	X	$\geq-0.05 \mathrm{~V}$	0		
1	1	0	0	X	$\leq-0.2 \mathrm{~V}$	1		
0	0	0	X	Open/ shorted	X	1		
1	0	0	0	X	Open/ shorted	1		
0	1	0	X	Open/ shorted	X	0		
1	1	0	0	X	Open/ shorted	0		
X	X	1	1	X	X	High-Z		
X	X	1	0	X	X	Shutdown		

X = Don't care
Shutdown mode, driver and receiver outputs high impedance

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

Figure 1. MAX3080/MAX3083/MAX3086 Pin Configuration and Typical Full-Duplex Operating Circuit

Figure 2. MAX3081/MAX3084/MAX3087 Pin Configuration and Typical Full-Duplex Operating Circuit

Figure 3. MAX3082/MAX3085/MAX3088 Pin Configuration and Typical Half-Duplex Operating Circuit

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

\qquad
The MAX3080-MAX3089 high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all drivers disabled (see Fail-Safe section). The MAX3080/ MAX3081/MAX3082 feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 115kbps (see Reduced EMI and Reflections section). The MAX3083/MAX3084/MAX3085 offer higher driver output slew-rate limits, allowing transmit speeds up to 500kbps. The MAX3086/ MAX3087/MAX3088's driver slew rates are not limited, making transmit speeds up to 10 Mbps possible. The MAX3089's slew rate is selectable between 115kbps, 500kbps, and 10Mbps by driving a selector pin with a three-state driver.

The MAX3082/MAX3085/MAX3088 are half-duplex transceivers, while the MAX3080/MAX3081/MAX3083/ MAX3084/MAX3086/MAX3087 are full-duplex transceivers. The MAX3089 is selectable between half- and full-duplex communication by driving a selector pin high or low, respectively.
All of these parts operate from a single +5 V supply. Drivers are output short-circuit current limited. Thermal shutdown circuitry protects drivers against excessive power dissipation. When activated, the thermal shutdown circuitry places the driver outputs into a highimpedance state.

Receiver Input Filtering The receivers of the MAX3080-MAX3085, and the MAX3089 when operating in 115 kbps or 500 kbps mode, incorporate input filtering in addition to input hysteresis. This filtering enhances noise immunity with differential signals that have very slow rise and fall times. Receiver propagation delay increases by 20\% due to this filtering.

Figure 4. MAX3089 Pin Configuration and Functional Diagram

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

Figure 5. Driver DC Test Load
Fail-Safe The MAX3080 family guarantees a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. This is done by setting the receiver threshold between -50 mV and -200 mV . If the differential receiver input voltage ($A-B$) is greater than or equal to $-50 \mathrm{mV}, \mathrm{RO}$ is logic high. If $A-B$ is less than or equal to $-200 \mathrm{mV}, \mathrm{RO}$ is logic low. In the case of a terminated bus with all transmitters disabled, the receiver's differential input voltage is pulled to OV by the termination. With the receiver thresholds of the MAX3080 family, this results in a logic high with a 50 mV minimum noise margin. Unlike previous fail-safe devices, the -50 mV to -200 mV threshold complies with the $\pm 200 \mathrm{mV}$ EIA/TIA-485 standard.

MAX3089 Programming

The MAX3089 has several programmable operating modes. Transmitter rise and fall times are programmable between $2500 \mathrm{~ns}, 750 \mathrm{~ns}$, and 25 ns , resulting in maximum data rates of $115 \mathrm{kbps}, 500 \mathrm{kbps}$, and 10 Mbps , respectively. To select the desired data rate, drive SRL to one of three possible states by using a three-state driver, by connecting it to VCC or GND, or by leaving it unconnected. For 115 kbps operation, set the three-state device in high-impedance mode or leave SRL unconnected. For 500kbps operation, drive SRL high or connect it to Vcc. For 10Mbps operation, drive SRL low or connect it to GND. SRL can be changed during operation without interrupting data communications.

Occasionally, twisted-pair lines are connected backward from normal orientation. The MAX3089 has two pins that invert the phase of the driver and the receiver to correct for this problem. For normal operation, drive

Figure 6. Receiver Enable/Disable Timing Test Load
TXP and RXP low, connect them to ground, or leave them unconnected (internal pull-down). To invert the driver phase, drive TXP high or connect it to VCC. To invert the receiver phase, drive RXP high or connect it to VCC. Note that the receiver threshold is positive when RXP is high.
The MAX3089 can operate in full- or half-duplex mode. Drive the $\mathrm{H} / \overline{\mathrm{F}}$ pin low, leave it unconnected (internal pull-down), or connect it to GND for full-duplex operation, and drive it high for half-duplex operation. In fullduplex mode, the pin configuration of the driver and receiver is the same as that of a MAX3080 (Figure 4). In half-duplex mode, the receiver inputs are switched to the driver outputs, connecting outputs Y and Z to inputs A and B, respectively. In half-duplex mode, the internal full-duplex receiver input resistors are still connected to pins 11 and 12.

Applications Information

256 Transceivers on the Bus

The standard RS-485 receiver input impedance is $12 \mathrm{k} \Omega$ (one-unit load), and the standard driver can drive up to 32 unit loads. The MAX3080 family of transceivers have a $1 / 8$-unit-load receiver input impedance ($96 \mathrm{k} \Omega$), allowing up to 256 transceivers to be connected in parallel on one communication line. Any combination of these devices and/or other RS-485 transceivers with a total of 32 unit loads or less can be connected to the line.

Reduced EMI and Reflections The MAX3080-MAX3085, and MAX3089 with SRL = VCC or unconnected, are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. Figure 14 shows the driver output waveform and its Fourier analysis of a 20 kHz signal transmitted by a MAX3086/MAX3087/MAX3088, and MAX3089 with SRL = GND. High-frequency harmonic

Fail-Safe, High-Speed (10Mbps),

 Slew-Rate-Limited RS-485/RS-422 Transceivers

Figure 7. Driver Timing Test Circuit

Figure 9. Driver Propagation Delays

Figure 11. Receiver Propagation Delays

Figure 8. Driver Enable/Disable Timing Test Load

Figure 10. Driver Enable and Disable Times (except MAX3081/MAX3084/MAX3087)

Figure 12. Receiver Enable and Disable Times (except MAX3081/MAX3084/MAX3087)

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

Figure 13. Receiver Propagation Delay Test Circuit

Figure 15. Driver Output Waveform and FFT Plot of MAX3083/MAX3084/MAX3085, and MAX3089 with SRL $=$ VCC, Transmitting a 20 kHz Signal
components with large amplitudes are evident. Figure 15 shows the same signal displayed for a MAX3083/ MAX3084/MAX3085, and MAX3089 with SRL = VCC), transmitting under the same conditions. Figure 15's high-frequency harmonic components are much lower in amplitude, compared with Figure 14's, and the potential for EMI is significantly reduced. Figure 16 shows the same signal displayed for a MAX3080/ MAX3081/MAX3082, and MAX3089 with SRL = unconnected, transmitting under the same conditions. Figure 16 's high-frequency harmonic components are even lower.

Figure 14. Driver Output Waveform and FFT Plot of MAX3086/MAX3087/MAX3088, and MAX3089 with SRL $=$ GND, Transmitting a 20 kHz Signal

Figure 16. Driver Output Waveform and FFT Plot of MAX3080/MAX3081/MAX3082, and MAX3089 with SRL = Unconnected, Transmitting a 20 kHz Signal

In general, a transmitter's rise time relates directly to the length of an unterminated stub, which can be driven with only minor waveform reflections. The following equation expresses this relationship conservatively:

$$
\text { Length }=\text { tRISE } /(10 \times 1.5 \mathrm{~ns} / \mathrm{ft})
$$

where tRISE is the transmitter's rise time.
For example, the MAX3080's rise time is typically 1320ns, which results in excellent waveforms with a stub length up to 90 feet. A system can work well with longer unterminated stubs, even with severe reflections, if the waveform settles out before the UART samples them.

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

NOTE: $\overline{R E}$ AND DE ON MAX3080/MAX3083/MAX3086/MAX3089 ONLY.
Figure 17. Line Repeater for MAX3080/MAX3081/
MAX3083/MAX3084/MAX3086/MAX3087, and MAX3089 in Full-Duplex Mode

Low-Power Shutdown Mode
(except MAX3082/MAX3085/MAX3088)
Low-power shutdown mode is initiated by bringing both $\overline{R E}$ high and DE low. In shutdown, the devices typically draw only 1 nA of supply current.
$\overline{R E}$ and DE may be driven simultaneously; the parts are guaranteed not to enter shutdown if $\overline{R E}$ is high and $D E$ is low for less than 50 ns . If the inputs are in this state for at least 600 ns , the parts are guaranteed to enter shutdown.
Enable times tZH and tZL in the Switching Characteristics tables assume the part was not in a lowpower shutdown state. Enable times tZH(SHDN) and tZL(SHDN) assume the parts were shut down. It takes drivers and receivers longer to become enabled from low-power shutdown mode (tZH(SHDN), tZH(SHDN)) than from driver/receiver-disable mode (tzH, tzL).

Driver Output Protection

Two mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention. The first, a foldback current limit on the output stage, provides immediate protection against short circuits over the whole common-mode voltage range (see Typical Operating Characteristics). The second, a thermal shutdown circuit, forces the driver outputs into a high-impedance state if the die temperature becomes excessive.

Figure 18. MAX3080/MAX3081/MAX3082, and MAX3089 with SRL = Unconnected, System Differential Voltage at 50 kHz Driving 4000 feet of Cable

Line Length vs. Data Rate
The RS-485/RS-422 standard covers line lengths up to 4000 feet. For line lengths greater than 4000 feet, use the repeater application shown in Figure 17.
Figures 18,19 , and 20 show the system differential voltage for the parts driving 4000 feet of 26AWG twistedpair wire at 110 kHz into 120Ω loads.

Typical Applications

The MAX3082/MAX3085/MAX3088/MAX3089 transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figures 21 and 22 show typical network applications circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet, as shown in Figure 17.
To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible. The slew-rate-limited MAX3082/MAX3085, and the two modes of the MAX3089, are more tolerant of imperfect termination.

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers

Figure 19. MAX3083/MAX3084/MAX3085, and MAX3089 with SRL $=V_{C C}$, System Differential Voltage at 50 kHz Driving 4000 feet of Cable

Figure 20. MAX3086/MAX3087/MAX3088, and MAX3089 with SRL = GND, System Differential Voltage at 200 kHz Driving 4000 feet of Cable

Figure 21. Typical Half-Duplex RS-485 Network

Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transc eivers

Figure 22. Typical Full-Duplex RS-485 Network
Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX3081CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3081CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3081EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3081ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3082CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3082CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3082EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3082ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3083CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX3083CSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 SO
MAX3083EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX3083ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO
MAX3084CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3084CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3084EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3084ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3085CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3085CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3085EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3085ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO

PART	TEMP. RANGE	PIN-PACKAGE
MAX3086CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX3086CSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 SO
MAX3086EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX3086ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO
MAX3087CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3087CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3087EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3087ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3088CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3088CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX3088EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX3088ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX3089CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Plastic DIP
MAX3089CSD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 SO
MAX3089EPD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Plastic DIP
MAX3089ESD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 SO

[^0][^1]
[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

[^1]: © 1997 Maxim Integrated Products
 Printed USA
 MAXIMI is a registered trademark of Maxim Integrated Products.

