SPICE Device Model Si7674DP ## **Vishay Siliconix** ## N-Channel 30-V (D-S) MOSFET #### **CHARACTERISTICS** - N-Channel Vertical DMOS - Macro Model (Subcircuit Model) - Level 3 MOS - · Apply for both Linear and Switching Application - Accurate over the -55 to 125°C Temperature Range - Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics #### **DESCRIPTION** The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage. A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device. #### SUBCIRCUIT MODEL SCHEMATIC This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits. ## **SPICE Device Model Si7674DP** ## Vishay Siliconix | SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED) | | | | | | |---|---------------------|---|-------------------|------------------|------| | Parameter | Symbol | Test Condition | Simulated
Data | Measured
Data | Unit | | Static | | | - | | | | Gate Threshold Voltage | $V_{GS(th)}$ | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | 1.1 | | V | | On-State Drain Current ^a | I _{D(on)} | $V_{DS} \ge 5V, \ V_{GS}$ = 10V | 1624 | | Α | | Drain-Source On-State Resistance ^a | r | $V_{GS} = 10V, I_D = 20A$ | 0.0027 | 0.0027 | Ω | | | r _{DS(on)} | $V_{GS} = 4.5V, I_D = 20A$ | 0.0038 | 0.0038 | | | Forward Transconductance ^a | g _{fs} | V_{DS} = 15V, I_{D} = 20A | 171 | 87 | S | | Diode Forward Voltage ^a | V_{SD} | I _S = 5A | 0.75 | 0.75 | V | | Dynamic ^b | • | | - | | - | | Total Gate Charge | Q_g | V _{DS} = 15V, V _{GS} = 4.5V, I _D = 20A | 28 | 28 | nC | | Gate-Source Charge | Q_{gs} | | 13.6 | 13.6 | | | Gate-Drain Charge | Q_{gd} | | 6.8 | 6.8 | | #### Notes - a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing. # SPICE Device Model Si7674DP Vishay Siliconix ### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED) Note: Dots and squares represent measured data.