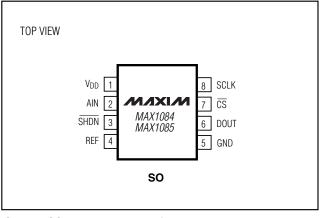
General Description


The MAX1084/MAX1085 10-bit analog-to-digital converters (ADCs) combine a high-bandwidth track/hold, a serial interface with high conversion speed, an internal +2.5V reference, and low power consumption. The MAX1084 operates from a single +4.5V to +5.5V supply; the MAX1085 operates from a single +2.7V to +3.6V supply.

The 3-wire serial interface connects directly to SPI™/QSPI™/MICROWIRE™ devices without external logic. The devices use an external serial-interface clock to perform successive-approximation analog-to-digital conversions.

Low power combined with ease of use and small package size make these converters ideal for remote-sensor and data-acquisition applications, or for other circuits with demanding power consumption and space requirements. The MAX1084/MAX1085 are available in 8-pin SO packages.

These devices are pin-compatible, higher-speed versions of the MAX1242/MAX1243; for more information, refer to the respective data sheets.

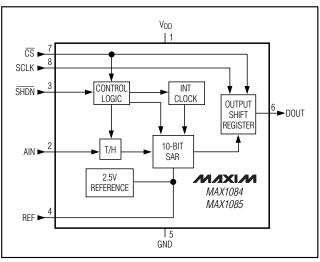
- Portable Data Logging Data Acquisition Medical Instruments
- Battery-Powered Instruments
- Pen Digitizers
- Process Control

SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.

M/IXI/M

For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

Features


- Single-Supply Operation +4.5V to +5.5V (MAX1084) +2.7V to +3.6V (MAX1085)
- 10-Bit Resolution
- 400ksps Sampling Rate (MAX1084)
- Internal Track/Hold
- Internal +2.5V Reference
- Low Power: 2.5mA (400ksps)
- SPI/QSPI/MICROWIRE 3-Wire Serial Interface
- Pin-Compatible, High-Speed Upgrade to MAX1242/MAX1243
- 8-Pin SO Package

_Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	INL (LSB)
MAX1084ACSA	0°C to +70°C	8 SO	±1/2
MAX1084BCSA	0°C to +70°C	8 SO	±1
MAX1084AESA	-40°C to +85°C	8 SO	±1/2
MAX1084BESA	-40°C to +85°C	8 SO	±1
MAX1085ACSA	0°C to +70°C	8 SO	±1/2
MAX1085BCSA	0°C to +70°C	8 SO	±1
MAX1085AESA	-40°C to +85°C	8 SO	±1/2
MAX1085BESA	-40°C to +85°C	8 SO	±1

Functional Diagram

Maxim Integrated Products 1

Downloaded from Elcodis.com electronic components distributor

Pin Configuration

ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND	0.3V to +6V
AIN to GND	
REF to GND	0.3V to (V _{DD} + 0.3V)
Digital Inputs to GND	-0.3V to +6V
DOUT to GND	-0.3V to (V _{DD} + 0.3V)
DOUT Current	±25mÅ

Continuous Power Dissipation ($T_A = +70^{\circ}C$)
8-Pin SO (derate 5.88mW/°C above +70°C)471mW
Operating Temperature Ranges
MAX1084_CSA/MAX1085_CSA0°C to +70°C
MAX1084_ESA/MAX1085_ESA40°C to +85°C
Storage Temperature Range60°C to +150°C
Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX1084

 $(V_{DD} = +4.5V \text{ to } +5.5V, f_{SCLK} = 6.4MHz, 50\% \text{ duty cycle, 16 clocks/conversion cycle (400ksps), 4.7\muF capacitor at REF, T_A = T_{MIN} \text{ to } T_{MAX}$, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
DC ACCURACY (Note 1)						
Resolution			10			Bits
Polativo Apouropy (Nato 2)	INL	MAX1084A			±0.5	LSB
Relative Accuracy (Note 2)	IINL	MAX1084B			±1.0	LOD
Differential Nonlinearity	DNL	No missing codes over temperature			±1.0	LSB
Offset Error					±4.0	LSB
Gain Error (Note 3)					±3.0	LSB
Gain-Error Temperature Coefficient				±0.8		ppm/°C
DYNAMIC SPECIFICATIONS (1	00kHz sine v	wave, 2.5Vp-p, clock = 6.4MHz)				
Signal-to-Noise Plus Distortion Ratio	SINAD			60		dB
Total Harmonic Distortion	THD	Up to the 5th harmonic		-70		dB
Spurious-Free Dynamic Range	SFDR			70		dB
Intermodulation Distortion	IMD	$f_{IN1} = 99$ kHz, $f_{IN2} = 102$ kHz		76		dB
Full-Power Bandwidth		-3dB point		6		MHz
Full-Linear Bandwidth		SINAD > 58dB		350		kHz
CONVERSION RATE						
Conversion Time (Note 4)	tCONV		2.5			μs
Track/Hold Acquisition Time	tacq				468	ns
Aperture Delay				10		ns
Aperture Jitter				<50		ps
Serial Clock Frequency	fsclk		0.5		6.4	MHz
Duty Cycle			40		60	%
ANALOG INPUT (AIN)						
Input Voltage Range	V _{AIN}		0		2.5	V
Input Capacitance				18		pF

2

ELECTRICAL CHARACTERISTICS—MAX1084 (continued)

 $(V_{DD} = +4.5V \text{ to } +5.5V, f_{SCLK} = 6.4MHz, 50\%$ duty cycle, 16 clocks/conversion cycle (400ksps), 4.7µF capacitor at REF, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
INTERNAL REFERENCE	1		•			1
REF Output Voltage	VREF	$T_A = +25^{\circ}C$	2.48	2.50	2.52	V
REF Short-Circuit Current				30		mA
REF Output Tempco	TC V _{REF}			±15		ppm/°C
Load Regulation (Note 5)		0 to 1.0mA output load		0.1	2.0	mV/mA
Capacitive Bypass at REF			4.7		10	μF
DIGITAL INPUTS (SCLK, CS, SF	IDN)					
Input High Voltage	VINH		3.0			V
Input Low Voltage	VINL				0.8	V
Input Hysteresis	VHYST			0.2		V
Input Leakage	lin	V _{IN} = 0 or V _{DD}			±1	μA
Input Capacitance	CIN			15		pF
DIGITAL OUTPUT (DOUT)						•
Output Voltage Low	Vol	I _{SINK} = 5mA			0.4	V
Output Voltage High	VOH	I _{SOURCE} = 1mA	4			V
Three-State Leakage Current	١L	$\overline{\text{CS}} = 5\text{V}$			±10	μA
Three-State Output Capacitance	Cout	$\overline{\text{CS}} = 5\text{V}$		15		pF
POWER SUPPLY			·			
Positive Supply Voltage (Note 6)	V _{DD}		4.5		5.5	V
Positive Supply Current (Note 7)	IDD	V _{DD} = 5.5V		2.5	4.0	mA
Shutdown Supply Current	ISHDN	$SCLK = V_{DD}, \overline{SHDN} = GND$		2	10	μA
Power-Supply Rejection	PSR	$V_{DD} = 5V \pm 10\%$, midscale input		±0.5	±2.0	mV

ELECTRICAL CHARACTERISTICS—MAX1085

 $(V_{DD} = +2.7V \text{ to } +3.6V, f_{SCLK} = 4.8MHz, 50\%$ duty cycle, 16 clocks/conversion cycle (300ksps), 4.7µF capacitor at REF, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
DC ACCURACY (Note 1)						
Resolution			10			Bits
	INL	MAX1085A			±0.5	LSB
Relative Accuracy (Note 2)	Accuracy (Note 2)	MAX1085B			±1.0	LSD
Differential Nonlinearity	DNL	No missing codes over temperature			±1.0	LSB
Offset Error					±3.0	LSB
Gain Error (Note 3)					±3.0	LSB
Gain-Error Temperature Coefficient				±1.6		ppm/°C

M/X/M

ELECTRICAL CHARACTERISTICS—MAX1085 (continued)

 $(V_{DD} = +2.7V \text{ to } +3.6V, f_{SCLK} = 4.8MHz, 50\% \text{ duty cycle, 16 clocks/conversion cycle (300ksps), 4.7\mu F capacitor at REF, T_A = T_{MIN} \text{ to } T_{MAX}$, unless otherwise noted. Typical values are at T_A = +25°C.)

Aperture Delay 10 Aperture Jitter 10 Aperture Jitter <50 Serial Clock Frequency fSCLK Duty Cycle 40 ANALOG INPUT 40 Input Capacitance 0 Input Capacitance CIN INTERNAL REFERENCE 18 REF Output Voltage VREF TA = +25°C 2.48 2.50 2.4 INTERNAL REFERENCE 15 15 15 REF Output Voltage VREF TA = +25°C 2.48 2.50 2.4 REF Output Tempco TC VREF ±15 15 15 Load Regulation (Note 5) 0 to 0.75mA output load 0.1 2.0 Input Bypass at REF 4.7 1 DIGITAL INPUTS (SCLK, CS, SHDN) 0.2 0.1 Input High Voltage VINL 0.0 0.1 Input Leakage IIN VIN = 0 or VDD ± Input Capacitance CIN 0.2 0.1 DIGITAL OUTPUTS (DOUT) 0.2<	X UN	MAX	TYP	MIN	CONDITIONS	SYMBOL	PARAMETER
Ratio SINAU 60 Total Harmonic Distortion THD Up to the 5th harmonic -70 Spurious-Free Dynamic Range SFDR 70 Intermodulation Distortion IMD f _{IN1} = 99kHz, f _{IN2} = 102kHz 76 Full-Power Bandwidth -3dB point 3 3 Conversion Time (Note 4) t_CONV 3.3 66 Conversion Time (Note 4) t_CONV 3.3 66 Aperture Delay 10 67 40 66 Aperture Jitter <50				lz)	2.5Vp-p, f _{SAMPLE} = 300ksps, f _{SCLK} = 4.8 N	kHz sinewa	YNAMIC SPECIFICATIONS (75
Spurious-Free Dynamic Range SFDR 70 Intermodulation Distortion IMD flin1 = 99kHz, flin2 = 102kHz 76 Full-Power Bandwidth -3dB point 3 550 Full-Power Bandwidth SINAD > 58dB 250 CONVERSION RATE 0 62 Conversion Time (Note 4) t_CONV 3.3 Track/Hold Acquisition Time t_ACQ 62 Aperture Delay 0 50 Aperture Dilay 0.5 4. Duty Cycle 40 62 ANALCG INPUT 10 40 Input Voltage Range VAIN 10 Input Voltage Range VAIN 18 INTERNAL REFERENCE 2.48 2.50 2.4 REF Output Voltage VREF TA = +25°C 2.48 2.50 2.4 Input High Voltage VREF TA = +25°C 2.48 2.50 2.4 Input Low Voltage VREF TA = +25°C 2.48 2.50 2.4 Input High Voltage VINH	d		60			SINAD	5
Intermodulation Distortion IMD f _{IN1} = 99kHz, f _{IN2} = 102kHz 76 Full-Power Bandwidth -3dB point 3 Full-Inear Bandwidth SINAD > 58dB 250 Conversion Time (Note 4) t _{CONV} 3.3 Track/Hold Acquisition Time t _{ACQ} 62 Aperture Delay 10 62 Aperture Dilay 0.5 4. Duty Cycle 40 62 ANALOG INPUT 40 62 Input Capacitance Cin 18 INTERNAL REFERENCE 18 18 REF Output Voltage VREF TA = +25°C 2.48 2.50 2.1 REF Output Voltage VREF TA = +25°C 2.48 2.50 2.1 REF Output Voltage VREF TA = +25°C 2.48 2.50 2.1 Capacitive Bypass at REF 0 to 0.75mA output load 0.1 2. 2.0 Input High Voltage VINH 19 0.2 19 15 DIGTAL INPUTS (SCLK, CS, SHDN) 0.2	d		-70		to the 5th harmonic	THD	otal Harmonic Distortion
Full-Power Bandwidth	d		70			SFDR	purious-Free Dynamic Range
Full-Linear Bandwidth SINAD > 58dB 250 CONVERSION RATE Conversion Time (Note 4) t _{CONV} 3.3 Track/Hold Acquisition Time t _{ACQ} 66 Aperture Jitter 10	d		76		₁ = 99kHz, f _{IN2} =102kHz	IMD	ntermodulation Distortion
CONVERSION RATE Conversion Time (Note 4) t_CONV 3.3 Conversion Time (Note 4) t_CONV 3.3 62 Aperture Delay 10	M		3		B point		ull-Power Bandwidth
Conversion Time (Note 4)t_CONV3.3Track/Hold Acquisition Timet_ACQ62Aperture Delay10Aperture Jitter<	kł		250		NAD > 58dB		ull-Linear Bandwidth
Track/Hold Acquisition Time t_{ACQ} 66Aperture Delay10Aperture Jitter<50				1			ONVERSION RATE
Aperture Delay10Aperture Jitter<50	L L			3.3		tCONV	Conversion Time (Note 4)
Aperture Jitter < < < < < < < < </td <td>5 r</td> <td>625</td> <td></td> <td></td> <td></td> <td>tacq</td> <td>rack/Hold Acquisition Time</td>	5 r	625				tacq	rack/Hold Acquisition Time
Serial Clock Frequency fscLk 0.5 4. Duty Cycle 40 6 ANALOG INPUT 0 2. Input Voltage Range VAIN 0 2. Input Capacitance CIN 18 18 INTERNAL REFERENCE 15 15 15 REF Output Voltage VREF TA = +25°C 2.48 2.50 2.4 REF Output Voltage VREF TA = +25°C 2.48 2.50 2.4 REF Output Voltage VREF 0 to 0.75mA output load 0.1 2. 2.43 2.50 2.4 Capacitive Bypass at REF 0 to 0.75mA output load 0.1 2. 2.0 10 10 10 10 10.1 2. 10	r		10				Aperture Delay
Duty Cycle 40 6 ANALOG INPUT Input Voltage Range VAIN 0 2. Input Capacitance CIN 18 18 INTERNAL REFERENCE 115 15 REF Output Voltage VREF TA = +25°C 2.48 2.50 2.4 REF Short Circuit Current 15 15 15 15 Capacitive Bypass at REF 0 0.1 2. Input LinPUTS (SCLK, CS, SHDN) 0 0.1 2.0 Input High Voltage VINH 2.0 0.1 2.0 Input Law Voltage VINL 0.2 0.2 0.2 Input Law Voltage VINL 0.2 0.2 0.2 Input Lawage IIN VIN = 0 or VDD ± 15 DIGITAL INPUTS (DOUT) 0.2 15 0.2 0.2 Input Lawage IN VIN = 0 or VDD ± 15 DIGITAL OUTPUTS (DOUT) 0.2 15 0.2 15 DIGITAL OUTPUTS (DOUT) <	þ		<50				Aperture Jitter
ANALOG INPUT02Input Voltage RangeVAIN02Input Capacitance C_{IN} 18INTERNAL REFERENCETA = +25°C2.482.502.1REF Output VoltageVREFTA = +25°C2.482.502.1REF Output TempcoTC VREF±151515Load Regulation (Note 5)0 to 0.75mA output load0.12.Capacitive Bypass at REF0 to 0.75mA output load0.12.Input Ligh VoltageVINH2.00.Input High VoltageVINH0.20.2Input Low VoltageVINL0.20.2Input LeakageIINVIN = 0 or VDD±Input CapacitanceCIN150.1DIGITAL OUTPUTS (DOUT)UNIN = 0 or VDD±Output Voltage LowVOLISINK = 5mA0.Output Voltage LowVOHISOURCE = 0.5mAVDD - 0.5VThree-State Leakage CurrentIL \overline{CS} = 3V15POWER SUPPLYPositive Supply Voltage (Note 6)VDVDD2.73.Positive Supply Voltage (Note 6)VD2.73.Positive Supply Current (Note 7)IDDVD2.53.	3 M	4.8		0.5		fSCLK	Serial Clock Frequency
Input Voltage Range VAIN 0 2. Input Capacitance CIN 18 18 INTERNAL REFERENCE Instance 2.48 2.50 2.48 2.50 2.48 REF Output Voltage VREF TA = +25°C 2.48 2.50 2.48 2.50 2.48 2.50 2.48 2.50 2.48 2.50 2.48 2.50 2.48 2.50 2.48 2.50 2.48 2.50 2.48 2.50 2.48 2.50 2.47 3) 9	60		40			Duty Cycle
Input CapacitanceCIN18INTERNAL REFERENCETA = +25°C2.482.502.48REF Output VoltageVREFTA = +25°C2.482.502.48REF Short Circuit Current1515REF Output TempcoTC VREF ± 15 Load Regulation (Note 5)0 to 0.75mA output load0.12.Capacitive Bypass at REF0 to 0.75mA output load0.12.Capacitive Bypass at REF4.71DIGITAL INPUTS (SCLK, CS, SHDN)1000.12.0Input High VoltageVINH0.00.0Input Low VoltageVINL0.20.1Input LeakageIINVIN = 0 or VDD $\pm \pm$ Input CapacitanceCIN150.15DIGITAL OUTPUTS (DOUT)ISINK = 5mA0.0Output Voltage LowVOLISINK = 5mA0.0Output Voltage LowVOHISOURCE = 0.5mAVDD - 0.5VThree-State Leakage CurrentIL $\overline{CS} = 3V$ $\pm \pm$ Three-State Output CapacitanceCOUT $\overline{CS} = 3V$ $\pm \pm$ POWER SUPPLYPositive Supply Voltage (Note 6)VDD 2.7 3.Positive Supply Voltage (Note 6)VDD 2.5 3.							NALOG INPUT
NTERNAL REFERENCEREF Output Voltage V_{REF} $T_A = +25^{\circ}C$ 2.48 2.50 2.48 REF Short Circuit Current15REF Output TempcoTC V_{REF ± 15 Load Regulation (Note 5)0 to 0.75mA output load0.1 2.0 Capacitive Bypass at REF4.71DIGITAL INPUTS (SCLK, \overline{CS} , \overline{SHDN})2.0Input High VoltageVINH2.0Input Low VoltageVINL0.2Input LeakageINNVIN = 0 or V_{DD}Input LeakageINNVIN = 0 or V_{DD}Utput Voltage LowVOLISINK = 5mAOutput Voltage HighVOHISOURCE = 0.5mAV_{DD = 0.5VThree-State Leakage CurrentIL $\overline{CS} = 3V$ \pm Three-State Output CapacitanceCOUT $\overline{CS} = 3V$ \pm POSITIVE SUPPLYPositive Supply Voltage (Note 6)V_DD 2.7 $3.$ Positive Supply Voltage (Note 6)V_DD $2.6V_{DD}$ 2.5 $3.$	5 '	2.5		0		VAIN	nput Voltage Range
REF Output Voltage V_{REF} $T_A = +25^{\circ}C$ 2.482.502.48REF Short Circuit Current15REF Output TempcoTC V_{REF}Load Regulation (Note 5)0 to 0.75mA output load0.12.Capacitive Bypass at REF0 to 0.75mA output load0.12.DIGITAL INPUTS (SCLK, CS, SHDN)102.00.0Input High VoltageVINH2.00.0Input High VoltageVINH0.20.2Input Low VoltageVINL0.20.2Input LeakageIINVIN = 0 or VDD \pm Input LeakageIINVIN = 0 or VDD \pm Output Voltage LowVOLISINK = 5mA0.0Output Voltage LighVOHISOURCE = 0.5mAVDD - 0.5VThree-State Leakage CurrentI $\overline{CS} = 3V$ \pm Three-State Output CapacitanceCOUT $\overline{CS} = 3V$ \pm POSITIVE SUPPLYPositive Supply Voltage (Note 6)VDD 2.7 3.Positive Supply Voltage (Note 6)VDD $V_{DD} = 3.6V$ 2.53.	p		18			CIN	nput Capacitance
REF Short Circuit Current 15 REF Output Tempco TC VREF ±15 Load Regulation (Note 5) 0 to 0.75mA output load 0.1 2. Capacitive Bypass at REF 0 to 0.75mA output load 0.1 2. DIGITAL INPUTS (SCLK, CS, SHDN) Input High Voltage VINH 2.0 Input Low Voltage VINL 0.2 0.1 Input Leakage IIN VIN = 0 or VDD ± Input Leakage INN VIN = 0 or VDD ± Input Capacitance CIN 15 0.2 DIGITAL OUTPUTS (DOUT) 15 0.2 15 DIGITAL OUTPUTS (DOUT) 15 0.2 15 Output Voltage Low VOL ISINK = 5mA 0.0 Output Voltage Low VOL ISOURCE = 0.5mA VDD - 0.5V Three-State Leakage Current I_L CS = 3V ± Three-State Output Capacitance COUT CS = 3V 15 POWER SUPPLY Positive Supply Voltage (Note 6) VDD 2.7 3. Pos							NTERNAL REFERENCE
REF Output TempcoTC V_{REF} ± 15 Load Regulation (Note 5)0 to 0.75mA output load0.12.Capacitive Bypass at REF4.71DIGITAL INPUTS (SCLK, \overline{CS} , \overline{SHDN})12.0Input High VoltageVINH2.0Input Low VoltageVINL0.2Input LeakageIINVIN = 0 or VDD $\pm \pm$ Input LeakageINNVIN = 0 or VDD $\pm \pm$ Input CapacitanceCIN15DIGITAL OUTPUTS (DOUT)ISINK = 5mA0.0Output Voltage HighVOHISOURCE = 0.5mAVDD - 0.5VThree-State Leakage CurrentIL $\overline{CS} = 3V$ $\pm \pm$ Three-State Output CapacitanceCOUT $\overline{CS} = 3V$ 15POWER SUPPLYPositive Supply Voltage (Note 6)VDD 2.7 3.Positive Supply Current (Note 7)IDDVDD = 3.6V2.53.	2 '	2.52	2.50	2.48	= +25°C	VREF	REF Output Voltage
Load Regulation (Note 5)0 to 0.75mA output load0.12.0Capacitive Bypass at REF4.71DIGITAL INPUTS (SCLK, \overline{CS} , \overline{SHDN})2.0Input High VoltageVINH2.0Input Low VoltageVINL0.1Input Low VoltageVINL0.1Input LeakageIINVIN = 0 or VDDInput LeakageIINVIN = 0 or VDDInput CapacitanceCIN15DIGITAL OUTPUTS (DOUT)ISINK = 5mA0.0Output Voltage HighVOHISOURCE = 0.5mAVDD - 0.5VThree-State Leakage CurrentIL $\overline{CS} = 3V$ 15POWER SUPPLYPositive Supply Voltage (Note 6)VDD2.73.Positive Supply Current (Note 7)IDDVDD = 3.6V2.53.	m		15				REF Short Circuit Current
Load Regulation (Note 5)0 to 0.75mA output load0.12.0Capacitive Bypass at REF4.71DIGITAL INPUTS (SCLK, \overline{CS} , \overline{SHDN})	ppr		±15			TC V _{REF}	REF Output Tempco
DIGITAL INPUTS (SCLK, \overline{CS} , \overline{SHDN})2.0Input High VoltageVINH2.0Input Low VoltageVINL0.0Input Low VoltageVINL0.2Input HysteresisVHYST0.2Input LeakageIINVIN = 0 or VDD \pm Input CapacitanceCIN15DIGITAL OUTPUTS (DOUT)VOLISINK = 5mA0.0Output Voltage LowVOLISINK = 5mA0.0Output Voltage HighVOHISOURCE = 0.5mAVDD - 0.5VThree-State Leakage CurrentIL \overline{CS} = 3V \pm Three-State Output CapacitanceCOUT \overline{CS} = 3V15POWER SUPPLYPositive Supply Voltage (Note 6)VDD 2.7 3.Positive Supply Current (Note 7)IDDVDD = 3.6V2.53.) mV	2.0	0.1		o 0.75mA output load		oad Regulation (Note 5)
Input High Voltage V_{INH} 2.0Input Low Voltage V_{INL} 0.0Input Hysteresis V_{HYST} 0.2Input LeakageIIN $V_{IN} = 0$ or V_{DD} \pm Input Capacitance C_{IN} 15DIGITAL OUTPUTS (DOUT) V_{OL} ISINK = 5mA0.2Output Voltage Low V_{OL} ISINK = 5mA0.0Output Voltage High V_{OH} ISOURCE = 0.5mA $V_{DD} - 0.5V$ Three-State Leakage CurrentIL $\overline{CS} = 3V$ \pm Three-State Output Capacitance C_{OUT} $\overline{CS} = 3V$ 15POWER SUPPLYPositive Supply Voltage (Note 6) V_{DD} $V_{DD} = 3.6V$ 2.73.Positive Supply Current (Note 7)IDD $V_{DD} = 3.6V$ 2.53.) L	10		4.7			Capacitive Bypass at REF
Input Low VoltageVINL0.0Input HysteresisVHYST0.2Input LeakageINVIN = 0 or VDD \pm Input CapacitanceCIN15DIGITAL OUTPUTS (DOUT)Output Voltage LowVOLISINK = 5mA0.0Output Voltage HighVOHISOURCE = 0.5mAVDD - 0.5VThree-State Leakage CurrentIL $\overline{CS} = 3V$ \pm^{-1} Three-State Output CapacitanceCOUT $\overline{CS} = 3V$ 15POWER SUPPLYPositive Supply Voltage (Note 6)VDD2.73.Positive Supply Current (Note 7)IDDVDD = 3.6V2.53.						DN)	DIGITAL INPUTS (SCLK, CS, SHE
Input Low VoltageVINL0.0Input HysteresisVHYST0.2Input LeakageINVIN = 0 or VDD \pm Input CapacitanceCIN15DIGITAL OUTPUTS (DOUT)Output Voltage LowVOLISINK = 5mA0.0Output Voltage HighVOHISOURCE = 0.5mAVDD - 0.5VThree-State Leakage CurrentIL $\overline{CS} = 3V$ \pm^{-1} Three-State Output CapacitanceCOUT $\overline{CS} = 3V$ 15POWER SUPPLYPositive Supply Voltage (Note 6)VDD2.73.Positive Supply Current (Note 7)IDDVDD = 3.6V2.53.				2.0		VINH	nput High Voltage
Input LeakageIN $V_{IN} = 0 \text{ or } V_{DD}$ \pm Input Capacitance C_{IN} 15DIGITAL OUTPUTS (DOUT)VOLISINK = 5mA0.Output Voltage LowVOLISINK = 5mA0.Output Voltage HighVOHISOURCE = 0.5mAVDD - 0.5VThree-State Leakage CurrentIL $\overline{CS} = 3V$ \pm^{-1} Three-State Output Capacitance C_{OUT} $\overline{CS} = 3V$ 15POWER SUPPLYPositive Supply Voltage (Note 6) V_{DD} 2.7 $3.$ Positive Supply Current (Note 7)IDD $V_{DD} = 3.6V$ 2.5 $3.$	3 1	0.8					nput Low Voltage
Input LeakageIN $V_{IN} = 0 \text{ or } V_{DD}$ \pm Input Capacitance C_{IN} 15DIGITAL OUTPUTS (DOUT) $O_{Utput Voltage Low}$ V_{OL} Output Voltage Low V_{OL} ISINK = 5mA O_{D} Output Voltage High V_{OH} ISOURCE = 0.5mA $V_{DD} - 0.5V$ Three-State Leakage CurrentIL $\overline{CS} = 3V$ \pm^{-1} Three-State Output Capacitance C_{OUT} $\overline{CS} = 3V$ 15POWER SUPPLYPositive Supply Voltage (Note 6) V_{DD} 2.73.Positive Supply Current (Note 7)IDD $V_{DD} = 3.6V$ 2.53.	,		0.2			VHYST	nput Hysteresis
DIGITAL OUTPUTS (DOUT)Output Voltage Low V_{OL} $I_{SINK} = 5mA$ 0.Output Voltage High V_{OH} $I_{SOURCE} = 0.5mA$ $V_{DD} - 0.5V$ Three-State Leakage Current I_L $\overline{CS} = 3V$ \pm^{-1} Three-State Output Capacitance C_{OUT} $\overline{CS} = 3V$ 15POWER SUPPLYPositive Supply Voltage (Note 6) V_{DD} 2.7 3.Positive Supply Current (Note 7) I_{DD} $V_{DD} = 3.6V$ 2.5 3.	μ	±1			$1 = 0 \text{ or } V_{DD}$		nput Leakage
DIGITAL OUTPUTS (DOUT)Output Voltage Low V_{OL} $I_{SINK} = 5mA$ 0.Output Voltage High V_{OH} $I_{SOURCE} = 0.5mA$ $V_{DD} - 0.5V$ Three-State Leakage Current I_L $\overline{CS} = 3V$ \pm^- Three-State Output Capacitance C_{OUT} $\overline{CS} = 3V$ 15POWER SUPPLYPositive Supply Voltage (Note 6) V_{DD} 2.7 3.Positive Supply Current (Note 7) I_{DD} $V_{DD} = 3.6V$ 2.5 3.	p		15			CIN	nput Capacitance
Output Voltage HighVOHISOURCE = $0.5mA$ VDD - $0.5V$ Three-State Leakage CurrentIL $\overline{CS} = 3V$ \pm^{-1} Three-State Output Capacitance C_{OUT} $\overline{CS} = 3V$ 15POWER SUPPLYPositive Supply Voltage (Note 6) V_{DD} 2.73.Positive Supply Current (Note 7)IDD $V_{DD} = 3.6V$							DIGITAL OUTPUTS (DOUT)
Three-State Leakage Current IL $\overline{CS} = 3V$ ± Three-State Output Capacitance \overline{COUT} $\overline{CS} = 3V$ 15 POWER SUPPLY End of the second	1 '	0.4			NK = 5mA	Vol	Dutput Voltage Low
Three-State Output Capacitance COUT CS = 3V 15 POWER SUPPLY 2.7 3. Positive Supply Voltage (Note 6) VDD 2.7 3. Positive Supply Current (Note 7) IDD VDD = 3.6V 2.5 3.	,		ōV	V _{DD} - 0.5	OURCE = 0.5 mA	Voн	Dutput Voltage High
POWER SUPPLY 2.7 3. Positive Supply Voltage (Note 6) V _{DD} 2.7 3. Positive Supply Current (Note 7) I _{DD} V _{DD} = 3.6V 2.5 3.	0 μ	±10			5 = 3V	١L	hree-State Leakage Current
POWER SUPPLY 2.7 3. Positive Supply Voltage (Note 6) V _{DD} 2.7 3. Positive Supply Current (Note 7) I _{DD} V _{DD} = 3.6V 2.5 3.	p		15		5 = 3V	Соит	hree-State Output Capacitance
Positive Supply Voltage (Note 6) VDD 2.7 3. Positive Supply Current (Note 7) IDD VDD = 3.6V 2.5 3.							POWER SUPPLY
Positive Supply Current (Note 7) I_{DD} $V_{DD} = 3.6V$ 2.53.6V	6 1	3.6		2.7		V _{DD}	
	5 m	3.5	2.5	1	D = 3.6V		
) µ	10					
Power-Supply Rejection PSR $V_{DD} = 2.7V$ to 3.6V, midscale input $\pm 0.5 \pm 2$		±2.0	±0.5	1			

TIMING CHARACTERISTICS—MAX1084

(Figures 1, 2, 8, 9; V_{DD} = +4.5V to +5.5V, T_A = T_{MIN} to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
SCLK Period	tCP		156		ns
SCLK Pulse Width High	tCH		62		ns
SCLK Pulse Width Low	tCL		62		ns
CS Fall to SCLK Rise Setup	tcss		35		ns
SCLK Rise to \overline{CS} Rise Hold	tCSH		0		ns
SCLK Rise to CS Fall Ignore	tcso		35		ns
CS Rise to SCLK Rise Ignore	tCS1		35		ns
SCLK Rise to DOUT Hold	tdoh	$C_{LOAD} = 20 pF$	10		ns
SCLK Rise to DOUT Valid	tDOV	$C_{LOAD} = 20 pF$		80	ns
CS Rise to DOUT Disable	t _{DOD}	$C_{LOAD} = 20 pF$	10	65	ns
CS Fall to DOUT Enable	tDOE	$C_{LOAD} = 20 pF$		65	ns
CS Pulse Width High	tcsw		100		ns

TIMING CHARACTERISTICS—MAX1085

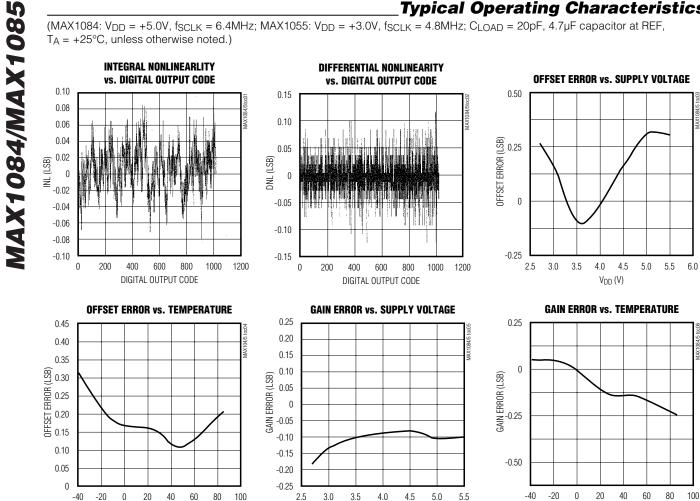
(Figures 1, 2, 8, 9; V_{DD} = +2.7V to +3.6V, T_A = T_{MIN} to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SCLK Period	tCP		208			ns
SCLK Pulse Width High	tCH		83			ns
SCLK Pulse Width Low	tCL		83			ns
CS Fall to SCLK Rise Setup	tcss		45			ns
SCLK Rise to CS Rise Hold	tCSH		0			ns
SCLK Rise to CS Fall Ignore	tcso		45			ns
CS Rise to SCLK Rise Ignore	tCS1		45			ns
SCLK Rise to DOUT Hold	tdoh	$C_{LOAD} = 20 pF$	13			ns
SCLK Rise to DOUT Valid	tDOV	$C_{LOAD} = 20 pF$			100	ns
CS Rise to DOUT Disable	t _{DOD}	$C_{LOAD} = 20 pF$	13		85	ns
CS Fall to DOUT Enable	tDOE	$C_{LOAD} = 20 pF$			85	ns
CS Pulse Width High	tcsw	$C_{LOAD} = 20 pF$	100			ns

Note 1: Tested at $V_{DD} = V_{DD,MIN}$.

Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has been calibrated.

Note 3: Internal reference, offset, and reference errors nulled.


Note 4: Conversion time is defined as the number of clock cycles multiplied by the clock period; clock has 50% duty cycle.

Note 5: External load should not change during conversion for specified accuracy. Guaranteed specification limit of 2mV/mA due to production test limitation.

Note 6: Electrical characteristics are guaranteed from V_{DD,MIN} to V_{DD,MAX}. For operations beyond this range, see *Typical Operating Characteristics*.

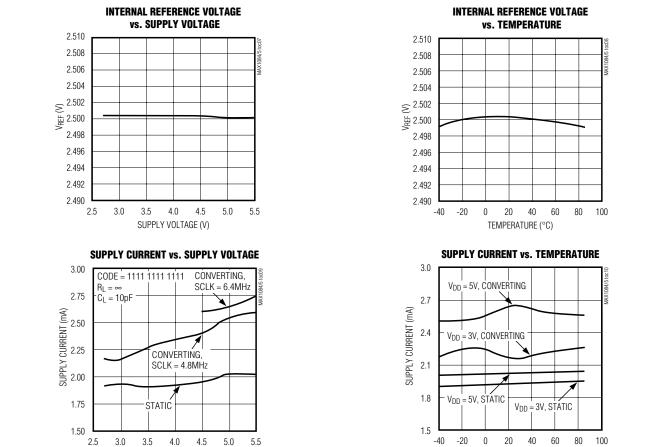
Note 7: MAX1084 tested with 20pF on DOUT and f_{SCLK} = 6.4MHz, 0 to 5V. MAX1085 tested with same loads, f_{SCLK} = 4.8MHz, 0 to 3V. DOUT = full scale.

(MAX1084: VDD = +5.0V, f_{SCLK} = 6.4MHz; MAX1055: VDD = +3.0V, f_{SCLK} = 4.8MHz; C_{LOAD} = 20pF, 4.7µF capacitor at REF, $T_A = +25^{\circ}C$, unless otherwise noted.)

V_{DD} (V)

///XI//

TEMPERATURE (°C)


Typical Operating Characteristics

6

TEMPERATURE (°C)

Typical Operating Characteristics (continued)

(MAX1084: V_{DD} = +5.0V, f_{SCLK} = 6.4MHz; MAX1085: V_{DD} = +3.0V, f_{SCLK} = 4.8MHz; C_{LOAD} = 20pF, 4.7µF capacitor at REF, T_A = +25°C, unless otherwise noted.)

TEMPERATURE (°C)

Pin Description

PIN	NAME	FUNCTION
1	VDD	Positive Supply Voltage
2	AIN	Sampling Analog Input, 0 to V _{REF} Range
3	SHDN	Active-Low Shutdown Input. Pulling $\overline{\text{SHDN}}$ low shuts down the device and reduces the supply current to 2µA (typ).
4	REF	Reference Voltage for Analog-to-Digital Conversion. Internal 2.5V reference output. Bypass with a 4.7µF capacitor.
5	GND	Analog and Digital Ground
6	DOUT	Serial Data Output. DOUT changes state at SCLK's rising edge. High impedance when \overline{CS} is high.
7	CS	Active-Low Chip Select. Initiates conversions on the falling edge. When \overline{CS} is high, DOUT is high impedance.
8	SCLK	Serial Clock Input. SCLK drives the conversion process and clocks data out at rates up to 6.4MHz (MAX1084) or 4.8MHz (MAX1085).

Downloaded from Elcodis.com electronic components distributor

SUPPLY VOLTAGE (V)

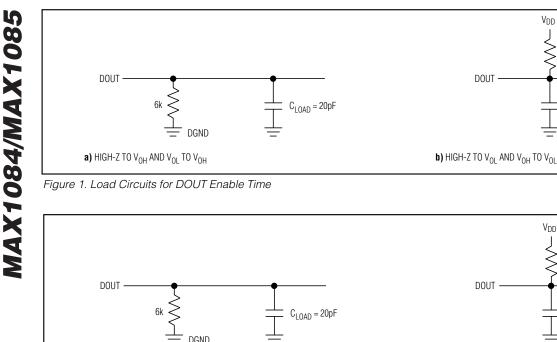


Figure 2. Load Circuits for DOUT Disable Time

a) V_{OH} TO HIGH-Z

Detailed Description

Converter Operation

The MAX1084/MAX1085 use an input track/hold (T/H) and successive-approximation register (SAR) circuitry to convert an analog input signal to a digital 10-bit output. Figure 3 shows the MAX1084/MAX1085 in their simplest configuration. The internal reference is trimmed to 2.5V. The serial interface requires only three digital lines (SCLK, CS, and DOUT) and provides an easy interface to microprocessors (µPs).

The MAX1084/MAX1085 have two modes: normal and shutdown. Pulling SHDN low shuts the device down and reduces supply current to 2µA (typ); pulling SHDN high puts the device into operational mode. Pulling \overline{CS} low initiates a conversion that is driven by SCLK. The conversion result is available at DOUT in unipolar serial format. The serial data stream consists of three zeros, followed by the data bits (MSB first). All transitions on DOUT occur 20ns after the rising edge of SCLK. Figures 8 and 9 show the interface timing information.

Analog Input

Figure 4 shows the sampling architecture of the ADC's comparator. The full-scale input voltage is set by the internal reference ($V_{REF} = +2.5V$).

b) V_{OI} TO HIGH-Z

6k

 $C_{LOAD} = 20 pF$

DGND

6k

 $C_{LOAD} = 20 pF$

DGND

Track/Hold

In track mode, the analog signal is acquired and stored in the internal hold capacitor. In hold mode, the T/H switch opens and maintains a constant input to the ADC's SAR section.

During acquisition, the analog input AIN charges capacitor $C_{\text{HOLD}}.$ Bringing $\overline{\text{CS}}$ low ends the acquisition interval. At this instant, the T/H switches the input side of C_{HOLD} to GND. The retained charge on C_{HOLD} represents a sample of the input, unbalancing node ZERO at the comparator's input.

In hold mode, the capacitive digital-to-analog converter (DAC) adjusts during the remainder of the conversion cycle to restore node ZERO to 0 within the limits of 10bit resolution. This action is equivalent to transferring a charge from C_{HOLD} to the binary-weighted capacitive

8

DAC, which in turn forms a digital representation of the analog input signal. At the conversion's end, the input side of $C_{\rm HOLD}$ switches back to AIN, and $C_{\rm HOLD}$ charges to the input signal again.

The time required for the T/H to acquire an input signal is a function of how quickly its input capacitance is charged. If the input signal's source impedance is high, the acquisition time lengthens, and more time must be allowed between conversions. The acquisition time, t_{ACQ} , is the maximum time the device takes to acquire the signal and the minimum time needed for the signal to be acquired. Acquisition time is calculated by:

 $t_{ACQ} = 7(R_S + R_{IN}) \times 12pF$

where ${\sf R}_{\sf IN}$ = 800 $\Omega,$ ${\sf R}_{\sf S}$ = the input signal's source impedance, and $t_{\sf ACQ}$ is never less than 468ns (MAX1284) or 625ns (MAX1085). Source impedance below 4k Ω does not significantly affect the ADC's AC performance.

Higher source impedances can be used if a 0.01μ F capacitor is connected to the analog input. Note that the input capacitor forms an RC filter with the input source impedance, limiting the ADC's input signal bandwidth.

Input Bandwidth

The ADC's input tracking circuitry has a 6MHz (MAX1084) or 3MHz (MAX1085) small-signal bandwidth, so it is possible to digitize high-speed transient events and measure periodic signals with bandwidths exceeding the ADC's sampling rate by using undersampling techniques. To avoid aliasing of unwanted high-frequency signals into the frequency band of interest, anti-alias filtering is recommended.

Analog Input Protection

Internal protection diodes, which clamp the analog input to V_{DD} and GND, allow the input to swing from GND - 0.3V to V_{DD} + 0.3V without damage.

If the analog input exceeds 50mV beyond the supplies, limit the input current to 2mA.

Internal Reference

The MAX1084/MAX1085 have an on-chip voltage reference trimmed to 2.5V. The internal reference output is connected to REF and also drives the internal capacitive DAC. The output can be used as a reference voltage source for other components and can source up to 800μ A. Bypass REF with a 4.7μ F capacitor. Larger capacitors increase wake-up time when exiting shutdown (see Using SHDN to Reduce Supply Current). The internal reference is disabled in shutdown (SHDN = 0).

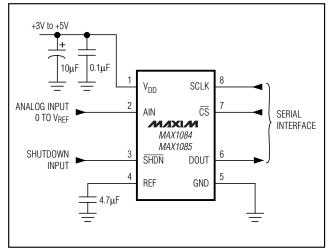


Figure 3. Typical Operating Circuit

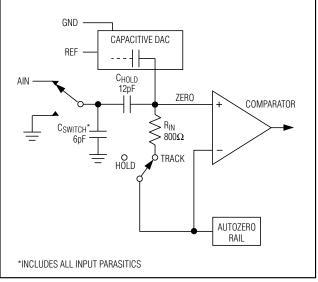


Figure 4. Equivalent Input Circuit

_Serial Interface

Initialization After Power-Up and Starting a Conversion

When power is first applied, and if \overline{SHDN} is not pulled low, it takes the fully discharged 4.7μ F reference bypass capacitor up to 1.4ms to acquire adequate charge for specified accuracy. No conversions should be performed during this time.

To start a conversion, pull $\overline{\text{CS}}$ low. At $\overline{\text{CS}}$'s falling edge, the T/H enters its hold mode and a conversion is initiated. Data can then be shifted out serially with the external clock.

Using SHDN to Reduce Supply Current Power consumption can be reduced significantly by shutting down the MAX1084/MAX1085 between conversions. Figure 6 shows a plot of average supply current vs. conversion rate. The wake-up time, t_{WAKE}, is the time from SHDN deasserted to the time when a conversion may be initiated (Figure 5).This time depends on the time in shutdown (Figure 7) because the external 4.7µF reference bypass capacitor loses charge slowly during shutdown and can be as long as 1.4ms.

Timing and Control

Conversion-start and data-read operations are controlled by the CS and SCLK digital inputs. The timing diagrams of Figures 8 and 9 outline serial-interface operation.

A $\overline{\text{CS}}$ falling edge initiates a conversion sequence: the T/H stage holds the input voltage, the ADC begins to convert, and DOUT changes from high impedance to logic low. SCLK is used to drive the conversion process, and it shifts data out as each bit of conversion is determined.

SCLK begins shifting out the data after the rising edge of the third SCLK pulse. DOUT transitions 20ns after each SCLK rising edge. The third rising clock edge produces the MSB of the conversion at DOUT, followed by the remaining bits. Since there are 12 data bits and 3 leading zeros, at least 15 rising clock edges are needed to shift out these bits. Extra clock pulses occurring after the conversion result has been clocked out, and prior to a rising edge of $\overline{\text{CS}}$, produce trailing zeros at DOUT and have no effect on converter operation.

Pull $\overline{\text{CS}}$ high after reading the conversion's LSB. For maximum throughput, $\overline{\text{CS}}$ can be pulled low again to initiate the next conversion immediately after the specified minimum time (t_{CS}).

Output Coding and Transfer Function

The data output from the MAX1084/MAX1085 is binary. Figure 10 depicts the nominal transfer function. Code transitions occur halfway between successive-integer LSB values; $V_{REF} = 2.5V$, and 1LSB = 2.44mV or 2.5V / 1024.

Applications Information

Connection to Standard Interfaces

The MAX1084/MAX1085 serial interface is fully compatible with SPI, QSPI, and MICROWIRE (Figure 11).

If a serial interface is available, set the CPU's serial interface in master mode so the CPU generates the serial clock. Choose a clock frequency up to 6.4MHz (MAX1084) or 4.8MHz (MAX1085).

- 1) Use a general-purpose I/O line on the CPU to pull $\overline{\text{CS}}$ low. Keep SCLK low.
- 2) Activate SCLK for a minimum of 13 clock cycles. The first two clocks produce zeros at DOUT. DOUT output data transitions 20ns after SCLK rising edge and is available in MSB-first format. Observe the SCLK-to-DOUT valid timing characteristic. Data can be clocked into the μ P on SCLK's falling or rising edge.

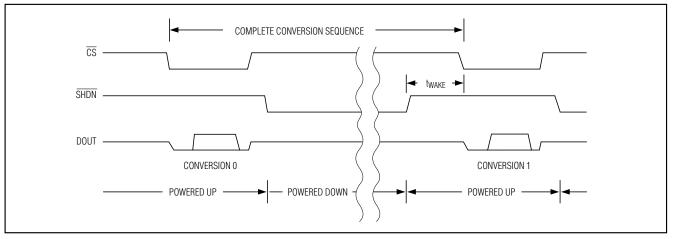


Figure 5. Shutdown Sequence

M/IXI/M

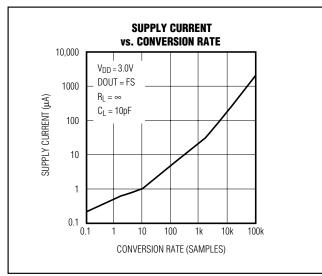


Figure 6. Supply Current vs. Conversion Rate

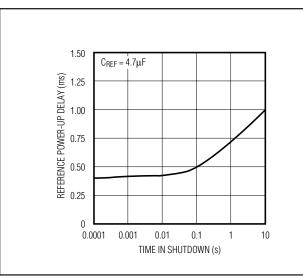


Figure 7. Reference Power-Up vs. Time in Shutdown

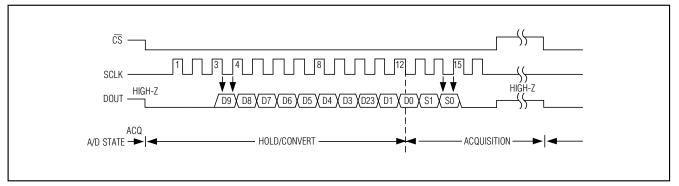


Figure 8. Interface Timing Sequence

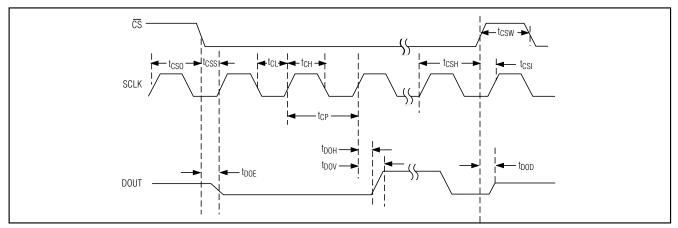


Figure 9. Detailed Serial-Interface Timing

M/IXI/N

MAX1084/MAX1085

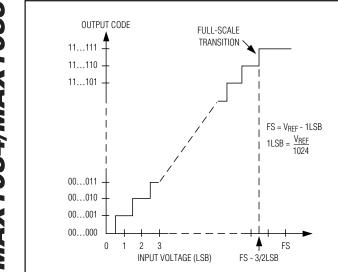


Figure 10. Unipolar Transfer Function, Full Scale (FS) = V_{REF} - 1LSB, Zero Scale (ZS) = GND

- 3) Pull CS high at or after the 13th rising clock edge. If CS remains low, the two sub-bits and trailing zeros are clocked out after the LSB.
- 4) With CS = high, wait the minimum specified time, t_{CS}, before initiating a new conversion by pulling CS low. If a conversion is aborted by pulling CS high before the conversion completes, wait the minimum acquisition time, t_{ACQ}, before starting a new conversion. CS must be held low until all data bits are clocked out.

Data can be output in 2 bytes or continuously, as shown in Figure 8. The bytes contain the result of the conversion padded with three leading zeros, 2 sub-bits, and trailing zeros if SCLK is still active with CS kept low.

SPI and Microwire

When using SPI or QSPI, set CPOL = 0 and CPHA = 0. Conversion begins with a \overline{CS} falling edge. DOUT goes low, indicating a conversion is in progress. Two consecutive 1-byte reads are required to get the full 10+2 bits from the ADC. DOUT output data transitions on SCLK's rising edge and is clocked into the μ P on the following rising edge.

The first byte contains 3 leading zeros, and 5 bits of conversion result. The second byte contains the remaining 5 bits, 2 sub-bits, and 1 trailing zero. See Figure 11 for connections and Figure 12 for timing.

QSPI

Unlike SPI, which requires two 1-byte reads to acquire

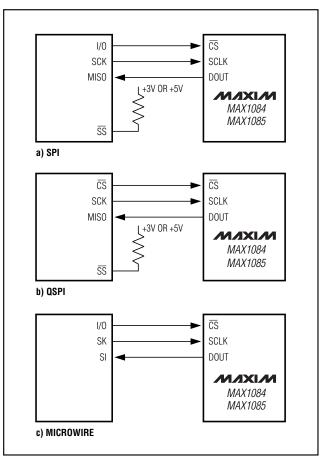


Figure 11. Common Serial-Interface Connections to the MAX1084/MAX1085

the 10 bits of data from the ADC, QSPI allows the minimum number of clock cycles necessary to clock in the data. The MAX1084/MAX1085 require 13 clock cycles from the μ P to clock out the 10 bits of data. Additional clock cycles clock out the 2 sub-bits followed by trailing zeros. Figure 13 shows a transfer using CPOL = 0 and CPHA = 1. The result of conversion contains two zeros followed by the 10 bits of data in MSB-first format.

Layout and Grounding

For best performance, use PC boards. Wire-wrap boards are not recommended. Board layout should ensure that digital and analog signal lines are separated from each other. Do not run analog and digital (especially clock) lines parallel to one another, or digital lines underneath the ADC package.

Figure 14 shows the recommended system ground connections. Establish a single-point analog ground ("star"

12

ground point) at GND, separate from the logic ground. Connect all other analog grounds and GND to this star ground point for further noise reduction. No other digital system ground should be connected to this single-point analog ground. The ground return to the power supply for this ground should be low impedance and as short as possible for noise-free operation.

High-frequency noise in the V_{DD} power supply may affect the ADC's high-speed comparator. Bypass this supply to the single-point analog ground with 0.1μ F and 10μ F bypass capacitors. Minimize capacitor lead lengths for best supply-noise rejection. To reduce the effect of supply noise, a 10Ω resistor can be connected as a lowpass filter to attenuate supply noise (Figure 14).

Definitions

Integral Nonlinearity

Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. This straight line can be either a best-straight-line fit or a line drawn between the endpoints of the transfer function, once offset and gain errors have been nullified. The static linearity parameters for the MAX1084/MAX1085 are measured using the endpoints method.

Differential Nonlinearity

Differential nonlinearity (DNL) is the difference between an actual step width and the ideal value of 1LSB. A DNL error specification of 1LSB or less guarantees no missing codes and a monotonic transfer function.

Aperture Jitter

Aperture jitter (t_{AJ}) is the sample-to-sample variation in the time between the samples.

Aperture Delay

Aperture delay (t_{AD}) is the time defined between the falling edge of CS and the instant when an actual sample is taken.

Signal-to-Noise Ratio

For a waveform perfectly reconstructed from digital samples, signal-to-noise ratio (SNR) is the ratio of full-scale analog input (RMS value) to the RMS quantization error (residual error). The theoretical minimum analog-to-digital noise is caused by quantization error and results directly from the ADC's resolution, (N bits):

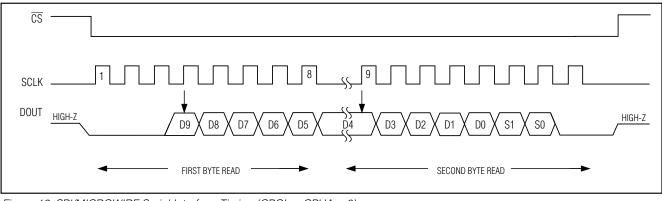


Figure 12. SPI/MICROWIRE Serial Interface Timing (CPOL = CPHA = 0)

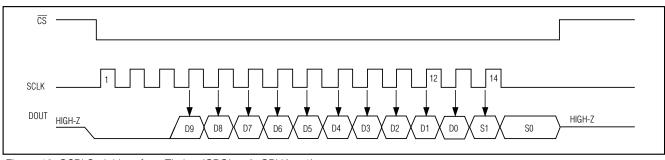


Figure 13. QSPI Serial Interface Timing (CPOL = 0, CPHA = 1)

M/IXI/M

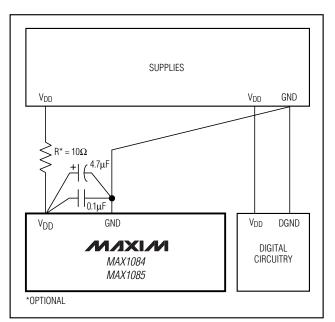


Figure 14. Power-Supply Grounding Condition

In reality, there are other noise sources besides quantization noise, including thermal noise, reference noise, clock jitter, etc. Therefore, SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first five harmonics, and the DC offset.

Signal-to-Noise Plus Distortion

Signal-to-noise plus distortion (SINAD) is the ratio of the fundamental input frequency's RMS amplitude to RMS equivalent of all other ADC output signals.

SINAD (dB) = $20 \times \log$ (SignalRMS / NoiseRMS)

Effective Number of Bits

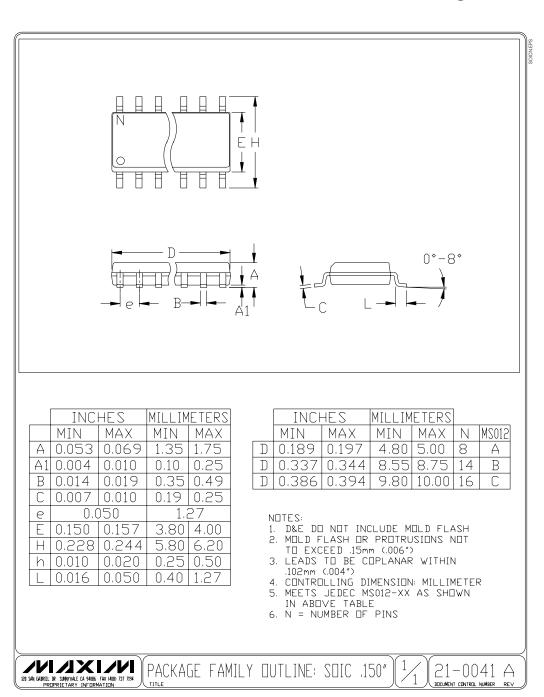
Effective number of bits (ENOB) indicates the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists of quantization noise only. With an input range equal to the full-scale range of the ADC, calculate the effective number of bits as follows:

Total Harmonic Distortion

Total harmonic distortion (THD) is the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself. This is expressed as:

THD = 20 × LOG
$$\frac{\sqrt{V_2^2 + V_3^2 + V_4^2 + V_5^2}}{V_1}$$

where V1 is the fundamental amplitude, and V2 through V5 are the amplitudes of the 2nd- through 5th-order harmonics, respectively.


Spurious-Free Dynamic Range

Spurious-free dynamic range (SFDR) is the ratio of RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next-largest distortion component.

Chip Information

TRANSISTOR COUNT: 4286 PROCESS: BICMOS

Package Information

MAX1084/MAX1085

NOTES

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16 ____

______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

Printed USA

© 2000 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products.