

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.		Power Dissipation	
		LM2907-8, LM2917-8	1200 mW
		LM2907-14, LM2917-14	1580 mW
Supply Voltage	28 V	(See Note 1)	
Supply Current (Zener Options)	25 mA	Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Collector Voltage	28 V	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Differential Input Voltage		Soldering Information	
Tachometer	28 V	Dual-In-Line Package	
Op Amp/Comparator	28 V	Soldering (10 seconds)	$260^{\circ} \mathrm{C}$
Input Voltage Range		Small Outline Package	
Tachometer LM2907-8, LM2917-8	$\pm 28 \mathrm{~V}$	Vapor Phase (60 seconds)	$215{ }^{\circ} \mathrm{C}$
LM2907, LM2917	0.0 V to +28 V	Infrared (15 seconds)	$220^{\circ} \mathrm{C}$
Op Amp/Comparator	0.0 V to +28 V	See AN-450 "Surface Mountin on Product Reliability" for oth face mount devices.	ds and Their Effect ds of soldering sur-

Power Dissipation

Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, see test circuit

Symbol	Parameter	Conditions	Min	Typ	Max	Units
TACHOMETER						
	Input Thresholds	$\mathrm{V}_{\text {IN }}=250 \mathrm{mVp}-\mathrm{p}$ @ 1 kHz (Note 2)	± 10	± 25	± 40	mV
	Hysteresis	$\mathrm{V}_{\text {IN }}=250 \mathrm{mVp}-\mathrm{p}$ @ 1 kHz (Note 2)		30		mV
	Offset Voltage LM2907/LM2917 LM2907-8/LM2917-8	VIN $=250 \mathrm{mVp}-\mathrm{p}$ @ 1 kHz (Note 2)		$\begin{gathered} 3.5 \\ 5 \end{gathered}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Input Bias Current	$\mathrm{V}_{\mathrm{IN}}= \pm 50 \mathrm{mV} \mathrm{DC}$		0.1	1	$\mu \mathrm{A}$
V_{OH}	Pin 2	$\mathrm{V}_{\mathrm{IN}}=+125 \mathrm{mV} \mathrm{DC}^{\text {(}}$ (Note 3)		8.3		V
V_{OL}	Pin 2	$\mathrm{V}_{\mathrm{IN}}=-125 \mathrm{mV} \mathrm{DC}^{\text {(}}$ (ote 3)		2.3		V
$\mathrm{l}_{2}, \mathrm{l}_{3}$	Output Current	$\mathrm{V} 2=\mathrm{V} 3=6.0 \mathrm{~V}$ (Note 4)	140	180	240	$\mu \mathrm{A}$
I_{3}	Leakage Current	$12=0, \mathrm{~V} 3=0$			0.1	$\mu \mathrm{A}$
K	Gain Constant	(Note 3)	0.9	1.0	1.1	
	Linearity	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, 5 \mathrm{kHz}, 10 \mathrm{kHz}$ (Note 5)	-1.0	0.3	+1.0	\%
OP/AMP COMPARATOR						
V_{OS}		$\mathrm{V}_{\text {IN }}=6.0 \mathrm{~V}$		3	10	mV
$\mathrm{I}_{\text {BIAS }}$		$\mathrm{V}_{\text {IN }}=6.0 \mathrm{~V}$		50	500	nA
	Input Common-Mode Voltage		0		$\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$	V
	Voltage Gain			200		V / mV
	Output Sink Current	$\mathrm{V}_{\mathrm{C}}=1.0$	40	50		mA
	Output Source Current	$\mathrm{V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{CC}}-2.0$		10		mA
	Saturation Voltage	$\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$		0.1	0.5	V
		$\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$			1.0	V
		$\mathrm{I}_{\text {SINK }}=50 \mathrm{~mA}$		1.0	1.5	V

Electrical Characteristics $\mathrm{V}_{C C}=12 \mathrm{~V}_{\mathrm{DC}}, T_{A}=25^{\circ} \mathrm{C}$, see test circuit (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
ZENER REGULATOR						
	Regulator Voltage	$\mathrm{R}_{\text {DROP }}=470 \Omega$		7.56		V
	Series Resistance			10.5	15	Ω
	Temperature Stability			+1		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
	TOTAL SUPPLY CURRENT			3.8	6	mA

Note 1: For operation in ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $101^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for LM2907-8 and LM2917-8, and $79^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for LM2907-14 and LM2917-14.
Note 2: Hysteresis is the sum $+V_{T H}-\left(-V_{T H}\right)$, offset voltage is their difference. See test circuit.
Note 3: V_{OH} is equal to $3 / 4 \times \mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}_{\mathrm{BE}}, \mathrm{V}_{\mathrm{OL}}$ is equal to $1 / 4 \times \mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}_{\mathrm{BE}}$ therefore $\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{CC}} / 2$. The difference, $\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}$, and the mirror gain, I_{2} / I_{3}, are the two factors that cause the tachometer gain constant to vary from 1.0.
Note 4: Be sure when choosing the time constant R1 \times C1 that R1 is such that the maximum anticipated output voltage at pin 3 can be reached with I \times R1. The maximum value for R1 is limited by the output resistance of pin 3 which is greater than $10 \mathrm{M} \Omega$ typically.
Note 5: Nonlinearity is defined as the deviation of $V_{\text {OUT }}$ (@ pin 3) for $f_{I N}=5 \mathrm{kHz}$ from a straight line defined by the $V_{\text {OUT }} @ 1 \mathrm{kHz}$ and $\mathrm{V}_{\text {OUT }} @ 10 \mathrm{kHz}$. $\mathrm{C} 1=1000 \mathrm{pF}, \mathrm{R} 1=68 \mathrm{k}$ and $\mathrm{C} 2=0.22 \mathrm{mFd}$.

General Description (Continued)

The op amp/comparator is fully compatible with the tachometer and has a floating transistor as its output. This feature allows either a ground or supply referred load of up to 50 mA . The collector may be taken above V_{CC} up to a maximum V_{CE} of 28 V .
The two basic configurations offered include an 8-pin device with a ground referenced tachometer input and an internal connection between the tachometer output and the op amp non-inverting input. This version is well suited for single speed or frequency switching or fully buffered frequency to voltage conversion applications.

Test Circuit and Waveform

TL/H/7942-6

The more versatile configurations provide differential tachometer input and uncommitted op amp inputs. With this version the tachometer input may be floated and the op amp becomes suitable for active filter conditioning of the tachometer output.
Both of these configurations are available with an active shunt regulator connected across the power leads. The regulator clamps the supply such that stable frequency to voltage and frequency to current operations are possible with any supply voltage and a suitable resistor.

Tachometer Input Threshold Measurement

TL/H/7942-7

Typical Performance Characteristics

TL/H/7942-5

Applications Information

The LM2907 series of tachometer circuits is designed for minimum external part count applications and maximum versatility. In order to fully exploit its features and advantages let's examine its theory of operation. The first stage of operation is a differential amplifier driving a positive feedback flip-flop circuit. The input threshold voltage is the amount of differential input voltage at which the output of this stage changes state. Two options (LM2907-8, LM2917-8) have one input internally grounded so that an input signal must swing above and below ground and exceed the input thresholds to produce an output. This is offered specifically for magnetic variable reluctance pickups which typically provide a single-ended ac output. This single input is also fully protected against voltage swings to $\pm 28 \mathrm{~V}$, which are easily attained with these types of pickups.
The differential input options (LM2907, LM2917) give the user the option of setting his own input switching level and still have the hysteresis around that level for excellent noise rejection in any application. Of course in order to allow the inputs to attain common-mode voltages above ground, input protection is removed and neither input should be taken outside the limits of the supply voltage being used. It is very important that an input not go below ground without some resistance in its lead to limit the current that will then flow in the epi-substrate diode.
Following the input stage is the charge pump where the input frequency is converted to a dc voltage. To do this requires one timing capacitor, one output resistor, and an integrating or filter capacitor. When the input stage changes state (due to a suitable zero crossing or differential voltage on the input) the timing capacitor is either charged or discharged linearly between two voltages whose difference is $\mathrm{V}_{\mathrm{CC}} / 2$. Then in one half cycle of the input frequency or a time equal to $1 / 2 f_{I_{N}}$ the change in charge on the timing capacitor is equal to $\mathrm{V}_{\mathrm{CC}} / 2 \times \mathrm{C} 1$. The average amount of current pumped into or out of the capacitor then is:

$$
\frac{\Delta \mathrm{Q}}{\mathrm{~T}}=\mathrm{i}_{\mathrm{C}(\mathrm{AVG})}=\mathrm{C} 1 \times \frac{\mathrm{V}_{\mathrm{CC}}}{2} \times\left(2 \mathrm{f}_{\mathrm{IN}}\right)=\mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}} \times \mathrm{C}_{1}
$$

The output circuit mirrors this current very accurately into the load resistor R1, connected to ground, such that if the pulses of current are integrated with a filter capacitor, then $V_{O}=i_{c} \times R 1$, and the total conversion equation becomes:

$$
\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}} \times \mathrm{C} 1 \times \mathrm{R} 1 \times \mathrm{K}
$$

Where K is the gain constant-typically 1.0.

The size of C 2 is dependent only on the amount of ripple voltage allowable and the required response time.

CHOOSING R1 AND C1

There are some limitations on the choice of R1 and C1 which should be considered for optimum performance. The timing capacitor also provides internal compensation for the charge pump and should be kept larger than 500 pF for very accurate operation. Smaller values can cause an error current on R1, especially at low temperatures. Several considerations must be met when choosing R1. The output current at pin 3 is internally fixed and therefore $\mathrm{V}_{\mathrm{O}} / \mathrm{R} 1$ must be less than or equal to this value. If R1 is too large, it can become a significant fraction of the output impedance at pin 3 which degrades linearity. Also output ripple voltage must be considered and the size of C2 is affected by R1. An expression that describes the ripple content on pin 3 for a single R1C2 combination is:

$$
V_{\mathrm{RIPPLE}}=\frac{\mathrm{V}_{\mathrm{CC}}}{2} \times \frac{\mathrm{C} 1}{\mathrm{C} 2} \times\left(1-\frac{\mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}} \times \mathrm{C} 1}{\mathrm{I}_{2}}\right) \mathrm{pk}-\mathrm{pk}
$$

It appears R1 can be chosen independent of ripple, however response time, or the time it takes $\mathrm{V}_{\text {OUT }}$ to stabilize at a new voltage increases as the size of C 2 increases, so a compromise between ripple, response time, and linearity must be chosen carefully
As a final consideration, the maximum attainable input frequency is determined by $\mathrm{V}_{\mathrm{C}}, \mathrm{C} 1$ and I_{2} :

$$
f_{\mathrm{MAX}}=\frac{\mathrm{I}_{2}}{\mathrm{C} 1 \times \mathrm{V}_{\mathrm{CC}}}
$$

USING ZENER REGULATED OPTIONS (LM2917)

For those applications where an output voltage or current must be obtained independent of supply voltage variations, the LM2917 is offered. The most important consideration in choosing a dropping resistor from the unregulated supply to the device is that the tachometer and op amp circuitry alone require about 3 mA at the voltage level provided by the zener. At low supply voltages there must be some current flowing in the resistor above the 3 mA circuit current to operate the regulator. As an example, if the raw supply varies from 9 V to 16 V , a resistance of 470Ω will minimize the zener voltage variation to 160 mV . If the resistance goes under 400Ω or over 600Ω the zener variation quickly rises above 200 mV for the same input variation.

Typical Applications

Typical Applications (Continued)
"Speed Switch" Load is Energized When $\mathrm{f}_{\mathrm{IN}} \geq \frac{1}{2 R C}$

TL/H/7942-9
Zener Regulated Frequency to Voltage Converter

TL/H/7942-10

TL/H/7942-11

Typical Applications (Continued)

TL/H/7942-13

Capacitance Meter
$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}-10 \mathrm{~V}$ for $\mathrm{C}_{\mathrm{X}}=0.01$ to 0.1 mFd
($\mathrm{R}=111 \mathrm{k}$)

TL/H/7942-14
7

Typical Applications (Continued)

Typical Applications (Continued)

Comparator Function Which can be Implemented in Several Ways:

TL/H/7942-24

TL/H/7942-26

Typical Applications (Continued)

Anti-Skid Circuit Functions

two input wheel speeds.
"Select-High" Circuit
 the two input wheel speeds.

Equivalent Schematic Diagram

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N) Order Number LM2907N or LM2917N NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

