

General Description

The MAX1790 boost converter incorporates high-performance (at 1.2MHz), current-mode, fixed-frequency, pulsewidth modulation (PWM) circuitry with a built-in 0.21 Ω N-channel MOSFET to provide a highly efficient regulator with fast response.

High switching frequency (640kHz or 1.2MHz selectable) allows easy filtering and faster loop performance. An external compensation pin provides the user flexibility in determining loop dynamics, allowing the use of small, low equivalent series resistance (ESR) ceramic output capacitors. The device can produce an output voltage as high as 12V from an input as low as 2.6V.

Soft-start is programmed with an external capacitor, which sets the input current ramp rate. In shutdown mode, current consumption is reduced to 0.1μ A. The MAX1790 is available in a space-saving 8-pin μ MAX package. The ultra-small package and high switching frequency allow the total solution to be less than 1.1mm high.

Applications

Features

- ♦ 90% Efficiency
- Adjustable Output from VIN to 12V
- 1.6A, 0.21Ω, 14V Power MOSFET
- ♦ +2.6V to +5.5V Input Range
- Pin-Selectable 640kHz or 1.2MHz Switching Frequency
- 0.1µA Shutdown Current
- Programmable Soft-Start
- Small 8-Pin µMAX Package

MAX1790

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX1790EUA	-40°C to +85°C	8 µMAX

PCMCIA Cards Portable Applications Hand-Held Devices

LCD Displays

Typical Operating Circuit

Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

ABSOLUTE MAXIMUM RATINGS

LX to GND	0.3V to +14V
IN, SHDN, FREQ, FB to GND	0.3V to +6V
SS, COMP to GND	0.3V to (V _{IN} + 0.3V)
RMS LX Pin Current	1.2Á
Continuous Power Dissipation ($T_A = +70^{\circ}$ C	C)
8-Pin µMAX (derate 4.1mW/°C above -	+70°C)330mW

Operating Temperature Range	
MAX1790EUA	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s).	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = \overline{SHDN} = 3V, FREQ = GND, T_A = 0^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Supply Range	VIN		2.6		5.5	V
V _{IN} Undervoltage Lockout	UVLO	V _{IN} rising, typical hysteresis is 40mV, LX remains off below this level	2.25	2.38	2.52	V
		$V_{FB} = 1.3V$, not switching		0.18	0.35	
Quiescent Current	I _{IN}	V _{FB} = 1.0V, switching		2	5	mA
Shutdown Supply Current	lin	SHDN = GND		0.1	10	μA
ERROR AMPLIFIER	1		I			1
Feedback Voltage	VFB	Level to produce $V_{COMP} = 1.24V$	1.222	1.24	1.258	V
FB Input Bias Current	IFB	V _{FB} = 1.24V		0	40	nA
Feedback-Voltage Line Regulation		Level to produce $V_{COMP} = 1.24V$, 2.6V < $V_{IN} < 5.5V$		0.05	0.15	%/V
Transconductance	gm	$\Delta I = 5 \mu A$	70	140	240	µmhos
Voltage Gain	Av			700		V/V
OSCILLATOR			L.			
Frequency	fosc	FREQ = GND	540	640	740	kHz
Trequency	IUSC	FREQ = IN	1000	1220	1500	
Maximum Duty Cycle	DC	FREQ = GND	79	85	92	%
		FREQ = IN		84		70
N-CHANNEL SWITCH						
Current Limit (Note 1)	ILIM	$V_{FB} = 1V$, duty cycle = 65%	1.2	1.6	2.3	A
On-Resistance	Ron	I _{LX} = 1.2A		0.21	0.5	Ω
Leakage Current	ILXOFF	$V_{LX} = 12V$		0.01	20	μA
Current-Sense Transresistance	R _{CS}		0.3	0.45	0.65	V/A
SOFT-START	1					
Reset Switch Resistance					100	Ω
Charge Current		$V_{SS} = 1.2V$	1.5	4	7	μA
CONTROL INPUTS						
Input Low Voltage	VIL	SHDN, FREQ; $V_{IN} = 2.6V$ to 5.5V			0.3 • V _{IN}	V
Input High Voltage	VIH	SHDN, FREQ; $V_{IN} = 2.6V$ to 5.5V	0.7 • V _{IN}			V
Hysteresis		SHDN, FREQ		$0.1 \boldsymbol{\cdot} V_{\text{IN}}$		V
FREQ Pull-Down Current	IFREQ		1.8	5	9	μA
SHDN Input Current	ISHDN			0.001	1	μA

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = \overline{SHDN} = 3V, FREQ = GND, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.})$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Supply Range	V _{IN}		2.6		5.5	V	
V _{IN} Undervoltage Lockout	UVLO	V _{IN} rising, typical hysteresis is 40mV, LX remains off below this level	2.25		2.52	V	
Quiescent Current	lin	V _{FB} = 1.3V, not switching		0.2	0.35	mA	
Quescent Current	UIN	V _{FB} = 1.0V, switching		4	5	ma	
Shutdown Supply Current	I _{IN}	SHDN = GND			10	μΑ	
ERROR AMPLIFIER			•				
Feedback Voltage	VFB	Level to produce $V_{COMP} = 1.24V$	1.215		1.26	V	
FB Input Bias Current	I _{FB}	V _{FB} = 1.24V			40	nA	
Feedback-Voltage Line Regulation		Level to produce $V_{COMP} = 1.24V$, 2.6V < $V_{IN} < 5.5V$			0.15	%/V	
Transconductance		$\Delta I = 5 \mu A$	70		260	µmhos	
OSCILLATOR							
	6	FREQ = GND	490		770		
Frequency	fosc	FREQ = IN	900		1500	- kHz	
Maximum Duty Cycle	DC	FREQ = GND	78		92	%	
N-CHANNEL SWITCH			•				
Current Limit	ILIM	V _{FB} = 1V, duty cycle = 65%	1.2		2.3	А	
On-Resistance	Ron	I _L X = 1.2A			0.5	Ω	
Current-Sense Transresistance	R _{CS}		0.3		0.65	V/A	
CONTROL INPUTS		•	•				
Input Low Voltage	VIL	$\overline{\text{SHDN}}$, FREQ, V _{IN} = 2.6V to 5.5V			0.3 • V _{IN}	V	
Input High Voltage	VIH	$\overline{\text{SHDN}}$, FREQ, V _{IN} = 2.6V to 5.5V	0.7 • V _{IN}			V	

Note 1: Current limit varies with duty cycle due to slope compensation. See the *Output Current Capability* section. **Note 2:** Specifications to -40°C are guaranteed by design and not production tested.

MAX1790

Typical Operating Characteristics

LOAD-TRANSIENT RESPONSE

CH1 = LOAD CURRENT, 100mA/div CH2 = OUTPUT VOLTAGE, AC-COUPLED, 200mV/div

CH3 = INDUCTOR CURRENT, 1A/div

 $V_{IN} = 3V$

 $V_{OUT} = 12V$, $f_{OSC} = 640$ kHz, $C_{OUT} = 33\mu$ F + 0.1 μ F

Typical Operating Characteristics (continued)

(Circuit of Figure 1, V_{IN} = 3.3V, f_{OSC} = 640kHz, T_A = +25°C, unless otherwise noted.)

 $\begin{array}{l} CH1 = LOAD \ CURRENT, \ 500mA/div\\ CH2 = 0UTPUT \ VOLTAGE, \ AC-COUPLED, \ 200mV/div\\ CH3 = INDUCTOR \ CURRENT, \ 1A/div\\ V_{0UT} = 5V, \ f_{0SC} = 640kHz, \ C_{0UT} = 47\mu F + 0.1\mu F \end{array}$

100µs/div

CH1 = 3 IDIA, 5 V/divCH2 = V_{0UT} , 5 V/divCH3 = INDUCTOR CURRENT, 500mA/divVour = 12 V Jour = 200mA force = 640kH

 $V_{OUT} = 12V, I_{OUT} = 200\text{mA}, f_{OSC} = 640\text{kHz}, C_{SS} = 0.027\mu\text{F}$

 $\begin{array}{l} CH1 = \overline{SHDN}, 5V/div\\ CH2 = 0UTPUT VOLTAGE, 5V/div\\ CH3 = INDUCTOR CURRENT, 1A/div\\ V_{IN} = 3.3V, V_{0UT} = 12V, I_{0UT} = 10mA, f_{OSC} = 640 \text{kHz}\\ NO SOFT-START CAPACITOR, C_{0UT} = 33 \mu F \end{array}$

 $\begin{array}{l} \mbox{CH1} = \mbox{LX SWITCHING WAVEFORM, 5V/div} \\ \mbox{CH2} = \mbox{OUTPUT VOLTAGE, AC-COUPLED, 200mV/div} \\ \mbox{CH3} = \mbox{INDUCTOR CURRENT, 1A/div} \\ \mbox{V}_{0UT} = \mbox{12V, I}_{0UT} = \mbox{200m, f}_{0SC} = \mbox{640kHz, L} = \mbox{10}\mbox{H}; \\ \mbox{C}_{0UT} = \mbox{32}\mbox{H} + \mbox{0.1}\mbox{H}; \\ \mbox{C}_{0UT} = \mbox{32}\mbox{H} + \mbox{12}\mbox{H}; \\ \mbox{C}_{0UT} = \mbox{12}\mbox{H}; \mbox{L}; \mbox{L};$

MAX1790

 $\begin{array}{l} CH1 = \overline{SHDN}, 5V/div\\ CH2 = 0UTPUT VOLTAGE, 5V/div\\ CH3 = INDUCTOR CURRENT, 200mA/div\\ V_{0UT} = 12V, I_{0UT} = 10mA, f_{OSC} = 640kHz,\\ C_{SS} = 0.027\mu F, C_{0UT} = 33\mu F \end{array}$

MAXIMUM OUTPUT CURRENT vs. input voltage

PIN

1

2

3 4

5 6

7

8

SS

NAME	FUNCTION
COMP	Compensation Pin for Error Amplifier. Connect a series RC from COMP to ground. See the <i>Loop Compensation</i> section for component selection guidelines.
FB	Feedback Pin. Reference voltage is 1.24V nominal. Connect an external resistor-divider tap to FB and minimize the trace area. Set V_{OUT} according to: V_{OUT} = 1.24V (1 + R1 / R2). See Figure 1.
SHDN	Shutdown Control Input. Drive SHDN low to turn off the MAX1790.
GND	Ground
LX	Switch Pin. Connect the inductor/catch diode to LX and minimize the trace area for lowest EMI.
IN	Supply Pin. Bypass IN with at least a 1µF ceramic capacitor directly to GND.
FREQ	Frequency Select Input. When FREQ is low, the oscillator frequency is set to 640kHz. When FREQ is high, the frequency is 1.2MHz. This input has a 5µA pull-down current.

Soft-Start Control Pin. Connect a soft-start capacitor (C_{SS}) to this pin. Leave open for no soft-start. The softstart capacitor is charged with a constant current of 4µA. Full current limit is reached after t = 2.5 • 10⁵ C_{SS}. The soft-start capacitor is discharged to ground when SHDN is low. When SHDN goes high, the soft-start capacitor is charged to 0.5V, after which soft-start begins.

_Detailed Description

The MAX1790 is a highly efficient power supply that employs a current-mode, fixed-frequency pulse-width modulation (PWM) architecture for fast transient response and low-noise operation. The device regulates the output voltage through a combination of an error amplifier, two comparators, and several signal generators (Figure 2). The error amplifier compares the signal at FB to 1.24V and varies the COMP output. The voltage at COMP determines the current trip point each time the internal MOSFET turns on. As the load varies, the error amplifier sources or sinks current to the COMP output accordingly to produce the inductor peak current necessary to service the load. To maintain stability at high duty cycle, a slope compensation signal is summed with the current-sense signal.

At light loads, this architecture allows the MAX1790 to "skip" cycles to prevent overcharging the output voltage. In this region of operation, the inductor ramps up to a peak value of about 50mA, discharges to the output, and waits until another pulse is needed again.

Figure 1. Typical Application Circuit

Pin Description

6

Figure 2. Functional Diagram

Output Current Capability

The output current capability of the MAX1790 is a function of current limit, input voltage, operating frequency, and inductor value. Because of the slope compensation used to stabilize the feedback loop, the duty cycle affects the current limit. The output current capability is governed by the following equation:

$$\begin{split} &I_{OUT(MAX)} = [I_{LIM} \cdot (1.26 - 0.4 \cdot Duty) - \\ &0.5 \cdot Duty \cdot V_{IN} / (f_{OSC} \cdot L)] \cdot \eta \cdot V_{IN} / V_{OUT} \end{split}$$

where:

I_{LIM} = current limit specified at 65% (see *Electrical Characteristics*)

Duty = duty cycle = $(V_{OUT} - V_{IN} + V_{DIODE}) / (V_{OUT} - I_{LIM} \cdot R_{ON} + V_{DIODE})$

 V_{DIODE} = catch diode forward voltage at ILIM η =conversion efficiency, 85% nominal

Soft-Start

The MAX1790 can be programmed for soft-start upon power-up with an external capacitor. When the shutdown pin is taken high, the soft-start capacitor (C_{SS}) is immediately charged to 0.5V. Then the capacitor is charged at a constant current of 4µA (typ). During this time, the SS voltage directly controls the peak inductor current, allowing 0A at V_{SS} = 0.5V to the full current limit at V_{SS} = 1.5V. The maximum load current is available after the soft-start

cycle is completed. When the shutdown pin is taken low, the soft-start capacitor is discharged to ground.

Frequency Selection

The MAX1790's frequency can be user selected to operate at either 640kHz or 1.2MHz. Tie FREQ to GND for 640kHz operation. For a 1.2MHz switching frequency, tie FREQ to IN. This allows the use of small, minimum-height external components while maintaining low output noise. FREQ has an internal pull-down, allowing the user the option of leaving FREQ unconnected for 640kHz operation.

Shutdown

MAX1790

The MAX1790 shuts down to reduce the supply current to 0.1μ A when SHDN is low. In this mode, the internal reference, error amplifier, comparators, and biasing circuitry turn off while the N-channel MOSFET is turned off. The boost converter's output is connected to IN via the external inductor and catch diode.

Applications Information

Boost DC-DC converters using the MAX1790 can be designed by performing simple calculations for a first iteration. All designs should be prototyped and tested prior to production. Table 1 provides a list of components for a range of standard applications. Table 2 lists component suppliers.

V _{IN} (V)	Vout (V)	fosc (Hz)	L (µH)	Со (µF)	R _{СОМР} (kΩ)	С _{СОМР} (pF)	С _{СОМР2} (pF)	TYPICAL IOUT(MAX) (mA)
3.3	12	640k	10 (Sumida CDRH5D18-100NC)	33 tantalum (AVX TPSD336020R0200)	120	1200	33	250
3.3	12	1.2M	5.4 (Sumida CDRH5D18-5R4NC)	33 tantalum (AVX TPSD336020R0200)	180	650	20	250
3.3	5	640k	5.4 (Sumida CDRH5D18-5R4NC)	47 tantalum (6TPA47M)	62	820	56	800
3.3	5	1.2M	2.7 (Sumida CDRH4018-2R7)	47 tantalum (6TPA47M)	91	390	33	800

Table 1. Component Selection

Table 2. Component Suppliers

SUPPLIER	PHONE	FAX					
Inductors							
Coilcraft	847-639-6400	847-639-1469					
Coiltronics	561-241-7876	561-241-9339					
Sumida USA	847-956-0666	847-956-0702					
Toko	847-297-0070	847-699-1194					
Capacitors							
AVX	803-946-0690	803-626-3123					
Kemet	408-986-0424	408-986-1442					
Sanyo	619-661-6835	619-661-1055					
Taiyo Yuden	408-573-4150	408-573-4159					
Diodes							
Central Semiconductor	516-435-1110	516-435-1824					
International Rectifier	310-322-3331	310-322-3332					
Motorola	602-303-5454	602-994-6430					
Nihon	847-843-7500	847-843-2798					
Zetex	516-543-7100	516-864-7630					

External component value choice is primarily dictated by the output voltage and the maximum load current, as well as maximum and minimum input voltages. Begin by selecting an inductor value. Once L is known, choose the diode and capacitors.

Inductor Selection

Inductor selection depends on input voltage, output voltage, maximum current, switching frequency, size, and availability of inductor values. Other factors can include efficiency and ripple voltage. Inductors are specified by their inductance (L), peak current (IPK), and resistance (L_r). The following boost-circuit equations are useful in choosing the inductor values based on the application. They allow the trading of peak current and inductor value while allowing for consideration of component availability and cost.

The equation used here includes a constant LIR, which is the ratio of the inductor peak-peak AC current to maximum average DC inductor current. A good compromise between size of the inductor and loss and output ripple is to choose an LIR of 0.3 to 0.5. The peak inductor current is then given by:

$$I_{PK} = \left[\frac{\left(I_{OUT(MAX)} \cdot V_{OUT}\right)}{\eta \cdot V_{IN(MIN)}}\right] \cdot \left(1 + \frac{LIR}{2}\right)$$

The inductance value is then given by:

$$L = \frac{(V_{IN(MIN)})^{2} \cdot \eta \cdot (V_{OUT} - V_{IN(MIN)})}{V_{OUT}^{2} \cdot LIR \cdot I_{OUT(MAX)} \cdot f_{OSC}}$$

Considering the typical application circuit, the maximum DC load current ($I_{OUT(MAX)}$) is 500mA with a 5V output. The inductance value is then chosen to be 5.4µH, based on the above equations and using 85% efficiency and a 640kHz operating frequency. The inductor saturation current rating should be greater than IPK. The resistance of the inductor windings should be less than 0.5 Ω . To minimize radiated noise in sensitive applications, use a shielded inductor.

Diode Selection

The output diode should be rated to handle the output voltage and the peak switch current. Make sure that the diode's peak current rating is at least ${\sf I}_{\sf PK}$ and that its

breakdown voltage exceeds $V_{\mbox{OUT}}.$ Schottky diodes are recommended.

Input and Output Capacitor Selection

Low-ESR capacitors are recommended for input bypassing and output filtering. Low-ESR tantalum capacitors are a good compromise between cost and performance. Ceramic capacitors are also a good choice. Sanyo OS-CON types are also recommended for their low ESR. Avoid standard aluminum electrolytic capacitors. A simple equation to estimate input and output capacitor values for a given voltage ripple is as follows:

$$C \geq \frac{0.5 \cdot L \cdot \left(I_{PK}^{2}\right)}{V_{RIPPLE} \cdot V_{OUT}}$$

where $V_{\mbox{\scriptsize RIPPLE}}$ is the peak-to-peak ripple voltage on the capacitor.

Output Voltage

The MAX1790 operates with an adjustable output from V_{IN} to 12V. Connect a resistor voltage divider to FB *(Typical Operating Circuit)* from the output to GND. Select the resistor values as follows:

$$R1 = R2\left(\frac{V_{OUT}}{V_{FB}} - 1\right)$$

where VFB, the boost-regulator feedback set point, is 1.24V. Since the input bias current into FB is typically 0, R2 can have a value up to $100k\Omega$ without sacrificing accuracy. Connect the resistor-divider as close to the IC as possible.

Loop Compensation

The voltage feedback loop needs proper compensation to prevent excessive output ripple and poor efficiency caused by instability. This is done by connecting a resistor (R_{COMP}) and capacitor (C_{COMP}) in series from COMP to GND, and another capacitor (C_{COMP2}) from COMP to GND. R_{COMP} is chosen to set the high-frequency integrator gain for fast transient response, while C_{COMP} is chosen to set the integrator zero to maintain loop stability. The second capacitor, C_{COMP2}, is chosen to cancel the zero introduced by output capacitance ESR. For optimal performance, choose the components using the following equations:

$$\begin{split} & \mathsf{R}_{\mathsf{COMP}} \cong (200\Omega \ / \ A^2) \cdot \mathsf{V}_{\mathsf{OUT}^2} \cdot \mathsf{C}_{\mathsf{OUT}} \ / \ \mathsf{L} \\ & \mathsf{C}_{\mathsf{COMP}} \cong (0.4 \cdot 10^{-3} \ \mathsf{A} \ / \ \Omega) \ \mathsf{L} \ / \ \mathsf{V}_{\mathsf{IN}} \\ & \mathsf{C}_{\mathsf{COMP2}} \cong (0.005 \ \mathsf{A}^2 \ / \ \Omega) \ \mathsf{R}_{\mathsf{ESR}} \cdot \mathsf{L} \ / \ \mathsf{V}_{\mathsf{OUT}^2} \end{split}$$

MAXIM -

For the ceramic output capacitor, where ESR is small, C_{COMP2} is optional. Table 1 shows experimentally verified external component values for several applications. The best gauge of correct loop compensation is by inspecting the transient response of the MAX1790. Adjust R_{COMP} and C_{COMP} as necessary to obtain optimal transient performance.

Soft-Start Capacitor

The soft-start capacitor should be large enough that it does not reach final value before the output has reached regulation. Calculate C_{SS} to be:

$$C_{SS} > 21 \cdot 10^{-6} \cdot C_{OUT} \left(\frac{V_{OUT}^2 - V_{IN} \cdot V_{OUT}}{V_{IN} \cdot I_{INRUSH} - I_{OUT} \cdot V_{OUT}} \right)$$

where:

 $C_{\mbox{OUT}}$ = total output capacitance including any bypass capacitor on the output bus

V_{OUT} = maximum output voltage

IINRUSH = peak inrush current allowed

IOUT = maximum output current during power-up stage

 V_{IN} = minimum input voltage

The load must wait for the soft-start cycle to finish before drawing a significant amount of load current. The duration after which the load can begin to draw maximum load current is:

$$t_{MAX} = 6.77 \cdot 10^5 C_{SS}$$

Application Circuits 1-Cell to 3.3V SEPIC Power Supply

Figure 3 shows the MAX1790 in a single-ended primary inductance converter (SEPIC) topology. This topology is useful when the input voltage can be either higher or lower than the output voltage, such as when converting a single lithium-ion (Li+) cell to a 3.3V output. L1A and L1B are two windings on a single inductor. The coupling capacitor between these two windings must be a low-ESR type to achieve maximum efficiency, and must also be able to handle high ripple currents. Ceramic capacitors are best for this application. The circuit in Figure 3 provides 400mA output current at 3.3V output when operating with an input voltage from +2.6V to +5.5V.

AMLCD Application

Figure 4 shows a power supply for active matrix (TFT-LCD) flat-panel displays. Output voltage transient performance is a function of the load characteristic. Add or remove output capacitance (and recalculate compensation network component values) as necessary to meet transient performance. Regulation performance

for secondary outputs (V2 and V3) depends on the load characteristics of all three outputs.

Layout Procedure

Good PC board layout and routing are required in highfrequency switching power supplies to achieve good regulation, high efficiency, and stability. It is strongly recommended that the evaluation kit PC board layouts be followed as closely as possible. Place power components as close together as possible, keeping their traces short, direct, and wide. Avoid interconnecting the ground pins of the power components using vias through an internal ground plane. Instead, keep the power components close together and route them in a "star" ground configuration using component-side coper, then connect the star ground to internal ground using multiple vias.

Chip Information

TRANSISTOR COUNT: 1012

Figure 3. MAX1790 in a SEPIC Configuration

Figure 4. Multiple-Output, Low-Profile (1.2mm max) TFT LCD Power Supply

MAX1790

Package Information

MAX1790