

September 2004 Revised January 2005

USB1T20

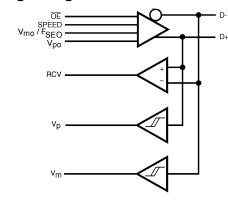
Universal Serial Bus Transceiver

General Description

The USB1T20 is a generic USB 2.0 compliant transceiver. Using a single voltage supply, the USB1T20 provides an ideal USB interface solution for any electronic device able to supply 3.0V to 3.6V. It is designed to allow 5.0V or 3.3V programmable and standard logic to interface with the physical layer of the Universal Serial Bus. It is capable of transmitting and receiving serial data at both full speed (12Mbit/s) and low speed (1.5Mbit/s) data rates.

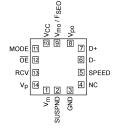
Packaged in industry standard TSSOP and Fairchild's ultra-small 2.5mm x 2.5mm MLP package, the USB1T20 is ideal for ultra-portable electronics and other space constrained applications.

Features

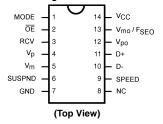

- Complies with Universal Serial Bus specification 2.0 for FS/LS applications
- Utilizes digital inputs and outputs to transmit and receive USB cable data
- Supports 12Mbit/s "Full Speed" and 1.5Mbit/s "Low Speed" serial data transmission
- Supports single-ended and differential data interface as function of MODE
- Single 3.3V supply
- ESD Performance: Human Body Model
 - > 9.5 kV on D-, D+ pins only
- > 4 kV on all other pins
- Space saving 14-terminal MLP package

Ordering Code:

Order Number	Package Number	Package Description
USB1T20MPX (Preliminary)	MLP14D	14-Terminal Molded Leadless Package (MLP), 2.5mm Square
USB1T20MTC (Note 1)	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide


Note 1: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

Logic Diagram


Connection Diagrams

Terminal Assignments for MLP (Preliminary)

(Top View)

Pin Assignments for TSSOP

© 2005 Fairchild Semiconductor Corporation

DS500894

Terminal and Pin Descriptions

Terminal or Pin	Termina Num		I/O	I/O Description						
Name	MLP14D	MTC14				•				
RCV	13	3	0	Receive data. CM	Receive data. CMOS level output for USB differential input					
ŌĒ	12	2	I	Output Enable. Active LOW, enables the transceiver to transmit data on the bus. When not active the transceiver is in receive mode.						
MODE	11	1	-	Mode. When left unconnected, a weak pull-up transistor pulls it to V_{CC} and in this GND, the V_{mo}/F_{SEO} pin takes the function of F_{SEO} (Force SEO).						
V _{po} ,	8, 9	12, 13	I	Inputs to differential driver. (Outputs from SIE).						
V _{mo} / F _{SEO}				MODE	V _{po}	V _{mo} /F _{SEO}	RESULT			
				0	0	0	Logic "0"			
					0	1	SE0			
					1	0	Logic "1"			
					1	1	SE0			
				1	0	0	SE0			
					0	1	Logic "0"			
					1	0	Logic "1"			
					1	1	Illegal code			
V_p, V_m	14, 1	4, 5	0			ts are logic "0" and lo or conditions, and into				
				V _p	V_{m}	RESULT				
				0	0	SE0				
				0	1	Low Speed				
				1	0	Full Speed				
				1	1	Error				
D+, D-	7, 6	11, 10	AI/O	Data+, Data Diffe standard.	erential data bus	conforming to the Un	iversal Serial Bus			
SUSPND	2	6	I	Suspend. Enables a low power state while the USB bus is inactive. While the SUSPND pin is active it will drive the RCV pin to a logic "0" state. Both D+ and D- are 3-STATE.						
SPEED	5	9	I	Edge rate control. Logic "0" operates		s at edge rates for "fow speed".	ull speed".			
V _{CC}	10	14	_	3.0V to 3.6V power	r supply					
GND	3	7	_	Ground reference						
NC	4	8		No Connect						

Functional Truth Table

		Input			I/	О		Outputs		
Mode	V _{po}	V _{mo} /F _{SEO}	OE	SUSPND	D+	D-	RCV	V _p	V _m	Result
0	0	0	0	0	0	1	0	0	1	Logic 0
0	0	1	0	0	0	0	U	0	0	SE0
0	1	0	0	0	1	0	1	1	0	Logic 1
0	1	1	0	0	0	0	U	0	0	SE0
1	0	0	0	0	0	0	U	0	0	SE0
1	0	1	0	0	0	1	0	0	1	Logic 0
1	1	0	0	0	1	0	1	1	0	Logic 1
1	1	1	0	0	1	1	U	U	U	Illegal Code
Х	Х	Х	1	0	Z	Z	U	U	U	D+/D- Hi-Z
Х	Х	Х	1	1	Z	Z	U	U	U	D+/D- Hi-Z
X = Don't Care	Z	= 3-STATE	U = Und	efined State			•			•

Absolute Maximum Ratings(Note 2)

Conditions

-0.5V to +7.0V DC Supply Voltage (V_{CC})

DC Input Diode Current (I_{IK})

 $V_I < 0$ -50 mA Input Voltage (V_I)

(Note 3) -0.5V to +5.5V

Input Voltage (V_{I/O}) -0.5V to $V_{CC} + 0.5V$

Output Diode Current (I_{OK})

 $V_O > V_{CC}$ or $V_O < 0$ ±50 mA

Output Voltage (V_O)

(Note 3) -0.5V to $V_{CC} + 0.5V$

Output Source or Sink Current (IO)

 $V_p.V_m$, RCV Pins

 $V_O = 0V$ to V_{CC} ±15 mA

Output Source or Sink Current (I_O)

D+/D- Pins

 $V_O = 0V$ to V_{CC} $\pm 50~\text{mA}$ V_{CC} or GND Current (I_{CC}, I_{GND}) ±100 mA

Storage Temperature (T_{STO}) -60°C to + 150°C

Recommended Operating

Supply Voltage V_{CC} 3.0V to 3.6V

Input Voltage (V_I) 0V to 5.5V Input Range for AI/O (V_{AI/O}) 0V to V_{CC} Output Voltage (V_O) 0V to V_{CC}

Operating Ambient Temperature

in Free Air (T_{AMB}) -40°C to +85°C

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristic tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.

DC Electrical Characteristics (Digital Pins)

Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). $V_{CC} = 3.0V$ to 3.6V

				Unit		
Symbol	Parameter	Test Conditions	Temperat			
			Min	Тур	Max	1
Input Leve	ls	•				•
V _{IL}	LOW Level Input Voltage				0.8	V
V_{IH}	HIGH Level Input Voltage		2.0			V
Output Lev	rels	•			•	•
V _{OL} LOW Level Output Voltage	I _{OL} = 4 mA			0.4	V	
		$I_{OL} = 20 \mu A$			0.1	ľ
V _{OH}	HIGH Level Output Voltage	I _{OH} = 4 mA	2.4			V
		$I_{OH} = 20 \mu A$	V _{CC} - 0.1			
Leakage C	urrent	•				•
IL	Input Leakage Current	V _{CC} = 3.0 to 3.6			±5	μΑ
I _{CCFS}	Supply Current (Full Speed)	V _{CC} = 3.0 to 3.6			5	mA
I _{CCLS}	Supply Current (Low Speed)	V _{CC} = 3.0 to 3.6			5	mA
I _{CCQ}	Quiescent Current	V _{CC} = 3.0 to 3.6			5	mA
		$V_{IN} = V_{CC}$ or GND			5	mA
Iccs	Supply Current in Suspend	V _{CC} = 3.0 to 3.6; Mode = V _{CC}			10	μΑ

DC Electrical Characteristics (D+/D- Pins)

Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). $V_{CC} = 3.0 \text{V}$ to 3.6 V

				Limits		
Symbol	Parameter	Test Conditions	Tempera	Units		
			Min	Тур	Max	
Input Levels	•				•	
V _{DI}	Differential Input Sensitivity	(D+) - (D-)	0.2			V
V _{CM}	Differential Common Mode Range	Includes V _{DI} Range	0.8		2.5	V
V _{SE}	Single Ended Receiver Threshold		0.8		2.0	V
Output Leve	ls		•			
V _{OL}	Static Output LOW Voltage	R_L of 1.5 k Ω to 3.6V			0.3	V
V _{OH}	Static Output HIGH Voltage	R_L of 15 k Ω to GND	2.8		3.6	V
V _{CR}	Differential Crossover		1.3		2.0	V
Leakage Cui	rrent		•			
l _{oz}	High Z State Data Line Leakage Current	$0V < V_{IN} < 3.3V$			±5	μА
Capacitance	1		•	•		
C _{IN}	Transceiver Capacitance	Pin-to-GND			10	pF
(Note 5)	Capacitance Match				10	%
Output Resi	stance		•	•	•	•
Z _{DRV}	Driver Output Resistance	Steady State Drive	4		20	Ω
(Note 4)	Resistance Match				10	%

Note 4: Excludes external resistor. In order to comply with USB Specification 1.1, external series resistors of 24Ω ± 1% each on D+ and D− are recommended. This specification is guaranteed by design and statistical process distribution.

 $\textbf{Note 5:} \ \textbf{This specification is guaranteed by design and statistical process distribution}.$

AC Electrical Characteristics (D+/D- Pins, Full Speed)

Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). V_{CC} = 3.0V to 3.6V; C_L = 50 pF; R_L = 1.5 k Ω on D+ to V_{CC}

				Limits		
Symbol	Parameter	Test Condition	Tempera	Units		
			Min	Тур	Max	1
Driver Cha	racteristics			•	•	
		10% and 90%				
t_R	Rise Time	Figure 1	4		20	ns
t _F	Fall Time	Figure 1	4		20	
t _{RFM}	Rise/Fall Time Matching	(t _R /t _F)	90		110	%
V _{CRS}	Output Signal Crossover Voltage		1.3		2.0	V
Driver Tim	ings		•		•	
t _{PLH}	Driver Propagation Delay	Figure 2			18	ns
t _{PLH}	(V _{po} , V _{mo} /F _{SEO} to D+/D-)	Figure 2			18	ns
t _{PHZ}	Driver Disable Delay	Figure 4			13	ns
t _{PLZ}	(OE to D+/D-)	Figure 4			13	ns
t _{PZH}	Driver Enable Delay	Figure 4			17	ns
t _{PZL}	(OE to D+/D-)	Figure 4			17	ns
Receiver T	imings		•			
t _{PLH}	Receiver Propagation Delay	Figure 3			16	ns
t _{PHL}	(D+, D- to RCV)	Figure 3			19	ns
t _{PLH}	Single-ended Receiver Delay	Figure 3			8	ns
t _{PHL}	(D+, D- to V _p , V _m)	Figure 3			8	ns

AC Electrical Characteristics (D+/D- Pins, Low Speed)

Over recommended range of supply voltage and operating free air temperature (unless otherwise noted). VCC = 3.0V to 3.6V; C_L = 200 pF to 600 pF; R_L = 1.5k Ω on D– to VCC

				Limits		
Symbol	Parameter	Test Conditions	TAN	Unit		
			Min	Тур	Max	
Driver Cha	racteristics		•	l.		
		10% and 90%				
t_{LR}	Rise Time	Figure 1	75		300	ns
t_{LF}	Fall Time	Figure 1	75		300	
t _{RFM}	Rise/Fall Time Matching	(t_R/t_F)	80		120	%
V _{CRS}	Output Signal Crossover Voltage		1.3		2.0	V
Driver Tim	ings	•				•
t _{PLH}	Driver Propagation Delay	Figure 2			300	ns
t _{PHL}	(V _{po} , V _{mo} /F _{SEO} to D+/D-)	Figure 2			300	ns
t _{PHZ}	Driver Disable Delay	Figure 4			13	ns
t _{PLZ}	(OE to D+/D-)	Figure 4			13	ns
t _{PZH}	Driver Enable Delay	Figure 4			205	ns
t _{PZL}	(OE to D+/D-)	Figure 4			205	ns
Receiver T	imings		•	•		
t _{PLH}	Receiver Propagation Delay	Figure 3			18	ns
t _{PHL}	(D+, D- to RCV)	Figure 3			18	ns
t _{PLH}	Single-ended Receiver Delay	Figure 3			28	ns
t _{PHL}	(D+, D- to V _p , V _m)	Figure 3			28	ns

AC Waveforms

 V_{OL} and V_{OH} are the typical output voltage drops that occur with the output load. (V_{CC} never goes below 3.0V)

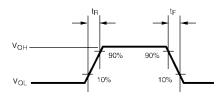


FIGURE 1. Rise and Fall Times

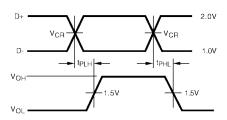


FIGURE 2. V_{pi} , V_{mo}/F_{SEO} to D+/D-

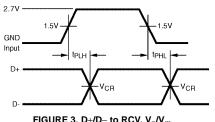


FIGURE 3. D+/D- to RCV, V_p/V_m

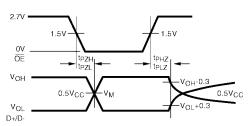
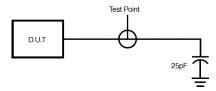
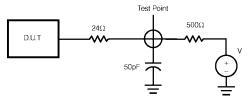
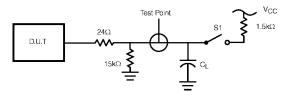




FIGURE 4. OE to D+/D-

Test Circuits and Waveforms

Load for V_m/V_p and RCV



Load for Enable and Disable Times

Note:

V = 0 for t_{PZH} , t_{PHZ}

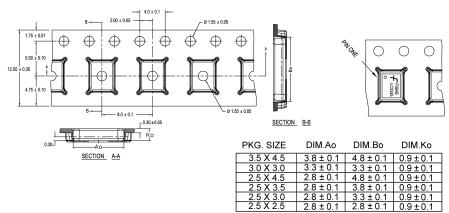
 $V = V_{CC} \text{ for } t_{PZL}, \, t_{PLZ}$

Load for D+/D-

 $C_L = 50$ pF, Full Speed

 $C_L = 200$ pF, Low Speed (Minimum Timing)

C_L = 600 pF, Low Speed (Maximum Timing)

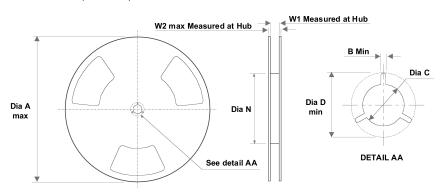

Test	S1
D-/LS	Close
D+/LS	Open
D-/FS	Open
D-/E9	Close

Tape and Reel Specification

Tape Format for MLP

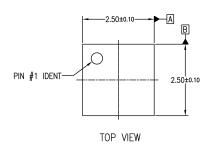
Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
MPX	Carrier	2500	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

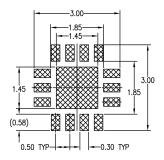
TAPE DIMENSIONS inches (millimeters)

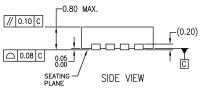

DIMENSIONS ARE IN MILLIMETERS

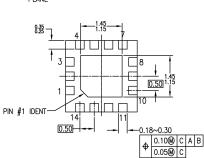
NOTES: unless otherwise specified

- 1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed 0.008[0.20] over 10 pitch span.


- 2. Smallest allowable bending radius.
 3. Thru hole inside cavity is centered within cavity.
 4. Tolerance is ±0.002[0.05] for these dimensions on all 12mm tapes.
 5. Ao and Bo measured on a plane 0.120[0.30] above the bottom of the pocket.
- 6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
 7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
- 8. Controlling dimension is millimeter. Diemension in inches rounded.

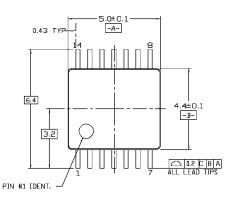

REEL DIMENSIONS inches (millimeters)

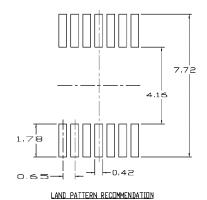

Tape Size	A (mm)	N (Typical) (mm)	W1 (mm)	W2 (Max) (mm)
12 mm	330	178	12.4	18.4

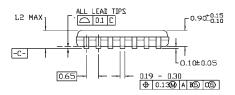

Physical Dimensions inches (millimeters) unless otherwise noted

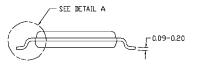
RECOMMENDED LAND PATTERN

BOTTOM VIEW

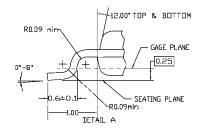

NOTES:


- A. NO JEDEC REGISTRATION
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994


MLP14DrevA


14-Terminal Molded Leadless Package (MLP), 2.5mm Square Package Number MLP14D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)



NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION ABREF NOTE 6, DATED 7/93
- B. DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH,
- AND TIE BAR EXTRUSIONS

 D. DIMENSIONING AND TOLERANCES PER ANSI
 Y14.5M, 1982

MTC14revD

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

9

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com