

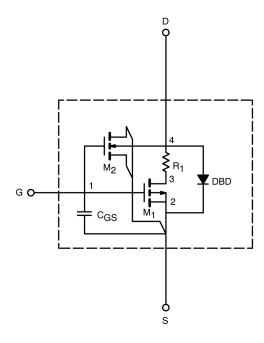
SPICE Device Model Si7405DN

Vishay Siliconix

P-Channel 12-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit mode is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm qd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 71644 www.vishay.com 05-Jun-01 **1**

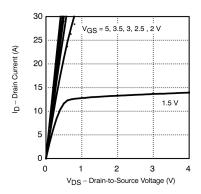
SPICE Device Model Si7401DN

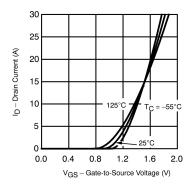
Vishay Siliconix

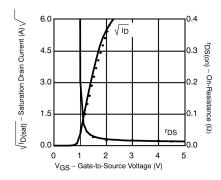
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = -2mA$	0.70		V
On-State Drain Current ^a	I _{D(on)}	V_{DS} = $-5V$, V_{GS} = $-4.5 V$	241		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -4.5V$, $I_{D} = -13A$	0.013	0.013	Ω
		$V_{GS} = -2.5V$, $I_D = -11A$	0.018	0.018	
		$V_{GS} = -1.8V, I_D = -3A$	0.023	0.022	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -6V$, $I_{D} = -13A$	41	35	S
Diode Forward Voltage ^a	V _{SD}	$I_{S} = -3.2A$, $V_{GS} = 0V$	- 0.83	- 0.70	V
Dynamic ^b					
Total Gate Charge	Qg	$V_{DS} = -6V$, $V_{GS} = -4.5V$, $I_{D} = -13A$	37	35	nC
Gate-Source Charge	Q_{gs}		6.6	6.6	
Gate-Drain Charge	Q_{gd}		7.7	7.7	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = -6V, \ R_L = 6\Omega$ $I_D \cong -1A, \ V_{GEN} = -4.5V, \ R_G = 6\Omega$ $I_F = -3.2A, \ di/dt = 100 \ A/\mu s$	30	25	ns
Rise Time	t _r		41	50	
Turn-Off Delay Time	$t_{d(off)}$		162	175	
Fall Time	t _f		175	150	
Source-Drain Reverse Recovery Time	t _{rr}		35	30	

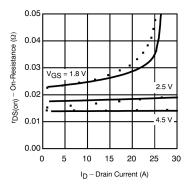
Notes

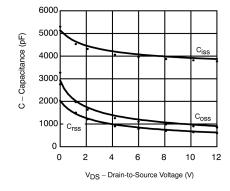
www.vishay.com Document Number: 71644 05-Jun-01

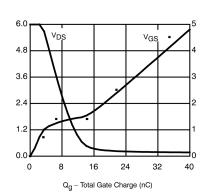

a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.






Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 71644 www.vishay.com 05-Jun-01 3