CONEXANTM

RF133

RF/IF Transceiver For GSM Applications

The RF133 RF/IF Transceiver is a highly integrated, monolithic device optimized for use in GSM and other TDMA single-band or multi-band applications.

The receive path of the device consists of three Intermediate Frequency (IF) amplifiers with selectable gain, an I/Q demodulator, baseband filters, DC offset compensation circuitry, and selectable gain baseband amplifiers.

The transmit path of the device consists of an I/Q modulator and a frequency translation loop designed to perform frequency up-conversion with high output spectral purity. The translation loop consists of a phase/frequency detector, a charge-pump, a mixer, and buffers for the required isolation between the RF input, Local Oscillator (LO), and IF inputs.

The device package and pin configuration are shown in Figure 1. A block diagram of the RF133 is shown in Figure 2. The signal pin assignments and functional pin descriptions are found in Table 1.

Figure 1. RF133 Pin Configuration - 48-pin TQFP

Features

- Quadrature demodulator for downconversion
- 80 dB IF gain range and 30 dB baseband gain range
- Integrated receive baseband filters with tunable bandwidth
- Integrated transmit path with high phase accuracy
- Reduced filtering requirements for the transmit path
- Broad RF and IF range for multi-band operation
- Integrated selectable local oscillator dividers/phase shifters and selectable high/low-side injection for frequency plan flexibility
- On-chip second local oscillator
- Separate enable lines for transmit, receive, and synthesizer modes for power management
- 48 -pin Thin Quad Flat Pack (TQFP) package (7 mm x 7 mm)

Applications

- GSM900/DCS1800/PCS1900 digital cellular telephony
- Multi-mode, multi-band terminals

Figure 2. RF133 Block Diagram

Table 1. RF133 Signal Descriptions

Pin \#	Name	Description	Pin \#	Name	Description
1	GND	Ground (Tx phase detector/charge pump)	25	VCC	Supply (2 ${ }^{\text {nd }}$ LO output buffers)
2	TLCPO	Translation loop charge pump output	26	LPFADJ	Adjustment pin for baseband low pass filter corner frequency
3	VCC	Supply (phase detector and charge pump)	27	VCC	Supply (2 ${ }^{\text {nd }}$ LO)
4	VCC	Supply (Tx modulator, Rx baseband sections)	28	RES1	Resonator pin
5	GND	Ground (Tx modulator, Rx baseband sections)	29	RES2	Resonator pin
6	TXIFIN+	Tx IF input	30	VCC	Supply (2 ${ }^{\text {nd }}$ LO)
7	TXIFIN-	Tx IF input	31	GND	Ground (2 ${ }^{\text {nd }} \mathrm{LO}$)
8	GND	Ground	32	BPC	Bypass capacitor
9	TXI+	Tx modulator input	33	SXENA	Synthesizer enable
10	TXI-	Tx modulator input	34	RXIFF-	Rx IF filter pin
11	TXQ+	Tx modulator input	35	RXIFF+	Rx IF filter pin
12	TXQ-	Tx modulator input	36	DATA	Data input
13	TXMO+	Tx modulator output	37	CLK	Clock input
14	TXMO-	Tx modulator output	38	LE	Latch enable input
15	RXI+	Rx baseband output	39	RXENA	Receiver enable
16	RXI-	Rx baseband output	40	RXIFIN-	Rx IF input
17	RXQ+	Rx baseband output	41	RXIFIN+	Rx IF input
18	RXQ-	Rx baseband output	42	GND	Ground (Tx mixer, Rx IF sections)
19	T/H	Track and hold signal	43	LO1IN-	$1^{\text {st }}$ local oscillator input
20	CTH1	Capacitor for track and hold	44	LO1IN+	$1^{\text {st }}$ local oscillator input
21	CTH2	Capacitor for track and hold	45	VCC	Supply (Tx mixer, Rx IF sections)
22	GND	Ground (2 ${ }^{\text {nd }}$ LO output buffers)	46	TXRFIN-	Transmit RF input
23	LO2O+	$2^{\text {nd }}$ local oscillator output	47	TXRFIN+	Transmit RF input
24	LO2O-	$2^{\text {nd }}$ local oscillator output	48	TXENA	Transmit enable

Technical Description

The RF 133 RF/IF transceiver unit is comprised of a receive path, a transmit path, and a synthesizer section as shown in Figure 2. The receive path consists of a selectable gain IF chain, a quadrature demodulator, and baseband amplifier circuitry with I and Q outputs. The transmit path is essentially an I/Q modulator with a translation loop for frequency upconversion. An on-chip oscillator and frequency dividers make up the synthesizer section. Each section of the RF 133 is separately enabled via the enable signals: TXENA, RXENA, and SXENA.

To control different modes of operation, a serial 21-bit word (bits S1 to S21) is written to the on-chip registers. This 21-bit word is programmed using the three-wire input signals, CLK, DATA, and

LE. To ensure that the data remains latched, either one of the signals TXENA, RXENA, or SXENA must stay enabled. The operating mode that draws the least current (12 mA) is the synthesizer mode (i.e., the mode that results when only SXENA is enabled) (refer to Table 5). In the sleep mode, the device typically draws less than $1 \mu \mathrm{~A}$ of current.

The block diagram in Figure 3 shows a complete RF/IF dualband transceiver chipset using the RF133.

Receive Path

Selectable Gain IF Chain and Quadrature Mixer. The receive path of the RF133 is composed of an IF section and a baseband section. The IF section consists of three programmable gain amplifiers: PGA, PGB, and PGC.

Figure 3. Dual-Band Transceiver Chipset Using The RF133

PGA has two gain settings, either 0 dB or 20 dB , whereas both PGB and PGC have a gain range of -10 dB to 20 dB programmable in 2 dB steps. The output of PGC is fed to a quadrature mixer. The quadrature mixer has a fixed conversion gain of 10 dB and its LO inputs are taken from the outputs of a quadrature divider (divide by 2 or 4).

Baseband Integrated Filters, Baseband Amplifiers, and DC Offset Compensation. Immediately following the quadrature mixer (demodulator) is the baseband section (DC offset compensation circuitry, two integrated baseband filters and two programmable gain amplifiers). Each programmable gain amplifier in the baseband section, both labelled PGD, has four different gain settings: $0 \mathrm{~dB}, 10 \mathrm{~dB}, 20 \mathrm{~dB}$, or 30 dB .

The corner frequency of the integrated baseband filters is adjustable by using an appropriate value resistor at pin 26, LPFADJ. At the nominal cutoff frequency of 105 kHz , the resistor value is $75.1 \mathrm{k} \Omega$.

Due to possible high gain of the baseband amplifiers (PGD), any DC offsets at the outputs of the quadrature mixer are amplified and, if uncorrected, the I and Q outputs can suffer from significant unwanted DC offset voltages. To cancel out these effects, the RF133 must be calibrated.

During compensation, the correction voltages are stored in external hold capacitors CTH1 and CTH2, then the loop is opened immediately thereafter. The corrected I and Q outputs are then fed directly to external circuitry for further baseband processing.

The timing diagram for this calibration sequence in reference to the receive slot is shown in Figure 4 (the front-end mixer is assumed to be Rockwell's RF210 dual-band, image reject downconverter). At first, the RF133 receiver is turned on (RXENA is high). After time T1, the track and hold signal, T/H, places the DC compensation circuitry in the track mode for time T2. Then, there is a settling time, T 3 , before the external frontend is turned on. Finally, the front-end must be turned on for time T4 before the receive slot.

Time T2 can vary from $10 \mu \mathrm{sec}$ to $350 \mu \mathrm{sec}$. This duration is dependent on 1) the value of the hold capacitors (CTH1 and CTH2), and 2) whether the calibration is done from frame to frame or from a cold start. This is tabulated in Table 2.

Figure 4. RF133 Sample and Hold Timing Diagram

Table 2. Minimum Required DC Offset Calibration Time T2 and Droop Rate

Hold Capacitor (CTH1, CTH2)	$\mathbf{2 2} \mathbf{~ n F}$	$\mathbf{1 2 0} \mathrm{nF}$
Cold start	$60 \mu \mathrm{sec}$	$350 \mu \mathrm{~s}$
Frame-to-frame	$10 \mu \mathrm{sec}$	$60 \mu \mathrm{~s}$
Typical droop-rate (@ I/Q outputs)	$1 \mathrm{mV} / \mathrm{msec}$	$0.17 \mathrm{mV} / \mathrm{ms}$

Because of on-chip loading currents, the hold capacitors (CTH1 and CTH2) slowly discharge causing the I and Q DC offset voltages to droop if the RF133 remains uncalibrated for an extended period of time (the droop rate versus the hold capacitor is also shown in Table 2).

To rectify this voltage droop, it is recommended that recalibration occur before every receive slot (i.e., every 4.6 ms for GSM).

Internal Voltage Controlled Oscillator (VCO) and Frequency Dividers. The differential VCO output is buffered and then fed to three frequency dividers (Rx, Tx, PLL) with a selectable divide ratio of either 2 or 4 . The Rx and Tx dividers are both quadrature dividers, which generate in-phase and quadrature LOs. The buffered PLL divider output can be used to drive an external PLL IC. The resonant element of the VCO is connected to pins 28 (RES1) and 29 (RES2). Figure 5 shows the VCO configuration.

Transmit Path

The transmit path consists of the following functional blocks:

- An I/Q modulator with IF output amplifier.
- A translation loop circuit consisting of a phase/frequency detector, a charge pump, a Tx RF input buffer, an LO input buffer, a mixer, two dividers, and a low pass filter.

The inputs to the I/Q modulator are differential I and Q baseband signals which are low-pass filtered and then applied to a pair of double balanced mixers (see Figure 2). The outputs of the mixers are combined to produce a modulated signal which is then filtered externally and input through pins 6 and 7 (TXIFIN+ and TXIFIN-) to the reference divider in the translation loop.

The translation loop circuit together with the external transmit VCO, external LO, and loop filter, form a PLL with a mixer in the feedback loop. This PLL upconverts the modulated IF signal to the transmit frequency which then drives the final power amplifier. Since inherent bandpass filtering occurs in the PLL, the need for a post PA duplexer is removed. This is the major advantage a translation loop approach has over the conventional upconversion scheme. The elimination of this duplexer reduces the loss in the transmit path which in turn reduces the output level of the final power amplifier and, therefore, reduces the current consumption. Immediate benefits of this approach are increased handset talk time and standby time, and less component count.

Figure 5. RF133 Internal VCO

Table 3. Absolute Maximum Ratings

Parameter	Minimum	Maximum	Units
Ambient Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-50	+125	${ }^{\circ} \mathrm{C}$
Power Dissipation		600	mW
Supply Voltage (VCC)	0	+5	V
Input Voltage Range	GND	VCC	V

The charge pump current can be programmed to be either 1 mA or 0.5 mA and the translation loop can also be programmed to allow for high side or low side injection of the first LO input with respect to the transmit RF.

Even greater flexibility in the transceiver frequency planning is possible because of the programmable dividers in the feedback and the reference paths.

The absolute maximum ratings of the RF133 are provided in Table 3, and the electrical specifications are provided in Table 4. Tables 5, 6, and 7 detail the setting of the programmable operation modes. Figure 6 illustrates the timing of the three-wire bus control signal and Figure 7 provides a graph of the input compression versus the receiver gain.

Figure 8 shows a typical application circuit diagram. Figure 9 provides the package dimensions for the 48-pin device.

Table 4. RF133 Electrical Specifications (1 of 4) ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=3.0 \mathrm{~V}$, except where noted)

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
Receive IF Path						
Input impedance	ZIN	Differential		$\begin{aligned} & 1 \mathrm{k} / \mathrm{l} \\ & 0.15 \end{aligned}$		$\begin{aligned} & \Omega \\ & \Omega \\ & \mathrm{pF} \end{aligned}$
Input operating frequency	$\mathrm{F}_{\text {N }}$		70		450	MHz
Voltage gain	$\begin{aligned} & A v \\ & A v \end{aligned}$	$\mathrm{F}_{\mathrm{N}}=400 \mathrm{MHz}$ High gain mode Low gain mode	$\begin{gathered} 57 \\ -23 \end{gathered}$	$\begin{gathered} 60 \\ -20 \end{gathered}$	$\begin{gathered} 63 \\ -17 \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Gain step (Note 1)	dAv			2		dB
Gain step accuracy (Note 2)			-0.5		+0.5	dB
Single-sideband noise figure	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{NF} \end{aligned}$	High gain mode Low gain mode		$\begin{gathered} 7 \\ 23 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input 1 dB compression point (Note 3)	$\begin{aligned} & \hline P_{1 d B} \\ & P_{1 d B} \end{aligned}$	High gain mode (60 dB) Low gain mode (-20 dB)		$\begin{aligned} & \hline-75 \\ & -12 \end{aligned}$		$\begin{aligned} & \text { dBV } \\ & \text { dBV } \end{aligned}$
IF filter pin impedance	Z ${ }_{\text {IF }}$	Differential		$\begin{gathered} 600 / / \\ 1 \end{gathered}$		$\begin{aligned} & \Omega \\ & \mathrm{pF} \end{aligned}$
I/Q Demodulator						
Voltage gain (Quadrature mixer)	Av			10		dB
I/Q amplitude imbalance					1	dB
I/Q phase imbalance			-3		+3	degrees
Noise Figure	NF			15		dB
Output 1 dB compression point				-2		dBV
Baseband Filter						
Corner frequency (programmable)	Fc		50		150	kHz
Corner frequency variation	dFc		-15		+15	\%
Rejection		$\begin{aligned} & \mathrm{Fc}=105 \mathrm{kHz}: \\ & @ 200 \mathrm{kHz} \\ & @ 400 \mathrm{kHz} \\ & @ 600 \mathrm{kHz} \end{aligned}$	26	$\begin{aligned} & 8 \\ & 30 \\ & 40 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Group delay		$\begin{aligned} & \mathrm{Fc}=105 \mathrm{kHz} \\ & \mathrm{DC} \text { to } 100 \mathrm{kHz} \end{aligned}$		3	5	$\mu \mathrm{S}$
Group delay variation		$\begin{aligned} & \mathrm{Fc}=105 \mathrm{kHz}: \\ & \mathrm{DC} \text { to } 100 \mathrm{kHz} \end{aligned}$		300	500	ns
Baseband Amplifier						
Voltage gain	Av			0 10 20 30		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$

Table 4. RF133 Electrical Specifications (2 of 4) ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC}=3.0 \mathrm{~V}$, except where noted)

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
Baseband Amplifier (continued)						
Output amplitude		$\begin{aligned} & A v=30 \mathrm{~dB} \\ & \mathrm{Av}=20 \mathrm{~dB} \\ & \mathrm{Av}=10 \mathrm{~dB} \\ & \mathrm{Av}=0 \mathrm{~dB} \end{aligned}$			$\begin{aligned} & 2.5 \\ & 1.8 \\ & 1.0 \\ & 0.4 \end{aligned}$	Vp-p Vp-p Vp-p Vp-p
Output common mode voltage				1.35		V
Output offset voltage		With DC offset compensation Without DC offset compensation and $\mathrm{A}_{\mathrm{v}}=0$ dB			$\begin{gathered} \pm 5 \\ \pm 100 \end{gathered}$	mV mV
Output voltage droop/rise rate		With DC offset compensation, $\mathrm{C}_{\text {TH }}=22 \mathrm{nF}$		1		$\mathrm{mV} / \mathrm{ms}$
Output impedance	Zout	Differential		200		Ω
I/Q Modulator						
Input impedance	ZIN	Differential		20		k Ω
Input common mode voltage range	Vcm		0.85	1.35	$\begin{gathered} \text { VCC - } \\ 1.35 \end{gathered}$	V
Input offset voltage	Vos			1	5	mV
Input frequency 3 dB bandwidth				10		MHz
Input common mode rejection ratio		$\begin{aligned} & \text { Fin }=100 \mathrm{kHz} \\ & \text { Fin }=1 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 75 \\ & 55 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Output operating frequency	Fout		70		450	MHz
Output impedance	Zout	Differential		800		Ω
Output voltage	Vout		-20	-15		dBV
Output noise power	No	10 MHz offset		-130	-126	dBc/Hz
LO feedthrough				-45	-40	dBc
Sideband suppression			40	50		dBc
Spurious (Note 4)		@ 200 kHz offset @ 300 kHz offset		$\begin{aligned} & -70 \\ & -60 \end{aligned}$	$\begin{aligned} & -40 \\ & -45 \end{aligned}$	$\begin{aligned} & \mathrm{dBC} \\ & \mathrm{dBC} \end{aligned}$
Translation Loop						
Transmit frequency (input from VCO)	fix		800		2000	MHz
LO input frequency	foo		800		2000	MHz
IF frequency	f_{F}	With divide-by-2 With divide-by-1	$\begin{aligned} & 70 \\ & 70 \end{aligned}$		$\begin{aligned} & 425 \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Transmit input power	PIN	With external 50Ω termination	-13	-10	-7	dBm
Transmit input impedance (at pin 47)	ZIN	With pin 46 AC grounded		$\begin{gathered} 300 / / \\ 0.3 \end{gathered}$		$\begin{aligned} & \Omega \\ & \mathrm{pF} \end{aligned}$
LO input power with external 50Ω termination	PIN		-13	-10	-7	dBm
LO input impedance (at pin 44)	ZIN	With pin 43 AC grounded		$\begin{gathered} 300 / / \\ 0.3 \end{gathered}$		$\begin{aligned} & \Omega \\ & \mathrm{pF} \end{aligned}$

Table 4. RF133 Electrical Specifications (3 of 4) ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC}=3.0 \mathrm{~V}$, except where noted)

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
Translation Loop (continued)						
Charge-pump output current	lout	Source/sink (CPOI = HIGH) Source/sink (CPOI = LOW) High impedance input		$\begin{aligned} & \pm 1.0 \\ & \pm 0.5 \\ & 0.02 \end{aligned}$		mA mA mA
Transmit output zero crossing spurs: 2X spurs 3X spurs 4X spurs 5X spurs			-62	$\begin{gathered} -65 \\ -70 \\ -70 \\ <-70 \end{gathered}$		dBC dBC dBc dBC
Transmit output noise level (Note 5)		At 20 MHz offset from carrier		-165	-162	dBc/Hz
Device turn-on and lock time (with respect to enable input)				30	100	$\mu \mathrm{s}$
vco						
Operating frequency set by resonator	Fvco		300		900	MHz
Tuning voltage range		Varactor ground referenced Varactor supply referenced	0.3		$\begin{gathered} \text { VCC- } \\ 0.3 \end{gathered}$	V v
Resonator pin impedance		Differential		$\begin{gathered} 10 \mathrm{kl} / \\ 0.4 \end{gathered}$		$\begin{aligned} & \Omega \\ & \mathrm{pF} \\ & \hline \end{aligned}$
Tuning sensitivity (Note 6)	Kvco	FVCO $=800 \mathrm{MHz}$		50		MHz/V
LO phase noise at 10 MHz offset (Note 6)		$\begin{aligned} & \mathrm{FVCO}=800 \mathrm{MHz} \\ & \mathrm{Q}=20 \end{aligned}$		-122		dBc/Hz
Second LO output level		Unloaded, per side		260		mVp
Second LO output impedance		Differential		200		Ω
3-Wire Control						
Data to clock setup time (Note 7)	tcs		50			ns
Data to clock hold time (Note 7)	tch		10			ns
Clock pulse width high (Note 7)	tcw		50			ns
Clock pulse width low (Note 7)	tewL		50			ns
Clock to load enable setup time (Note 7)	tes		50			ns
Load enable pulse width (Note 7)	tew		50			ns

Table 4. RF133 Electrical Specifications (4 of 4) ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC}=3.0 \mathrm{~V}$, except where noted)

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
Transceiver						
$\begin{aligned} & \hline \text { DC offset calibration timing (see Figure 4): } \\ & \text { T1 } \\ & \text { T2 (see Table 2) } \\ & \text { T3 } \\ & \text { T4 (assuming RF210 front-end mixer) } \end{aligned}$				$\begin{gathered} 40 \\ 5 \\ 20 \end{gathered}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \end{aligned}$
Enable and control VIH	V_{H}		$\begin{gathered} \text { VCC } \times \\ 0.8 \end{gathered}$			V
Enable and control VIL	VII				$\begin{gathered} \hline \operatorname{VCC} \times \\ 0.2 \end{gathered}$	V
Enable and control IIH	$11 /$			20	60	$\mu \mathrm{A}$
Enable and control IIL	$1 /$		-10	-1	0	$\mu \mathrm{A}$
Total supply current: Rx mode Tx mode Synthesizer mode Sleep mode (Vcc $=5.0 \mathrm{~V}$)	Icc	(SXENA=RXENA=on) (SXENA=TXENA=on) (SXENA=on)		$\begin{aligned} & 52 \\ & 54 \\ & 17 \end{aligned}$	0.1	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Power supply range (transceiver Vcc)	VCC		2.7	3.0	5.0	V
Operating temperature range	TA		-40	+25	+85	${ }^{\circ} \mathrm{C}$

Note 1: Gain steps are such that monotonicity is maintained throughout the entire IF gain range.
Note 2: Specified down to 2.8 V supply voltage. Slight degradation at temperature extremes for 2.7 V supply voltage.
Note 3: Refer to Figure 7 for the 1 dB compression point of the entire receiver chain, including the baseband gain section.
Note 4: For 1 Vp-p 100 kHz differential signals acorss lin and Qin.
Note 5: Using transmit VCO with similar characteristics as Murata MQE 550-902.
Note 6: Using varactors with similar characteristics as Alpha part SMV1234-004.
Note 7: Refer to Figure 6.

Table 5. RF133 Control Bits and Output States

Block	CO	Bit	State	1	0
LO	1	$\begin{aligned} & \text { S1 } \\ & \text { S2 } \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & \text { RX LO } \div 21 \div 4 \\ & 2 \text { ND LO } \div 21 \div 4 \\ & \text { TX LO } \div 21 \div 4 \end{aligned}$	divide by 4 divide by 4 divide by 4	divide by 2 divide by 2 divide by 2
TL	1	$\begin{aligned} & \text { S4 } \\ & \text { S5 } \\ & \text { S6 } \\ & \text { S7 } \end{aligned}$	TX IF $\div 1 / \div 2$ TX MIX OUT $\div 1 / \div 2$ TX LO INJECTION CP OUTPUT CURRENT	divide by 2 divide by 2 High Side 1 mA	divide by 1 divide by 1 Low Side 0.5 mA
Receive	1	$\begin{aligned} & \text { S8 } \\ & \text { S9 } \\ & \text { S10 } \\ & \text { S11 } \\ & \text { S12 } \\ & \text { S13 } \\ & \text { S14 } \\ & \text { S15 } \\ & \text { S16 } \\ & \text { S17 } \\ & \text { S18 } \end{aligned}$	RX PGA1 RX PGB1 RX PGB2 RX PGB3 RX PGB4 RX PGC1 RX PGC2 RX PGC3 RX PGC4 RX PGD1 RX PGD2	(see Table 6) (see Table 7) (see Table 7)	
TRX	1	S19	TRX BAND	High Band	Low Band
	1	S20	Reserved		
	1	S21	LO BUFFER ON/OFF	ON	OFF

Table 6. Receive IF Gain

Gain (dB)	PGA	PGB				PGC			
	1	1	2	3	4	1	2	3	4
60	1	1	1	1	1	1	1	1	1
58	1	1	1	1	0	1	1	1	1
56	1	1	1	0	1	1	1	1	1
54	1	1	1	0	0	1	1	1	1
52	1	1	0	1	1	1	1	1	1
50	1	1	0	1	0	1	1	1	1
48	1	1	0	0	1	1	1	1	1
46	1	1	0	0	0	1	1	1	1
44	1	0	1	1	1	1	1	1	1
42	1	0	1	1	0	1	1	1	1
40	1	0	1	0	1	1	1	1	1
38	1	0	1	0	0	1	1	1	1
36	1	0	0	1	1	1	1	1	1
34	1	0	0	1	0	1	1	1	1
32	1	0	0	0	1	1	1	1	1
30	1	0	0	0	0	1	1	1	1
28	0	1	0	0	1	1	1	1	1
26	0	1	0	0	0	1	1	1	1
24	0	0	1	1	1	1	1	1	1
22	0	0	1	1	0	1	1	1	1
20	0	0	1	0	1	1	1	1	1
18	0	0	1	0	0	1	1	1	1
16	0	0	0	1	1	1	1	1	1
14	0	0	0	1	0	1	1	1	1
12	0	0	0	0	1	1	1	1	1
10	0	0	0	0	0	1	1	1	1
8	0	0	0	0	0	1	1	1	0
6	0	0	0	0	0	1	1	0	1
4	0	0	0	0	0	1	1	0	0
2	0	0	0	0	0	1	0	1	1
0	0	0	0	0	0	1	0	1	0
-2	0	0	0	0	0	1	0	0	1
-4	0	0	0	0	0	1	0	0	0
-6	0	0	0	0	0	0	1	1	1
-8	0	0	0	0	0	0	1	1	0
-10	0	0	0	0	0	0	1	0	1
-12	0	0	0	0	0	0	1	0	0
-14	0	0	0	0	0	0	0	1	1
-16	0	0	0	0	0	0	0	1	0
-18	0	0	0	0	0	0	0	0	1
-20	0	0	0	0	0	0	0	0	0

Table 7. Receive Baseband Gain

Gain (dB)	PGD	
	$\mathbf{1}$	$\mathbf{2}$
30	1	1
20	1	0
10	0	1
0	0	0

Figure 6. RF133 Timing Diagram

Figure 7. Receiver Input Compression Graph

Figure 8. RF133 Typical Application Circuit

Figure 9. RF133 Package Dimensions - 48-Pin TQFP

Ordering Information

Model Name	Manufacturing Part Number	Product Revision
RFIIF Transceiver	RF133	

© 2000, Conexant Systems, Inc. All Rights Reserved.
Information in this document is provided in connection with Conexant Systems, Inc. ("Conexant") products. These materials are provided by Conexant as a service to its customers and may be used for informational purposes only. Conexant assumes no responsibility for errors or omissions in these materials. Conexant may make changes to specifications and product descriptions at any time, without notice. Conexant makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Conexant's Terms and Conditions of Sale for such products, Conexant assumes no liability whatsoever.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. CONEXANT FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. CONEXANT SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

Conexant products are not intended for use in medical, lifesaving or life sustaining applications. Conexant customers using or selling Conexant products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages resulting from such improper use or sale.

The following are trademarks of Conexant Systems, Inc.: Conexant ${ }^{T M}$, the Conexant C symbol, and "What's Next in Communications Technologies"TM. Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners.
Additional information, posted at www.conexant.com, is incorporated by reference.
Reader Response: Conexant strives to produce quality documentation and welcomes your feedback. Please send comments and suggestions to tech.pubs@conexant.com. For technical questions, contact your local Conexant sales office or field applications engineer.

Further Information	Europe North - England
literature@conexant.com	Phone: +44 1344486444
(800) 854-8099 (North America)	Fax: +44 1344486555
(949) 483-6996 (International)	
Printed in USA	Europe - Israel/Greece
	Phone: +972 99524000
World Headquarters	Fax: +97299573732
Conexant Systems, Inc.	
4311 Jamboree Road	Europe South - France
Newport Beach, CA	Phone: +33141443651
92660-3007	Fax: +33141443690
Phone: (949) 483-4600	
Fax 1: (949) 483-4078	Europe Mediterranean - Italy
Fax 2: (949) 483-4391	Phone: +39 0293179911
	Fax: +39 0293179913
Americas	
	Europe - Sweden
U.S. Northwest/	Phone: +46 (0) 850914319
Pacific Northwest - Santa Clara Phone: (408) 249-9696	Fax: $\quad+46$ (0) 859004110
Fax: (408) 249-7113	Europe - Finland
	Phone: +358(0) 985666435
U.S. Southwest - Los Angeles Phone: (805) 376-0559	Fax: $\quad+358$ (0) 985666220
Fax: (805) 376-8180	Asia - Pacific
U.S. Southwest - Orange County	Taiwan
Phone: (949) 483-9119	Phone: (886-2) 2-720-0282
Fax: (949) 483-9090	Fax: (886-2) 2-757-6760
U.S. Southwest - San Diego	Australia
Phone: (858) 713-3374	Phone: (61-2) 98694088
Fax: (858) 713-4001	Fax: (61-2) 98694077
U.S. North Central - Illinois	China - Central
Phone: (630) 773-3454	Phone: 86-21-6361-2515
Fax: (630) 773-3907	Fax: 86-21-6361-2516
U.S. South Central - Texas	China - South
Phone: (972) 733-0723	Phone: (852) 2 827-0181
Fax: (972) 407-0639	Fax: (852) 2 827-6488
U.S. Northeast - Massachusetts	China - South (Satellite)
Phone: (978) 367-3200	Phone: (86) 755-518-2495
Fax: (978) 256-6868	
	China - North
U.S. Southeast - North Carolina	Phone: (86-10) 8529-9777
Phone: (919) 858-9110	Fax: (86-10) 8529-9778
Fax: (919) 858-8669	
	India
U.S. Southeast - Florida/	Phone: (91-11) 692-4789
South America	Fax: (91-11) 692-4712
Phone: (727) 799-8406	
Fax: (727) 799-8306	Korea
	Phone: (82-2) 565-2880
U.S. Mid-Atlantic - Pennsylvania	Fax: (82-2) 565-1440
Phone: (215) 244-6784	
Fax: (215) 244-9292	Korea (Satellite)
	Phone: (82-53) 745-2880
Canada - Ontario	Fax: (82-53) 745-1440
Phone: (613) 271-2358	
Fax: (613) 271-2359	Singapore
	Phone: (65) 7377355
Europe	Fax: (65) 7379077
Europe Central - Germany	Japan
Phone: +49 89 829-1320	Phone: (81-3) 53711520
Fax: +49 89 834-2734	Fax: (81-3) 53711501

