Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

Abstract

General Description The MAX16809/MAX16810 are integrated, high-efficiency white or RGB LED drivers. They are designed for LCD backlighting and other LED lighting applications with multiple strings of LEDs. The MAX16809/ MAX16810's current-mode PWM controller regulates the necessary voltage to the LED array. Depending on the input voltage and LED voltage range, it can be used with boost or buck-boost (SEPIC) topologies. The MAX16809/MAX16810 LED drivers include 16 open-drain, constant-current-sinking LED driver outputs rated for 36 V continuous operation. The LED currentcontrol circuitry achieves $\pm 3 \%$ current matching among strings and enables paralleling of outputs for LED string currents higher than 55 mA . The output-enable pin is used for simultaneous PWM dimming of all output channels. Dimming frequency range is 50 Hz to 30 kHz and dimming ratio is up to 5000:1. The constant-current outputs are single resistor programmable and the LED current can be adjusted up to 55 mA per output channel. The MAX16809/MAX16810 operate either in stand-alone mode or with a microcontroller ($\mu \mathrm{C}$) using an industrystandard, 4-wire serial interface. The MAX16810 includes a watchdog and circuitry that automatically detects open-circuit LEDs. The MAX16809/MAX16810 include overtemperature protection, operate over the full $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range, and are available in a $5 \mathrm{~mm} \times 7 \mathrm{~mm}$ thermally enhanced, 38-pin TQFN exposed paddle package.

Pin Configuration appears at end of data sheet.

Features

- 16 Constant-Current Output Channels (Up to 55mA Each)
- $\pm 3 \%$ Current Matching Among Outputs
- Paralleling Channels Allows Higher Current per LED String
- Outputs Rated for 36V Continuous Voltage
- Output-Enable Pin for PWM Dimming (Up to 30kHz)
- One Resistor Sets LED Current for All Channels
- Wide Dimming Ratio Up to 5000:1
- Low Current-Sense Reference (300mV) for High Efficiency
- 8 V to $\mathbf{2 6 . 5 V}$ Input Voltage or Higher with External Biasing Devices
- Open LED Detection and Watchdog Timer (MAX16810)
- 4-Wire Serial Interface to Control Individual Output Channels

Applications
LCD White or RGB LED Backlighting:
LCD TVs, Desktop, and Notebook Panels Automotive Navigation, Heads-Up, and Infotainment Displays Industrial and Medical Displays Ambient, Mood, and Accent Lighting

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX16809ATU+	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	38 TQFN-EP**	T3857-1
MAX16810ATU+*	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	38 TQFN-EP**	T3857-1

+Denotes lead-free package.
*Future product-contact factory for availability.
${ }^{* *} E P=$ Exposed paddle.

Typical Operating Circuits

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

ABSOLUTE MAXIMUM RATINGS

$V_{c c}$ to AGND	-0.3V to +30V
Current into VCc (VCC > 24V)	30 mA
V+ to PGND.	-0.3V to +6V
OUT to AGND	-0.3V to (VCC + 0.3V)
OUT Current (10us duration)	$\pm 1 \mathrm{~A}$
FB, COMP, CS, RTCT, REF to AGND	-0.3V to +6V
COMP Sink Current.	. 10 mA
OUT0-OUT15 to PGND	-0.3V to +40V
DIN, CLK, LE, OE, SET to PGND.	-0.3V to (V+ + 0.3V)
DOUT Current	$\pm 10 \mathrm{~mA}$

OUTO-OUT15 Sink Current..60mA Total PGND Current (1s pulse time)

2857 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{O}$
*Per JEDEC51 Standard (Multilayer Board).

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (PWM CONTROLLER)

$\left(\mathrm{V}_{C C}=+15 \mathrm{~V}, \mathrm{~V}+=+3 \mathrm{~V}\right.$ to +5.5 V referenced to $\mathrm{PGND}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{REF}=$ open, $\mathrm{COMP}=$ open, $\mathrm{C}_{\mathrm{REF}}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{FB}}=2 \mathrm{~V}$, $C S=A G N D, A G N D=P G N D=0 V$; all voltages are measured with respect to AGND, unless otherwise noted. $T_{J}=T_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
REFERENCE						
Output Voltage	VREF	$I_{\text {REF }}=1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	4.95	5	5.05	V
Line Regulation	$\Delta V_{\text {LINE }}$	$12 \mathrm{~V}<\mathrm{V}_{\text {cC }}<25 \mathrm{~V}$, IREF $=1 \mathrm{~mA}$		0.4	4	mV
Load Regulation	$\Delta V_{\text {LOAD }}$	$1 \mathrm{~mA}<\mathrm{I}_{\text {REF }}<20 \mathrm{~mA}$		6	50	mV
Total Output-Voltage Variation	$V_{\text {REFT }}$	(Note 2)	4.875		5.125	V
Output Noise Voltage	$\mathrm{V}_{\text {NOISE }}$	$10 \mathrm{~Hz}<\mathrm{f}<10 \mathrm{kHz}$		50		$\mu \mathrm{V}$
Output Short-Circuit Current	ISHORT	$V_{\text {REF }}=0 \mathrm{~V}$	30		180	mA
OSCILLATOR						
Initial Accuracy		$\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$	51	54	57	kHz
Voltage Stability		12 V < $\mathrm{V}_{\text {c }}<25 \mathrm{~V}$		0.2	0.5	\%
Temperature Stability				1		\%
RTCT Ramp Peak-to-Peak				1.7		V
RTCT Ramp Valley				1.1		V
Discharge Current	IDIS	$\mathrm{V}_{\text {RTCT }}=2 \mathrm{~V}, \mathrm{TJ}=+25^{\circ} \mathrm{C}$	7.9	8.3	8.7	mA
		$V_{\text {RTCT }}=2 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T} \leq+125^{\circ} \mathrm{C}$	7.5	8.3	9.0	
Frequency Range	fosc		20		1000	kHz
ERROR AMPLIFIER						
FB Input Voltage	$V_{\text {FB }}$	FB shorted to COMP	2.45	2.5	2.55	V
Input Bias Current	IB(FB)			-0.01	-0.1	$\mu \mathrm{A}$
Open-Loop Gain	Avol	$2 \mathrm{~V} \leq \mathrm{V}_{\text {COMP }} \leq 4 \mathrm{~V}$		100		dB
Unity-Gain Bandwidth	$\mathrm{f}_{\text {GBW }}$			1		MHz
Power-Supply Rejection Ratio	PSRR	$12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 25 \mathrm{~V}$	60	80		dB
COMP Sink Current	ISINK	$\mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {COMP }}=1.1 \mathrm{~V}$	2	6		mA
COMP Source Current	IsOURCE	$\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}, \mathrm{~V}_{\text {COMP }}=5 \mathrm{~V}$	0.5	1.2	1.8	mA
COMP Output-Voltage High	VOH	$V_{\text {FB }}=2.3 \mathrm{~V}, \mathrm{RCOMP}=15 \mathrm{k} \Omega$ to AGND	5	5.8		V
COMP Output-Voltage Low	VOL	$\mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}, \mathrm{RCOMP}=15 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{REF}}$		0.1	1.1	V

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

ELECTRICAL CHARACTERISTICS (PWM CONTROLLER) (continued)

$\left(\mathrm{V}_{C C}=+15 \mathrm{~V}, \mathrm{~V}+=+3 \mathrm{~V}\right.$ to +5.5 V referenced to $\mathrm{PGND}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{REF}=$ open, $\mathrm{COMP}=$ open, $\mathrm{C}_{\mathrm{REF}}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{FB}}=2 \mathrm{~V}$, $C S=A G N D, A G N D=P G N D=O V$; all voltages are measured with respect to AGND, unless otherwise noted. $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
CURRENT-SENSE AMPLIFIER							
Current-Sense Gain	Acs	(Notes 3, 4)		2.85	3	3.40	V/V
Maximum Current-Sense Signal	VCS_MAX	(Note 3)		0.275	0.300	0.325	V
Power-Supply Rejection Ratio	PSRR	$12 \mathrm{~V} \leq \mathrm{V}_{\text {CC }} \leq 25 \mathrm{~V}$			70		dB
Current-Sense Input Bias Current	ICS	$\mathrm{V}_{\text {COMP }}=0 \mathrm{~V}$			-1	-2.5	$\mu \mathrm{A}$
Current Sense to OUT Delay	tPWM	50 mV overdrive			60		ns
MOSFET DRIVER							
OUT Low-Side On-Resistance	VRDS_ONL	I IINK $=200 \mathrm{~mA}$	$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 2)		4.5	10	Ω
			$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		4.5	12	
OUT High-Side On-Resistance	VRDS_ONH	$\begin{aligned} & \text { ISOURCE = } \\ & 100 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 2)		3.5	7.5	Ω
			TJ $=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		3.5	10	
Source Current (Peak)	IsOURCE	CLOAD $=10 \mathrm{nF}$			2		A
Sink Current (Peak)	ISINK	CLOAD $=10 \mathrm{nF}$			1		A
Rise Time	tR	CLOAD $=1 \mathrm{nF}$			15		ns
Fall Time	tF_{F}	CLOAD $=1 \mathrm{nF}$			22		ns
UNDERVOLTAGE LOCKOUT/STARTUP							
Startup Voltage Threshold	VCC_START			7.98	8.4	8.82	V
Minimum Operating Voltage After Turn-On	VCC_MIN			7.1	7.6	8.0	V
Undervoltage-Lockout Hysteresis	UVLOHYST				0.8		V
PULSE-WIDTH MODULATION (PWM)							
Maximum Duty Cycle	Dmax			94.5	96	97.5	\%
Minimum Duty Cycle	Dmin					0	\%
SUPPLY CURRENT							
Startup Supply Current	Istart	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$			32	65	$\mu \mathrm{A}$
Operating Supply Current	IcC	$\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{CS}}=0 \mathrm{~V}$			3	5	mA
VCC Zener Voltage	VZ	$\mathrm{ICC}=25 \mathrm{~mA}$		24	26.5		V

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

ELECTRICAL CHARACTERISTICS (LED DRIVER)

$\left(\mathrm{V}+=+3 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}$; all voltages are measured with respect to PGND , unless otherwise noted. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage	V+		3.0		5.5	V
Output Voltage	VOUT_-				36	V
Standby Current (Interface Idle, All Output Ports High Impedance)		RSET $=360 \Omega$, DIN, LE, CLK $=$ PGND or $\mathrm{V}+$, $\overline{\mathrm{OE}}=\mathrm{V}+$, DOUT unconnected		3.6	4.5	mA
Standby Current (Interface Active, All Output Ports High Impedance)		RSET $=360 \Omega$, fCLK $=5 \mathrm{MHz}, \overline{\mathrm{OE}}=\mathrm{V}+$, DIN, LE = PGND or V+, DOUT unconnected		3.8	4.8	mA
Supply Current (Interface Idle, All Output Ports Active Low)	I+	RSET $=360 \Omega, \overline{O E}=$ PGND, DIN, LE $=\mathrm{V}+$, DOUT unconnected		30	52.5	mA
INTERFACE (DIN, CLK, DOUT, LE, $\overline{\text { OE) }}$						
Input-Voltage High (DIN, CLK, LE, $\overline{O E}$)	V_{IH}		$\begin{gathered} 0.7 \\ \times V+ \end{gathered}$			V
Input-Voltage Low (DIN, CLK, LE, $\overline{O E}$)	VIL				$\begin{gathered} 0.3 \\ \times V_{+} \end{gathered}$	V
Hysteresis Voltage (DIN, CLK, LE, $\overline{O E}$)	VHYST			0.8		V
Input Leakage Current (DIN, CLK)	ILEAK		-1		+1	$\mu \mathrm{A}$
OE Pullup Current to V+	IOE	$\mathrm{V}+=5.5 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{PGND}$	0.25	1.5	25	$\mu \mathrm{A}$
LE Pulldown Current to PGND	ILE	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{LE}=\mathrm{V}+$	0.25	1.5	25	$\mu \mathrm{A}$
Output-Voltage High (DOUT)	VOH	ISOURCE $=4 \mathrm{~mA}$	$\begin{gathered} V+ \\ -0.5 \mathrm{~V} \end{gathered}$			V
Output-Voltage Low (DOUT)	VOL	ISINK $=4 \mathrm{~mA}$			0.5	V
OUT_ _ Output Current	Iout__	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \text { VOUT }=1 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \\ & \mathrm{RSET}=360 \Omega \end{aligned}$	43.25	47.5	51.75	mA
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \\ & \text { RSET }=360 \Omega \end{aligned}$	40		55	
OUT_ _ Leakage Current		$\overline{\mathrm{OE}}=\mathrm{V}+$			1	$\mu \mathrm{A}$
OUT_ _ Fault Detection Threshold (MAX16810)	Voutth	$\mathrm{V}+=5.5 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{V}_{+}$		0.8		V
Watchdog Timeout Period (MAX16810)	twD	$\mathrm{V}+=5.5 \mathrm{~V}$	0.1	1	2.5	S

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

5V TIMING CHARACTERISTICS

$(\mathrm{V}+=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}$; all voltages are measured with respect to PGND, unless otherwise noted. $\mathrm{T} \mathrm{A}=\mathrm{TJ}=$ $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T} \mathrm{A}=+25^{\circ} \mathrm{C}$.) (Notes 1,5)

PARAMETER	SYMBOL	CONDITION	MIN	TYP MAX	UNITS
INTERFACE TIMING CHARACTERISTICS					
CLK Clock Period	tcP		40		ns
CLK Pulse-Width High	tch		19		ns
CLK Pulse-Width Low	tCL		19		ns
DIN Setup Time	tDS		4		ns
DIN Hold Time	tDH		8		ns
DOUT Propagation Delay	too		10	50	ns
DOUT Rise Time	tDR	CDOUT $=10 \mathrm{pF}, 20 \%$ to 80\%		10	ns
DOUT Fall Time	tDF	CDOUT $=10 \mathrm{pF}, 80 \%$ to 20%		10	ns
LE Pulse-Width High	tLW		20		ns
LE Setup Time	tLS		15		ns
LE Rising to OUT_ _ Rising Delay	tLRR	(Note 6)		110	ns
LE Rising to OUT_ _ Falling Delay	tLRF	(Note 6)		340	ns
CLK Rising to OUT__ Rising Delay	tCRR	(Note 6)		110	ns
CLK Rising to OUT__ Falling Delay	tCRF	(Note 6)		340	ns
$\overline{\text { OE Rising to OUT__ Rising Delay }}$	tOER	(Note 6)		110	ns
$\overline{\text { OE Falling to OUT_ _ Falling Delay }}$	tOEF	(Note 6)		340	ns
OUT_ _ Turn-On Fall Time	tF	80\% to 20\% (Note 6)		210	ns
OUT_ _ Turn-Off Rise Time	tR	20\% to 80\% (Note 6)		130	ns

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

3.3V TIMING CHARACTERISTICS

$(\mathrm{V}+=+3 \mathrm{~V}$ to $<+4.5 \mathrm{~V}, \mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}$; all voltages are measured with respect to PGND , unless otherwise noted. $\mathrm{TA}=\mathrm{TJ}=$ $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T} A=+25^{\circ} \mathrm{C}$.) (Notes 1,5$)$

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
INTERFACE TIMING CHARACTERISTICS					
CLK Clock Period	tcP		52		ns
CLK Pulse-Width High	ter		24		ns
CLK Pulse-Width Low	tCL		24		ns
DIN Setup Time	tDS		4		ns
DIN Hold Time	tD		8		ns
DOUT Propagation Delay	tDo		12	70	ns
DOUT Rise Time	tDR	CDOUT $=10 \mathrm{pF}, 20 \%$ to 80\%		12	ns
DOUT Fall Time	tDF	CDOUT $=10 \mathrm{pF}$, 80\% to 20%		12	ns
LE Pulse-Width High	tLW		20		ns
LE Setup Time	tLS		15		ns
LE Rising to OUT_ _ Rising Delay	tLRR	(Note 6)		140	ns
LE Rising to OUT_ _ Falling Delay	tLRF	(Note 6)		400	ns
CLK Rising to OUT_ _ Rising Delay	tCRR	(Note 6)		140	ns
CLK Rising to OUT_ _ Falling Delay	tCRF	(Note 6)		400	ns
$\overline{\text { OE Rising to OUT_ _ Rising Delay }}$	tOER	(Note 6)		140	ns
$\overline{\text { OE Falling to OUT_ _ Falling Delay }}$	tOEF	(Note 6)		400	ns
OUT_ _ Turn-On Fall Time	tF_{F}	80\% to 20\% (Note 6)		275	ns
OUT_ _ Turn-Off Rise Time	tR	20\% to 80\% (Note 6)		150	ns

Note 1: All devices are 100% production tested at $\mathrm{T} J=+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$. Limits to $-40^{\circ} \mathrm{C}$ are guaranteed by design.
Note 2: Guaranteed by design, not production tested.
Note 3: Parameter is measured at trip point of latch with $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$.
Note 4: Gain is defined as $\mathrm{A}=\Delta \mathrm{V}_{\mathrm{COMP}} / \Delta \mathrm{V}_{\mathrm{CS}}, 0.05 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CS}} \leq 0.25 \mathrm{~V}$.
Note 5: See Figures 3 and 4.
Note 6: A 65Ω pullup resistor is connected from OUT_ _ to 5.5 V . Rising refers to VOUT__ when current through OUT _ is turned off and falling refers to Vout__ when current through OUT _ _ is turned on.
\qquad

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}+=3 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{V}_{\mathrm{REF}}=\mathrm{COMP}=\mathrm{open}, \mathrm{C}_{\mathrm{REF}}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{FB}}=2 \mathrm{~V}, \mathrm{CS}=\mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}+=3 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{V}_{\mathrm{REF}}=\mathrm{COMP}=\mathrm{open}, \mathrm{CREF}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{FB}}=2 \mathrm{~V}, \mathrm{CS}=\mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OUT IMPEDANCE vs. TEMPERATURE (RDS_ON NMOS DRIVER)

COMP VOLTAGE LEVEL TO TURN OFF DEVICE vs. TEMPERATURE

TIMING RESISTANCE vs. OSCILLATOR FREQUENCY

PROPAGATION DELAY FROM CURRENT-LIMIT COMPARATOR TO OUT vs. TEMPERATURE

SUPPLY CURRENT
vs. OSCILLATOR FREQUENCY

OUT IMPEDANCE vs. TEMPERATURE (RDs_ON PMOS DRIVER)

ERROR-AMPLIFIER OPEN-LOOP GAIN AND PHASE vs. FREQUENCY

SUPPLY CURRENT vs. SUPPLY VOLTAGE
(INTERFACE IDLE, ALL OUTPUTS OFF, RSET = 720 Ω)

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}+=3 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{RT}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{V}_{\mathrm{REF}}=\mathrm{COMP}=\mathrm{open}, \mathrm{C}_{\mathrm{REF}}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{FB}}=2 \mathrm{~V}, \mathrm{CS}=\mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SUPPLY CURRENT vs. SUPPLY VOLTAGE (INTERFACE IDLE, ALL OUTPUTS ON, RSET = 360 ${ }^{\text {) }}$)

OUT__ CURRENT vs. OUT__ VOLTAGE
(RSET $=360 \Omega, \mathrm{~V}_{+}=3.3 \mathrm{~V}$)

SUPPLY CURRENT vs. SUPPLY VOLTAGE (INTERFACE IDLE, ALL OUTPUTS ON, RSET = 720 Ω)

OUT__ CURRENT vs. OUT__ VOLTAGE ($\mathrm{BSET}_{\text {S }}=720 \Omega, \mathrm{~V}_{+}=\mathbf{3 . 3 V}$)

OUT__CURRENT vs. OUT__ VOLTAGE (RSET $=720 \Omega, V_{+}=5.0 \mathrm{~V}$)

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{C}}=+15 \mathrm{~V}, \mathrm{~V}+=3 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{V}_{\mathrm{REF}}=\mathrm{COMP}=\mathrm{open}, \mathrm{C}_{\mathrm{REF}}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{FB}}=2 \mathrm{~V}, \mathrm{CS}=\mathrm{AGND}=\mathrm{PGND}=0 \mathrm{~V}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

Pin Description

PIN	NAME	FUNCTION
$\begin{gathered} 1,31,32, \\ 36,38 \end{gathered}$	N.C.	No Connection. Not internally connected. Leave unconnected.
2	FB	Error-Amplifier Inverting Input
3	COMP	Error-Amplifier Output
4-11	OUT8-OUT15	LED Driver Outputs. OUT8-OUT15 are open-drain, constant-current-sinking outputs rated for 36V.
12	$\overline{\mathrm{OE}}$	Active-Low, Output Enable Input. Drive $\overline{\mathrm{OE}}$ low to PGND to enable the OUTO-OUT15. Drive $\overline{\mathrm{OE}}$ high to disable OUTO-OUT15.
13	DOUT	Serial-Data Output. Data is clocked out of the 16-bit internal shift register to DOUT on CLK's rising edge.
14	SET	LED Current Setting. Connect RSET from SET to PGND to set the LED current.
15	V+	LED Driver Positive Supply Voltage. Bypass V+ to PGND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
16, 17	PGND	Power Ground
18	DIN	Serial-Data Input. Data is loaded into the internal 16-bit shift register on CLK's rising edge.
19	CLK	Serial-Clock Input
20	LE	Latch-Enable Input. Data is loaded transparently from the internal shift register(s) to the output latch(es) while LE is high. Data is latched into the output latch(es) on LE's falling edge, and retained while LE is low.
21-28	OUT0-OUT7	LED Driver Outputs. OUT0-OUT7 are open-drain, constant-current-sinking outputs rated for 36V.
29	RTCT	PWM Controller Timing Resistor/Capacitor Connection. A resistor RT from RTCT to REF and a capacitor CT from RTCT to AGND set the oscillator frequency.
30	CS	PWM Controller Current-Sense Input
33	AGND	Analog Ground
34	OUT	MOSFET Driver Output OUT. Connects to the gate of the external n-channel MOSFET.
35	VCC	Power-Supply Input. Bypass $V_{C C}$ to AGND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor or a parallel combination of a $0.1 \mu \mathrm{~F}$ and a higher value ceramic capacitor.
37	REF	5 V Reference Output. Bypass REF to AGND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
-	EP	Exposed Paddle. Connect to the ground plane for improved power dissipation. Do not use as the only ground connection.

Detailed Description

The MAX16809/MAX16810 LED drivers include an internal switch-mode controller that can be used as boost or buck-boost (SEPIC) converters to generate the voltage necessary to drive the multiple strings of LEDs. These devices incorporate an integrated low-side driver, a programmable oscillator (20 kHz to 1 MHz), an error amplifier, a low-voltage (300 mV) current sense for higher efficiency, and a 5 V reference to power up external circuitry (see Figures 1a, 1b, and 1c).
The MAX16809/MAX16810 LED drivers include a 4-wire serial interface and a current-mode PWM controller to generate the necessary voltage for driving 16 opendrain, constant-current-sinking output ports. The drivers
use current-sensing feedback circuitry (not simple current mirrors) to ensure very small current variations over the full allowed range of output voltage (see the Typical Operating Characteristics). The 4-wire serial interface comprises a 16 -bit shift register and a 16 -bit transparent latch. The shift register is written through a clock input, CLK, and a data input, DIN, and the data propagates to a data output, DOUT. The data output allows multiple drivers to be cascaded and operated together. The contents of the 16 -bit shift register are loaded into the transparent latch through a latch-enable input, LE. The latch is transparent to the shift register outputs when high and latches the current state on the falling edge of LE. Each driver output is an open-drain, con-stant-current sink that should be connected to the

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

cathode of a string of LEDs connected in series. The constant-current capability is up to 55 mA per output, set for all 16 outputs by an external resistor, RSET. The devices can operate in a stand-alone mode (see the Typical Operating Circuits).
The MAX16810 includes circuitry that automatically detects open-circuit LEDs. Fault status is loaded into the serial-interface shift register when LE goes high and is
automatically shifted out on DOUT when the next data transmission is shifted in. The MAX16810 also features a watchdog that monitors activity on the CLK, DIN, and LE inputs (see the Watchdog (MAX16810) section). The number of channels can be expanded by using the MAX6970 and MAX6971 family in conjunction with the MAX16809 and MAX16810.

Figure 1a. Internal Block Diagram (MAX16809)

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

Figure 1b. Internal Block Diagram (MAX16810)

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

Figure 1c. OUT__ Driver Internal Diagram

Switch-Mode Controller

Current-Mode Control Loop

The advantages of current-mode control over voltagemode control are twofold. First, there is the feed-forward characteristic brought on by the controller's ability to adjust for variations in the input voltage on a cycle-by-cycle basis. Second, the stability requirements of the current-mode controller are reduced to that of a sin-gle-pole system unlike the double pole in the voltagemode control scheme. The MAX16809/MAX16810 use a current-mode control loop where the output of the error amplifier is compared to the current-sense voltage (VCS). When the current-sense signal is lower than the inverting input of the CPWM comparator, the output of the comparator is low and the switch is turned on at each clock pulse. When the current-sense signal is higher than the inverting input of the CPWM comparator, the output is high and the switch is turned off.

Undervoltage Lockout (UVLO)

The turn-on supply voltage for the MAX16809/ MAX16810 is 8.4 V (typ). Once Vcc reaches 8.4 V , the reference powers up. There is a 0.8 V of hysteresis from the turn-on voltage to the UVLO threshold. Once Vcc reaches 8.4 V , the MAX16809/MAX16810 operate with Vcc down to 7.6 V . Once Vcc goes below 7.6 V (typ), the device is in UVLO. When in UVLO, the quiescent supply current into V_{Cc} falls back to $32 \mu \mathrm{~A}$ (typ), and OUT and REF are pulled low.

MOSFET Driver OUT drives an external n-channel MOSFET and swings from AGND to $V_{C C}$. Ensure that $V_{C C}$ remains below the absolute maximum VGS rating of the external MOSFET.

OUT is a push-pull output with the on-resistance of the pMOS typically 3.5Ω and the on-resistance of the nMOS typically 4.5Ω. The driver can source 2 A and sink 1 A typically. This allows for the MAX16809/MAX16810 to quickly turn on and off high gate-charge MOSFETs. Bypass Vcc with one or more $0.1 \mu \mathrm{~F}$ ceramic capacitors to AGND, placed close to Vcc. The average current sourced to drive the external MOSFET depends on the total gate charge $\left(\mathrm{QG}_{\mathrm{G}}\right)$ and operating frequency of the converter. The power dissipation in the MAX16809/MAX16810 is a function of the average output drive current (IDRIVE). Use the following equation to calculate the power dissipation in the device due to IDRIVE:

$$
\begin{gathered}
\text { IDRIVE }=(\mathrm{QG} \times f S W) \\
\text { PD } \stackrel{(\text { IDRIVE }+\mathrm{ICC}) \times \mathrm{V}_{\mathrm{CC}}}{ }
\end{gathered}
$$

where ICC is the operating supply current. See the Typical Operating Characteristics for the operating supply current at a given frequency.

Error Amplifier

The MAX16809/MAX16810 include an internal error amplifier. The inverting input is at FB and the noninverting input is internally connected to a 2.5 V reference. Set the output voltage using a resistive divider between output of the converter Vout, FB, and AGND. Use the following formula to set the output voltage:

$$
V_{\text {OUT }}=\left(1+\frac{R 1}{R 2}\right) \times V_{F B}
$$

where $\mathrm{V}_{\mathrm{FB}}=2.5 \mathrm{~V}$.

Oscillator

The oscillator frequency is programmable using an external capacitor and a resistor at RTCT (see RTCT in the Typical Operating Circuits). RT is connected from RTCT to the 5 V reference (REF), and CT is connected from RTCT to AGND. REF charges C_{T} through RT until its voltage reaches 2.8 V . CT then discharges through an 8.3 mA internal current sink until CT's voltage reaches 1.1 V , at which time CT is allowed to charge through RT again. The oscillator's period is the sum of the charge and discharge times of CT. Calculate the charge time as follows:

$$
\mathrm{tc}=0.57 \times \mathrm{RT} \times \mathrm{C}_{\top}
$$

where t_{C} is in seconds, R_{T} in ohms (Ω), and C_{T} in Farads (F).
The discharge time is then:

$$
t D=\left(R_{T} \times C_{T} \times 1000\right) /\left[\left(4.88 \times R_{T}\right)-(1.8 \times 1000)\right]
$$

where to is in seconds, R_{T} in ohms (Ω), and C_{\top} in Farads (F).

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

The oscillator frequency is then:

$$
f_{\text {OSC }}=\frac{1}{\left(t_{C}+t_{D}\right)}
$$

Reference Output REF is a 5 V reference output that can source 20 mA . Bypass REF to AGND with a $0.1 \mu \mathrm{~F}$ capacitor.

Current Limit

The MAX16809/MAX16810 include a fast current-limit comparator to terminate the ON cycle during an overload or a fault condition. The current-sense resistor, Rcs, connected between the source of the external MOSFET and AGND, sets the current limit. The CS input has a voltage trip level (VCS) of 0.3 V . Use the following equation to calculate RCS:

$$
\mathrm{R}_{\mathrm{CS}}=\frac{\mathrm{V}_{\mathrm{CS}}}{\mathrm{P}_{-\mathrm{P}}}
$$

IP-P is the peak current that flows through the MOSFET. When the voltage produced by this current (through the current-sense resistor) exceeds the current-limit comparator threshold, the MOSFET driver (OUT) turns the switch off within 60ns. In most cases, a small RC filter is required to filter out the leading-edge spike on the sense waveform. Set the time constant of the RC filter at 50ns.

Buck-Boost (SEPIC) Operation
Figure 2 shows a buck-boost application circuit using the MAX16809/MAX16810 in a stand-alone mode of operation. SEPIC topology is necessary when the total forward voltage of the LEDs in a string is such that VOUT can be below or above VIN.

Figure 2. Buck-Boost (SEPIC) Operation

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

LED Driver

4-Wire Interface

The MAX16809/MAX16810 also operate in a standalone mode (see the Typical Operating Circuits). For use with a microcontroller, the MAX16809/MAX16810 feature a 4-wire serial interface using DIN, CLK, LE, OE inputs and DOUT as a data output. This interface is used to write the LED channels' data to the MAX16809/ MAX16810. The serial-interface data word length is 16 bits, D0-D15. See Figure 3.
The functions of the five interface pins are as follows:
DIN is the serial-data input, and must be stable when it is sampled on the rising edge of CLK. Data is shifted in MSB first. This means that data bit D15 is clocked in first, followed by 15 more data bits, finishing with the LSB, DO.

CLK is the serial-clock input that shifts data at DIN into the MAX16809/MAX16810's 16-bit shift register on its rising edge.
LE is the latch-enable input of the MAX16809/MAX16810 that transfers data from the 16-bit shift register to its 16bit output latches (transparent latch). The data latches on the falling edge of LE (Figure 4). The fourth input (OE) provides output-enable control of the output drivers. When $\overline{O E}$ is driven high, the outputs (OUTO-OUT15) are forced to high impedance without altering the contents of the output latches. Driving $\overline{\mathrm{OE}}$ low enables the outputs to follow the state of the output latches. $\overline{\mathrm{OE}}$ is independent of the serial interface operation. Data can be shifted into the serial-interface shift register and latched, regardless of the state of $\overline{O E}$. DOUT is the serial-data output that shifts data out from the MAX16809/MAX16810's 16-bit shift register on the rising edge of CLK. Data at DIN propagates through the shift register and appears at DOUT 16 clock cycles later. Table 1 shows the 4 -wire serial-interface truth table.

Table 1. 4-Wire Serial-Interface Truth Table

SERIAL DATA	CLOCK INPUT	SHIFT REGISTER CONTENTS						LOAD INPUT LE	LATCH CONTENTS						BLANKINGINPUT	OUTPUT CONTENTS CURRENT AT OUT					
DIN	CLK	D0	D1	D2	...	Dn-1	Dn		D0	D1	D2	\ldots	Dn-1	Dn		D0	D1	D2	...	Dn-1	Dn
H	\checkmark	H	R0	R1	...	Rn-2	Rn-1														
L	π	L	R0	R1	\ldots	Rn-2	Rn -1														
X	,	R0	R1	R2	...	Rn-1	Rn														
		X	X	X	...	X	X	L	R0	R1	R2	...	Rn-1	Rn							
		P0	P1	P2	...	Pn-1	Pn	H	P0	P1	P2	\ldots	Pn-1	Pn	L	PO	P1	P2	...	Pn-1	Pn
									X	X	X	...	X	X	H	L	L	L	\ldots	L	L

L = Low Logic Level
H = High Logic Level
X = Don't Care
$P=$ Present State (Shift Register)
R = Previous State (Latched)

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

Figure 3. 4-Wire Serial-Interface Timing Diagram

Figure 4. LE and CLK to OUT_ _ Timing

Watchdog (MAX16810)
The MAX16810 includes a watchdog circuit that monitors the CLK, DIN, and LE inputs. If there is no transition on any one of these inputs for nominally 1s, the output latches are cleared and outputs OUTO-OUT15 go high impedance like the initial power-up condition. This turns off all LEDs connected to the outputs. The shift-register data does not change, just the outputlatch data. When the watchdog triggers, the outputs remain off until the driver output latches are updated with data turning them on. Recovery is therefore automatic if the transmission failure is temporary because the MAX16810 does not lock up in the watchdog timeout state. The MAX16810 operates correctly when the serial interface is next activated, and the watchdog circuit is reset and starts monitoring the serial interface again. The watchdog function requires no software change to the application driving the MAX16810. The rise time for CLK, DIN, and LE should be less than $10 \mu \mathrm{~s}$.

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

LED Fault Detection (MAX16810)

The MAX16810 includes circuitry that detects open-circuit LEDs automatically. An open-circuit fault occurs when an output is sinking current less than approximately 50% of the programmed current flows. Open circuits are checked just after the falling edge of $\overline{O E}$. The fault data is latched on the rising edge of LE and is shifted out when new LED data is loaded into the output latches from the shift register. If one or more output ports are detected with an open-circuit fault, the D14 and D13 bits of DOUT go high. If no open-circuit faults are detected, D14 and D13 are set to low. The data in the other 14 bit positions in DOUT are not altered. Fault status is shifted out on DOUT for the first two rising edges of the clock after the falling edge of LE (see Figure 5). LE is normally taken high after all 16 bits of new LED data have been clocked into the shift register(s), and then DOUT outputs data bit D15. A typical fault-detecting application tests all the shifted out data. Bits D0-D12 and D15 are checked against the originally transmitted data to check data-link integrity. Bits D13 and D14 are checked first to see that they contain the same data (validating the status), and second, whether faults are reported or not by the actual logic level.

Figure 5. Fault Timing

Selecting External Component Rset to Set LED Output Current

The MAX16809/MAX16810 use an external resistor, RSET, to set the LED current for outputs OUTO-OUT15. The minimum allowed value of RSET is 311Ω, which sets the output currents to 55 mA . The maximum allowed value of RSET is $5 \mathrm{k} \Omega$ (IOUT _ $=3.6 \mathrm{~mA}$) and maximum allowed capacitance at SET is 100 pF . Use the following formula to set the output current:

$$
\mathrm{R}_{\text {SET }}=\frac{17,100 \mathrm{~V}}{\mathrm{l}_{\text {OUT }}}
$$

where IOUT_ _ is the desired output current in milliamps and the value for RSET is in ohms.

Overtemperature Cutoff

The MAX16809/MAX16810 contain an internal temperature sensor that turns off all outputs when the die temperature exceeds $+165^{\circ} \mathrm{C}$. The outputs are enabled again when the die temperature drops below $+140^{\circ} \mathrm{C}$. Register contents are not affected, so when a driver is overdissipating, the external symptom is the load LEDs cycling on and off as the driver repeatedly overheats and cools, alternately turning itself off and then back on again.

Stand-Alone Operation

In stand-alone operation, the MAX16809/MAX16810 does not use the 4-wire interface (see the Typical Operating Circuits). Connect DIN and LE to V+ and provide at least 16 external clock pulses to CLK to enable 16 output ports. This startup pulse sequence can be provided either using an external clock or the PWM signal. The external clock can also be generated using the signal at RTCT and an external comparator.

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

LED Dimming

PWM Dimming
All the output channels can be dimmed simultaneously by applying a PWM signal (50 Hz to 30 kHz) to $\overline{\mathrm{OE}}$. This allows for a wide range of dimming up to a 5000:1 ratio. Each channel can be independently turned on and off using a 4 -wire serial interface. The dimming is proportional to the PWM duty cycle.

LED Current Amplitude Adjustment

Using an analog or digital potentiometer as RSET allows for LED current amplitude adjustment and linear dimming.

Computing Power Dissipation
Use the following equation to estimate the upper limit power dissipation (PD) for the MAX16809/MAX16810:

$$
\begin{aligned}
\text { PD } & =\text { DUTY } \times\left[(\mathrm{V}+\times 1+)+\sum_{i=0}^{i=15} V_{\text {OUTi }} \times \text { IOUTi }\right] \\
& +\left(V_{\mathrm{CC}} \times \mathrm{I} \mathrm{CC}\right)
\end{aligned}
$$

where:

```
V+ = supply voltage
I+ = V+ operating supply current
DUTY = PWM duty cycle applied to OE
VOUTi = MAX16809/MAX16810 port output voltage
when driving load LED(s)
IOUTi = LED drive current programmed by RSET
PD = power dissipation
```

PCB Layout Guidelines
Careful PCB layout is critical to achieve low switching losses and clean, stable operation. Use a multilayer board whenever possible for better noise immunity. Protect sensitive analog grounds by using a star ground configuration. Minimize ground noise by connecting AGND, PGND, the input bypass-capacitor ground lead, and the output-filter ground lead to a single point (star ground configuration). Also, minimize trace lengths to reduce stray capacitance, trace resistance, and radiated noise. The trace between the output voltage-divider and the FB pin must be kept short, as well as the trace between AGND and PGND.

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

Chip Information
PROCESS: BiCMOS

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Integrated 16-Channel LED Drivers with Switch-Mode Boost and SEPIC Controller

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NOTE :

1. All dimension are in mm. angles in degrees.
2. COPLANARIT APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. COPLANARITY SHALL NOT EXCEED 0.08 mm .
3. WARPAGE SHALL NOT EXCEED 0.10 mm .
4. PACKAGE LENGTH / PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC.(s)
5. REFER JEDEC MO-220, WHKD-1.

人 THE TERMINAL \#1 IDENTIFER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 PP-012.
detalls of terminal \#1 Identifier are optional, but must be located within the zone indicated.
the terminal \#1 ldentifier may be either a mold or marked feature.
7. nd and ne refer to the number of terminals on each d and e side respectvely.

B lead centerlines to be at true position as defined by basic dimension "e", ± 0.05.
O MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.

	CDMMDN DIMENSIINS		
SYMBLLS	MIN.	NDM.	MAX.
A	0.70	0.75	0.80
A1	0.00	---	0.05
A2	0.20 REF.		
b	0.20	0.25	0.30
D	4.90	5.00	5.10
e	0.50 BSC.		
E	6.90	7.00	7.10
L	0.35	0.40	.045
N	38		
ND	7		
NE	12		

	EXPGSED PAD DIMENSIDNS					
	D2			E2		
	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
T3857-1	3.50	3.60	3.70	5.50	5.60	5.70

[^0] implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are

